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Abstract. The methods of combined electron-beam treatment of parts made of steel with one- 

and two-layer coatings are studied experimentally. Ti-Ni, Ni-Al and Al-Ti systems were used 

as the examples in the experiments. The mathematical model is suggested for coating 

formation in the controlled regime of high temperature synthesis during high energy source 

motion along the preliminarily deposited layer of exothermic composition. The study takes into 

account the difference in thermophysical properties of the materials of coating and substrate, 

heat release from chemical reaction that leads to the coating properties formation and other 

factors. The realization of the synthesis depends on technological parameters. Various regimes 

of the treatment process are investigated numerically. 

1. Introduction 

Self-propagating high-temperature synthesis (SHS) methods possess the extensive possibilities to 

create the materials of various types [1-3]. Coating synthesis on metals using SHS faces some 

difficulties and is not a widely spread technological process. A material obtained by SHS, as a rule, 

has the porosity comparable with initial one and has low mechanical characteristics. To obtain 

compact and chemically uniform material, the following treatment is necessary.  

 Employment of electron-beam has advantages for a broad spectrum of technology applications [4-

6], including surface engineering: thermal treatment of alloys based on iron, titanium, aluminum and 

copper in the hardening regime from solid and liquid states, build-up welding of coatings on these 

alloys from materials with considerably different properties.  

 It is to be expected that a combined method of electron-beam treatment of material with 

preliminarily deposited powder alloy when the coating synthesis is realized allows for realizing the 

advantage of electron-beam treatment and condensed phase synthesis if the technological process will 

be arranged correctly for obtaining a material with anticipated properties. Preliminary investigations 

with green compositions of powders and composite wires of Ti-Ni, Ni-Al, Al-Ti [4] have shown that 

electron-beam technologies enable obtaining the smooth transition of the distribution of composition, 

chemical elements and mechanical properties from deposited layer to the basic detail. Intermetallic 

coating synthesis during laser heating was described in [7]. Here, the model was suggested taking into 

account the reaction retardation and controlling of the heating by moving source. However, only in [8] 

the heat losses from reaction zone to the substrate were taken into account, which could be the key 
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factor for the realization of one or another synthesis regime. Some general consideration in conjugate 

and coupling models formulation were recounted in [9]. But only certain results for the simplest 

variant of the model (without reaction retardation by product layer) were presented in the previous 

work.  

Note, that on the one hand, Ti-Ni, Ni-Al and Al-Ti systems, especially in the form of coatings on 

the base of steels and titanium alloys, are weakly examined despite enormous number of publications, 

and on the other hand, they are extremely promising from the practical point of view. Really, they 

could be applied to heighten the wear resistance and corrosion stability of details made from 

inexpensive engineering materials. For example, Ni-Al coating can be used for anticorrosion 

insulation of large vessels, reservoirs, metallic barriers and etc. γ-TiAl is the most perspective 

composite for automotive (in turbo compressors) and for aerospace applications [10-15]. This material 

has low density, high heat resistance and high-temperature strength. The production of blading for 

aviation gas-turbine engines from this material is a pretty complex problem. One of Ti-Al alloy 

applications can be their deposition on a titanium-based alloy using the combined method EB+SHS. 

This paper briefly describes the experimental procedure for coating synthesis from Al-Ni (this 

system is actively studied in the applications of SLS and SLM [16, 17], and during development of 

new alloys [18]), shows the results of investigation of phase composition determination after electron-

beam treatment and suggests the model of phase composition evolution for the coating synthesized on 

the substrate.  

 

2. Experimental results 

During experiments, Ni-Al coatings were deposited on the surface of the part by thermal spraying. The 

material in the form of a wire was sprayed using EМ 12М setup and deposited on the substrate 

prepared from steel (0.2%C, 0.5%Mn). On sputtering, Ni and Al react with each other to form 

intermetallic compounds. The 0.1 mm-thick coatings consisting of one (Al or Al–Ni) or two (Al + Al–

Ni) layers have lamellar structure; they demonstrate defective interface between the substrate and 

sublayer; contain unfused particles and have substantial porosity. To improve the cohesion strength 

and diminish the porosity, the EB energy has been used. Coating structure ordering occurs during 

intensive heating and fusing. The formed liquid phase enables the acceleration of surface and volume 

diffusion; gas desorption occurs, and the diffusion zone forms between the coating and the base. The 

formation of dendritic structure oriented mainly in perpendicular to the surface is typical for the 

coatings. This is conditioned by the heat sink direction during the melt solidification when EB action 

is terminated. The structure becomes more dispersed near the substrate. The diffusion zone is observed 

between the aluminum coating and the base. 

The coating phase structure changes during EB treatment. The concentration of NiAl, Ni2Al3 and 

Al2O3 is increased, new phases of Ni2Al, Fe3Al and FeAl are formed and the traces of NiO and Ni are 

observed. The content of hard phases (NiAl, Al2O3, NiO) increased under heating by the source at 

relatively low intensity (energy density was 0.8·103 W/cm2). When the heating is more intensive 

(specific power is 2·103 W/cm2), the partial interaction between coating and substrate materials occurs, 

and the portion of iron-containing Fe3Al, FeAl phases and plastic phase Ni2Al3 is increased. This leads 

to the change in coating properties depending on the density of heating source energy. By selecting the 

proportions of Ni and Al, one can control various properties of materials produced due to exothermic 

reaction.  

As a result of surface coating reflow by electron beam, the coating-substrate adhesion strength is 

increased by the factor of 15 to 20 reaching 140 MPa, while the wear resistance of the coating-

substrate system is enhanced 2.5 times as compared with initial state. 

The corrosion resistance of samples increased 3-6 times in 3% NaCl and 5% H2SO4 solutions. 

When modified coatings were subjected to blasting with SiO2 particles at the rate of 40 m/s, their wear 

resistance doubled versus as-deposited state. The modified Ni-Al coatings can be efficiently used for 

protection of surfaces under the conditions of their simultaneous exposure to high temperatures and 

erosive media. 
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3. Mathematical model 

A complete thermophysical model of controlled synthesis of the coating in Cartesian coordinate 

system includes three-dimensional thermal conductivity equation for the base (subscript b) and 

thermal conductivity equation for the preliminary deposited layer (subscript s), where the physical 

chemical conversions can proceed. 

 kkk
k

kk W
t

T
c 




 J ,  

where s,bk  ; kk ,c   are heat capacities and densities of materials; heat fluxes kJ  obey to Fourier 

law; kk ,W   are total sources of heat due to chemical conversions and external heating. If external 

source acts only in the coating, then 0b . 

 The axis arrangement is shown in Figure 1. 

 
Figure 1. Problem formulation 

 

 Under the condition of volume absorption of the energy of moving source developed to the line, the 

energy source for the coating can be written as 
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where 0R  is electron beam radius, V is its motion velocity along the Ox -axis. 

 The condition of ideal thermal contact is correct in the coating-base interface 
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The heat losses by irradiation (according to Stephen-Bolzman law) are possible in the surfaces 0y  

and pb hhy  . Other surfaces are insulated. 

 Chemical reactions can occur in the coating and lead to phase composition change. In this case, 
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where kh  are partial molar enthalpies of species participating in reactions; ky  are their molar 

concentrations changing corresponding to kinetical equation: 
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where ki  is the stochiometric coefficient of k-species in the i-reaction; i  is the rate of i-th chemical 

reaction; r is the number of chemical reactions. When the reactions proceed with the participation of 

solid phases, kinetical functions should take into account the reaction retardation by a poorly 

permeable layer.  

In general case, chemical reactions in the base are also possible. 

At the initial time moment, we have 00 kk yyTT  , , because initial coating contains some part 

of the reaction product formed during deposition. 

This model does not take into account explicitly the structure transformations in the coating 

(porosity evolution and shrinkage due to porosity change), intermixture of melts of coating and 

substrate in the contact area, chemical reactions between them, mechanical stresses due to high 

temperature gradients and properties change in the reactions etc. However, this model can give a fair 

idea of the heat necessary for heating, synthesis regimes and basic phases appearing during the 

treatment, even if we use additional simplifications [8, 9]. Assuming that the coating is thermally thin 

in comparison with the boundary layer width that forms due to thermal conductivity during treatment 

time, and the thickness of the substrate of high thermal conductivity is lesser then its width and length, 

we take integral of the thermal conductivity equation with y-coordinate taking into account the 

boundary conditions. Additionally, if we believe that scanning thickness of electron beam covers the 

transversal size of the part (which provides the uniform heating in this direction, Fig. 1), we come to 

one-dimensional thermal conductivity equation: 

      ,T,yW
h
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R
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expqt,x eff . 

For each system (Ti-Ni, Ni-Al, Al-Ti and etc.) we can write a detailed reaction scheme using state 

diagram and thermodynamical data. In this case, we should use kinetic equation system to describe the 

evolution of phase composition, similarly to [19, 20]. 

Here, we restrict the model by summary reaction:  

 «summary reagent» - «summary product»; 

however, the kinetic function should account the reaction retardation by the layer of reaction product. 

 As a result, we come to the reduced model with one equation instead of kinetic equation system: 

   









RT

E
expyk

dt

dy
, (2) 

where y  is the conversion degree; E  is the activation energy for summary reaction; k  is the pre-

exponential factor, R  is the universal gas constant;  y  is the kinetic function with the form 

depending on micro-scale processes. Then,  QW , where Q  is the summary chemical heat release. 

Similar approach is tried-and-true method during irreversible processes modeling in the combustion 

theory. It allows obtaining qualitative regularities on the basis of reduced model. 

In this work, we assume      myexpyy  1 . 

To carry out the qualitative analysis of the problem including equations (1) and (2) and boundary 

conditions  ,0x :  0 xT , we come to dimensionless variables 
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 is 

time for reaction completion under adiabatic conditions. Then the reduced model turns into  
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Model contains a large number of parameters. Depending on relations between them, various 

conversion regimes are possible. 

 The problem was solved numerically. The implicit difference scheme and double-sweep method 

were used. 

 

4. Results of numerical investigation 

We assume 1W ; 3.1 ; 1 . 

If the coating is absent, .0  In this case, we shall obtain: 
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The scales for temperature and time are not determined here. We find them from the conditions of 

1S  and 1 . 

Temperature distribution for this variant of the model and for 1  is shown in Figure 2. For 0B  

(Figure 2a) and for 0B  (Figure 2b), after initial non-stationary curve section, the quasistationary 

regime establishes in the system, when invariance of maximal temperature is typical for the process, 
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the value of maxima depends on  . However, quasistationary regime realizes when linear size of the 

part is larger than  . 
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Figure 2. Temperature distribution (in a.u.) during substrate treatment for B = 0 (a) and 

B ≠ 0 (b); 1 . Time (in a.u.): 1) 0.3; 2) 1.5; 3) 3.5; 4) 6.0; 5) 8.5; 6) 11.0. 

 

The limiting variant of the model of reaction initiation in plane layer without substrate accounting can 

be obtained when  
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Then the thermal conductivity equation takes the form of 
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and boundary conditions stay the same in any case.  

 Figure 3 demonstrates that, similarly to [8, 9], the chemical reaction starts at some distance from 

surface 0 , and then the process continues in quasistaionary regime. When capacity density of the 

source decreases, the velocity of its travel along the surface increases; the reaction near the surface 

0  is completed when external source leaves this area. The lower the capacity density of the 

effective external source, the lower the temperature and extension of the reaction zone. 
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Figure 3. Temperature and conversion degree distribution for different time moments during reaction 

initiation on thin layer without heat losses to substrate. Time for temperature curves coincides with the 

data from Figure 2. Time for conversion degree: 1) 0.3; 2) 0.6; 3) 0.9; 4) 1.5; 5) 3.5; 6) 6.0; 7) 8.5; 8) 

11.0. 

 

When synthesis is realized on the substrate, its properties affect the process characteristics.  

On the one hand, the substrate requires the major part of the heat for heating. On the other hand, if 

the substrate is characterized by high thermal conductivity, it will promote the reagent heating in front 

of the moving external source. These effects were not taken into account in the simplest models 

described in [7]. 

The calculations have shown that the critical conditions exist in the problem. They separate the 

process of treatment accompanied by initiation of chemical conversions and the process of treatment 

without chemical reactions. Critical conditions were demonstrated by varying different parameters. 

Figure 4 shows different conversion degree when S changes. Different technological conditions give 

different composition of the coating. If we take into account the detailed reaction scheme, different 

coating composition will be expected in the numerical model varying the composition of green 

powders, similarly to [19, 20]. 

 

5. Conclusion 

Since the Ti-Ni, Ni-Al and Al-Ti systems, especially in form of the coatings, are promising for 

practical implementation, the preliminary experimental data and suggested reduced model give a good 

start for further investigations. The model, despite the simplicity, reflects qualitatively basic 

regularities and will be used for prognostic model construction. The critical conditions should be taken 

into account to predict the technology conditions providing a given composition of the coating. 
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