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Abstract: Various process variables influence on the quality of the end product when SLM 
(Selective Laser Melting) synthesizing items of powder materials. The authors of the paper 
suggest using the model of distributing the temperature fields when forming single tracks and 
layers of copper powder PMS-1. Relying on the results of modeling it is proposed to reduce 
melting of powder particles out of the scanning area. 

1. Introduction 
A lot of process variables are taken into account when SLM synthesizing products. More than a 
hundred of variables are outlined in the literature, influencing somehow the SLM process [12], 
however, the researchers point at some key variables, inter alia: scanning speed; laser emission power; 
diameter of the laser; thickness of the powder layer; gaseous medium; the strategy of scanning. For 
instance, the authors [2–4, 8] have considered in details the relevance of speed of scanning, laser 
emission power, and powder thickness for synthesizing products of copper powder PMS-1. In papers 
[5–7] the impact of a gaseous medium on forming the single layers of copper powder is studied, as 
well as the effect of laser beam diameter on the thickness of the layer to be sintered is examined. The 
papers [9, 10] are focused on the importance of laser beam scanning strategy for development of 
thermal stresses and strains of the sintered samples.  

The most appropriate process conditions for sintering products of copper powder PMS-1 are 
determined on the base of research results outlined in paper [2]. Cubic samples with the sides 
10×10×10 мм (Figure 1) are produced in these conditions. The mechanical compressive strength of 
the samples exceeds 105 MPа, and the porosity approximates to 15%. Further investigations require 
the production of samples in the form of a 6×6×30 mm bar in process conditions № 1 and № 2 (Figure 
1).  

All the samples produced in process conditions № 1 appear not to have any significant defects 
and meet the pre-set configuration (Figure 1, а). No visible defects are detected on the cubic sample 
produced in process conditions № 2, however, some defects occur on the lateral faces when 
synthesizing a bar (Figure 1, b). The defects are melted particles of powders, located on the lateral 
faces out of the scanning area. The defects originate mainly during the second phase of sintering the 
layer. 

A 3D thermal model concentrated on sintering a single track and a single layer according to a 
pre-set strategy is developed to detect the causes of defects. The model problems are solved by a 
mathematical package COMSOL Multiphysics, which is an efficient interactive environment for FEM 
simulating and calculating a great number of scientific and technical issues based on differential 
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Figure 2. Sintering the rectangular samples of copper powder.  

 
Therefore, for the purpose of modeling the geometry of powder in a freely poured condition can 

be limited by some millimeters relatively the section to be sintered.  
In Figure 3 there is a model structure of sintering a single track on the powder layer. And in 

Figure 4 there is a model presented to sinter a single layer of powder poured on the previously sintered 
layers according to the pre-set strategy. 

 

 
Figure 3. A model structure of single layer sintering.  
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Figure 4. A model structure of sintering a single layer.  

 
In the proposed model heat is distributed in the sample due to thermal conductivity only. A 

mathematical model describing the heat transfer by means of thermal conductivity is expressed by the 
thermal conductivity equation given below: − ∇ ∙ ( ∇ ) = ,     (1) 

where T – temperature; ρ – density; С – thermal capacity; k – thermal conductivity factor; Q – 
originating or absorbed heat. 

Heat-transfer properties of powdered materials (ρ, С, k) differ considerably from those of solid 
(monolithic) materials, they are identified experimentally and given in Table 1. 

Laser impact is determined as a volumetric source of heat, the intensity of which depends on 
laser impact at various depths of the powder layer. The equation to calculate the laser impact heat is as 
follows: ( , , ) = (1 − ) ∙ ( ) ( ) ∙ ,   (2) 

where Q0 – laser emission power; RC – reflection coefficient; AC – absorption coefficient; ( ) ( )
 – 2D Gauss distribution of emission power over the sample surface in the plane x, y; 

 – exponential decay of power over the layer depth of a sample (Bouguer law). 
The following assumptions are to be taken into consideration when implementing the model: 
 reflection and absorption coefficients are constant; 
 thermal effects of phase transformations are not taken into account; 
 the surface of powder layer, along which the laser beam is moved, is parallel to the plane x-y of 

the system of coordinates; 
 the upper plane of the powder layer is smoothed out according to z=0, consequently, the effect 

of power absorption can be expressed as follows: exp(-Ac·abs(z)); 
 the center of laser beam can be displaced via changing the variables x0 and y0; 
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Figure 8. Powder temperature variation along the side line of the sintering area. 

 
3. Results and discussion 
Analyzing the data presented in Figure 6 and 8 one see that powder located on each side of a laser 
scanning area is heated when sintering a layer. The total time of scanning the surface is 54 seconds in 
the model. In the first 20 seconds the not-sintered powder is heated a little (Figure 6, а). In the period 
20 to 40 seconds powder gets more heated, but then its temperature does not change much (Figure 6, 
b, c). During the end period 40 to 54 seconds the temperature of powder on the sides and in front of 
the scanning area goes up very fast (Figure 6, d). 

During the second and third periods of heating the powder on the scanning area sides conditions 
are provided for self-melting of powder particles out of the scanning area under a slight energy impact 
(Figure 1, b). Non-uniform density distribution in the powder layer is also very important for self-
melting of powder particles. This is possible because of different sizes and dendritic shape of powder 
particles when making a new layer of powder. These are the causes of non-uniform distribution of 
powder particles over the surface. 

Decreasing the effect of powder heating on the sides is possible via changing the strategy of 
scanning (Figure 8).  

 

 
Direction of the scanning front 

а)  
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The sequence of sintering the sections 

 
Direction of the scanning front  

b) 
 

The sequence of sintering the sections 

 
Direction of the scanning front  

c) 
Figure 9. Strategies of scanning: а – complete line-oriented zigzag; b – “close to each other”; c – 

“away from each other”.  
 

It is suggested to divide the area of scanning into sections and scan them “close to each other” 
(Figure 9, b) or “away from each other” (Figure 9, c). In these conditions the powder on the scanning 
area sides can get cooled down due to convection and thermal conductivity.  
 
4. Conclusion 
The mathematical model describing the distribution of heat fields proposed in the paper makes it 
possible to determine the sections on the surface providing the most appropriate conditions for 
uncontrolled self-melting of powder particles. Alongside with key process variables of SLM synthesis 
one should consider the configuration of the layer to be scanned. It is proposed in this study to divide 
extended spaces of the surface into the sub-areas and scan them so that the free powder out of the 
scanning area get cooled down. This technological decision makes it possible to reduce the number of 
defect products.  
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