Calculation of Geometrical Parameters of Geokhod Transmission With Hydraulic Cylinders

M Yu Blaschuk, A A Dronov, S S Ganovichev
Yurga Institute of Technology, TPU Affiliate, 26, Leningradskaya Str., 652050, Yurga, Russia
E-mail: mby.tpu@gmail.com

Abstract

Developed analytical expressions for determining parameters of transmission hydraulic cylinders' arrangement are considered, as well as the conditions for internal arrangement of a required number of hydraulic cylinders.

Introduction

Currently, creation of geokhods' prototypes has been actively conducted. The geokhod is a new kind of mining heading machines embodying innovative technical solutions and working modes [1,2]. A transmission (power drive) with hydraulic drive on the basis of hydraulic cylinders, placed chordwise inside the sections, is the most promising design for the geokhods'. In order to ensure the requirements for a new generation of geokhods' power drives [3], design solutions should be made on the basis of layout diagrams, representing hydraulic cylinders' operation in different phases [4,5].

Figure 1. Schemes of hydraulic cylinders characterization

Results and Discussion

The hydraulic cylinders are arranged in the space between two cylindrical shells (Figure 1). Hydraulic cylinder' body supports are fixed on the outer surface of the tail section shell, and rod supporting members periodically engage into mesh with the ratchet rack on the inner surface of the head section. While rod cylinders are advancing, sliding members engage the ratchet rack and drive it into revolving. Body and rod's spatial position changes while advance and return motions of the hydraulic cylinder rod; at that, head and tail shell should not impede changes in spatial positions of hydraulic cylinders' elements. Power drive layout schemes have shown that the most rational parameters of hydraulic cylinders arranged between the shells are obtained with the following proportions

$$
\begin{align*}
& D_{P L L H C}=D_{H S}-(3 \ldots 4) D_{P}, \tag{1}\\
& D_{P L . R O D}=D_{H S}-(2 \ldots 3) D_{P} . \tag{2}
\end{align*}
$$

When arranging hydraulic cylinder supports at one circumference (Figure 1b), that is when $D_{P L . R O D}=D_{P L . H C}=D_{H C}$ it can be taken:

$$
\begin{equation*}
D_{H C}=D_{H S}-(3 \ldots 4) D_{P}, \tag{3}
\end{equation*}
$$

Most commercially available cylinders [6,7] has the following ratio of a piston stroke length L_{x} to a size along axes of mounting brackets L_{0}

$$
\begin{equation*}
L_{X}=(0.3 \div 0.8) L_{0}, \tag{4}
\end{equation*}
$$

The maximum distance between the hydraulic cylinder supports L_{p} can be represented as the sum of

$$
\begin{equation*}
L_{p}=L_{0}+L_{X}, \tag{5}
\end{equation*}
$$

Stroke length value L_{X} can be obtained from the formulas (4) and (5)

$$
\begin{equation*}
L_{X}=\frac{L_{p}}{1+\frac{1}{(0.3 \div 0.8)}}, \tag{6}
\end{equation*}
$$

Approximate value of the maximum possible distance L_{p} between the hydraulic cylinder supports can be obtained from the scheme, taking into account the total number of cylinders - $n_{H C}$ [8] (Figure 1b). To simplify the calculation, we assume that the hydraulic cylinder support will be arranged on one circumference [9], that is $D_{P L . R O D}=D_{P L . H C}=D_{H C}$. The angle $\varphi_{H C}$ between bodies (rods) supports of adjacent cylinders will be determined by the number of cylinders $n_{H C}$

$$
\begin{equation*}
\varphi_{H C}=\frac{360^{\circ}}{n_{H C}}, \text { degrees } \tag{7}
\end{equation*}
$$

Cylinder with maximally advanced rod will cut the chord of L_{p} length on the circumference $D_{H C}$ based upon the central angle φ_{P}.

Between these geometric parameters there is a relationship, described by the expression:

$$
\begin{equation*}
L_{P}=D_{H C} \cdot \sin \frac{\varphi_{P}}{2}, \tag{8}
\end{equation*}
$$

The central angle φ_{P} will be taken for reasons of leaving a required angular gap $\varphi_{3 A 3}$ between rod supports and bodies of adjacent cylinders. The angle $\varphi_{G A P}$ will be based on a chord $L_{G A P}$ on the circumference $D_{H C}$. For this scheme (Figure 1b) a gap magnitude can be set equal to the diameter of the piston D_{P}, that is $L_{G A P}=D_{P}$, while, similar to the expression (8), it can be written:

$$
\begin{equation*}
L_{G A P}=D_{P}=D_{H C} \cdot \sin \frac{\varphi_{G A P}}{2}, \tag{9}
\end{equation*}
$$

Let us express $\varphi_{G A P}$ from (9)

$$
\begin{align*}
& \frac{D_{P}}{D_{H C}}=\sin \frac{\varphi_{G A P}}{2}, \text { from which } \arcsin \frac{D_{P}}{D_{H C}}=\arcsin \left(\sin \frac{\varphi_{G A P}}{2}\right) ; \\
& \quad \varphi_{G A P}=2 \cdot \arcsin \frac{D_{P}}{D_{H C}}, \text { degrees } \tag{10}
\end{align*}
$$

The central angle φ_{P} will be equal to

$$
\begin{equation*}
\varphi_{P}=\varphi_{H C}-\varphi_{G A P} \text {, degrees } \tag{11}
\end{equation*}
$$

Substituting in (11) the expressions (7) and (10) we find

$$
\begin{equation*}
\varphi_{P}=\frac{360^{\circ}}{n_{H C}}-2 \cdot \arcsin \frac{D_{P}}{D_{H C}}, \text { degrees } \tag{12}
\end{equation*}
$$

Now, substituting the expression (12) in (8) we find the expression for L_{p}

$$
\begin{equation*}
L_{P}=D_{H C} \cdot \sin \left[0,5\left(\frac{360^{\circ}}{n_{H C}}-2 \cdot \arcsin \frac{D_{P}}{D_{H C}}\right)\right]=D_{H C} \cdot \sin \left(\frac{180^{\circ}}{n_{H C}}-\arcsin \frac{D_{P}}{D_{H C}}\right), \tag{13}
\end{equation*}
$$

In view of the expression (3), the expression (13) takes the form

$$
\begin{equation*}
L_{P}=\left[D_{H C}-(3 \ldots 4) D_{P}\right] \cdot \sin \left(\frac{180^{\circ}}{n_{H C}}-\arcsin \frac{D_{P}}{\left(D_{H C}-(3 \ldots 4) D_{P}\right)}\right), \tag{14}
\end{equation*}
$$

Another distance limitation L_{p} can be longitudinal stability of compressible rod. Maximum distance between the supports can be determined by the formula

$$
\begin{equation*}
L_{P \max }=\frac{356.8 \cdot d_{R O D}^{2}}{D_{P} \cdot k_{H} \sqrt{p \cdot[n]}} \tag{15}
\end{equation*}
$$

where $d_{\text {ROD }}$ - is cylinder rod diameter, m;
k_{H} - fixing coefficient for hinge mounts on both ends of the cylinder $k_{H}=1$;
$[n]$ - safety margin (usually $[n]=3.5 \ldots 4$);
p - working pressure in the hydraulic cylinder, Pa .
The rod diameter is usually taken to be based on the ratio [10]

$$
\begin{equation*}
d_{\text {ROD }}=(0.3 \div 0.7) \cdot D_{P}, \tag{16}
\end{equation*}
$$

For a compressive load it is recommended to take larger values of the expression (15).
While the hydraulic cylinders operate in different stroke phases, it is necessary to ensure the reverse of the piston of one cylinder or group of cylinders while advancing of other pistons at a distance of amount of difference between adjacent phases' strokes. This occurs when the reverse speed $v_{R E V}$ is above the stroke rate $v_{P . X}$ by $n_{P H}$, that is

$$
\begin{equation*}
v_{R E V} \geq n_{R E V} \cdot v_{P . X}, \tag{17}
\end{equation*}
$$

Based on this condition, rod diameter $d_{\text {ROD }}$ at a constant working fluid's flow rate $Q_{P i}$ will be determined by the formula

$$
\begin{equation*}
d_{R O D}=D_{P} \sqrt{1-\frac{1}{n_{P H}}}, \tag{18}
\end{equation*}
$$

Substituting (18) into (15) we obtain

$$
\begin{equation*}
L_{P \max }=\frac{356.8 \cdot\left(D_{P} \sqrt{1-\frac{1}{n_{P H}}}\right)^{2}}{D_{P} \cdot k_{H} \sqrt{p \cdot[n]}}=\frac{356.8 \cdot D_{P} \cdot\left(1-\frac{1}{n_{P H}}\right)}{k_{H} \sqrt{p \cdot[n]}} \tag{19}
\end{equation*}
$$

When the number of reversing cylinders is $n_{\text {REV }}=1$, number of intermediate positions (phases) will be

$$
\begin{equation*}
n_{P H}=n_{H C}, \tag{20}
\end{equation*}
$$

Then the expression (19) takes the form:

$$
\begin{equation*}
L_{P \max }=\frac{356.8 \cdot D_{P} \cdot\left(1-\frac{1}{n_{H C}}\right)}{k_{H} \sqrt{p \cdot[n]}} \tag{21}
\end{equation*}
$$

Figure 2 shows diagrams the maximum possible (safe) distances between hydraulic cylinder supports $-L_{p}$ against the number of cylinders $n_{H C}$ and the piston diameter D_{P}, plotted for a section with diameter $D_{H C}=3.7 \mathrm{~m}$ by design arrangement condition (Fig. 2) and stability condition (Fig. 3).

Figure 2. Dependence of the safe distance by stability condition

Figure 3. Dependence of the safe distance by design condition
Figure 4 shows a diagram plotted on both conditions for various numbers of cylinders.

Figure 4. Dependence of safe distance by design arrangement condition and stability condition

Conclusion

Diagrams of dependences of the safe inscribable distance between the hydraulic cylinder supports by stability condition show that for small piston diameter safe distances between the hydraulic cylinder supports by stability condition are significantly less than the maximum safe distance by design arrangement condition; thus, as a number of cylinders increases, the stability condition is predominant.

In addition to the length limitations by design conditions and stability condition, the required inside structure gage may also limit geokhod size. For the purpose of increasing its size, it is necessary to diminish the distance between supports and, correspondingly, the stroke length.

References

[1] Efremenkov A.B., Aksenov V.V., Blashchuk M.Y. Force parameters of geokhod transmission with hydraulic drive in various movement phases // 7th International Forum on Strategic Technology (IFOST - 2012): Proceedings: in 2 vol. IEEE, 2012. Vol. 2. P. 159-163.
[2] Efremenkov A.B. Forming the subterranean space by means of a new tool (geokhod) // 6th International Forum on Strategic Technology (IFOST - 2011): Proceedings: in 2 vol. IEEE, 2011. Vol. 1. P. 348-350.
[3] Efremenkov A.B., Timofeev V.Y. Determination of necessary forces for geokhod movement. IEEE, 2012. P. 1-4.
[4] Aksenov V.V., Blaschuk M.Y., Dubrovskii M.V. Estimation of Torque Variation of Geokhod Transmission with Hydraulic Drive // Applied Mechanics and Materials. 2013. Vol. 379. P. 11-15.
[5] Blashchuk M.Y., Kazantsev A.A., Chernukhin R.V. Capacity Calculation of Hydraulic Motors in Geokhod Systems for Justification of Energy-Power Block Parameters // Applied Mechanics and Materials. 2014. Vol. 682. P. 418-425.
[6] Buyalich G.D., Buyalich K.G., Voyevodin V.V. Radial deformations of working cylinder of hydraulic Legs depending on their extension // IOP Conference Series: Materials Science

VII International Scientific Practical Conference "Innovative Technologies in Engineering" IOP Publishing $\overline{\text { IOP Conf. Series: Materials Science and Engineering } 142 \text { (2016) } 012128 \text { doi:10.1088/1757-899X/142/1/012128 }}$
and Engineering. 2015. Vol. 91. P. 012087.
[7] Buyalich G.D., Anuchin A.V., Dronov A.A. Numerical Analysis of Accuracy of Hydraulic Leg Cylinder in Modeling Using Solid Works Simulation // Applied Mechanics and Materials. 2015. Vol. 770. P. 456-460.
[8] Chernukhin R.V., Dronov A.A., Blashchuk M.Y. Application of analytic hierarchy process when choosing layout schemes for geokhod pumping station // IOP Conference Series: Materials Science and Engineering. 2015. Vol. 91. P. 012086.
[9] Sadovets V.Y., Beglyakov V.Y., Aksenov V.V. Development of math model of geokhod bladed working body's interaction with geo-environment // IOP Conference Series: Materials Science and Engineering. 2015. Vol. 91. P. 012085.
[10] Buyalich G.D., Buyalich K.G. Modeling of hydraulic power cylinder seal assembly operation // Taishan Academic Forum - Project on Mine Disaster Prevention and Control. 2014. P. 167170.

