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Abstract. For the implementation of a closed nuclear fuel cycle it is necessary to carry out a 
series of experimental studies to justify the choice of technology. In addition, the operation of 
the radiochemical plant is impossible without high-quality automatic control systems. In the 
technologies of spent nuclear fuel reprocessing, the method of continuous evaporation is often 
used for a solution conditioning. Therefore, the effective continuous technological process will 
depend on the operation of the evaporation equipment. Its essential difference from similar 
devices is a small size. In this paper the method of mathematic simulation is applied for the 
investigation of one-effect evaporator with an external heating chamber. Detailed modelling is 
quite difficult because the phase equilibrium dynamics of the evaporation process is not 
described. Moreover, there is a relationship with the other process units. The results proved 
that the study subject is a MIMO plant, nonlinear over separate control channels and not self-
balancing. Adequacy was tested using the experimental data obtained at the laboratory 
evaporation unit. 

1.  Introduction 
Implementation of a closed nuclear fuel cycle requires substantiation of spent nuclear fuel (SNF) 
technology through studies at the experimental and pilot equipment. At the same time creation of an 
effective radiochemical production with regard to its high radioactive, nuclear and environmental 
hazards is impossible without the use of automatic control systems (ACS) [1]. 

For conditioning solutions in spent fuel reprocessing technologies the method of evaporation, 
which is conditioning of liquid waste and concentration of the desired products, is often applied. 
Therefore, the effective continuous operation of the technological process will depend on the operation 
of the evaporation equipment. Its essential difference from similar devices is a small size due to a 
relatively small-scale production for safety assurance [1]. 

Such devices are MIMO plants, nonlinear over separate control channels and they are not self-
balancing. Therefore, to study various ACS using a one-effect evaporator with an external heating 
chamber for evaporation of uranyl nitrates solution (see figure 1), it is necessary to create a 
mathematical model describing the dynamic relationships between key process variables. At the same 
time, according to a general engineering rule, for the synthesis of ACS 10% accuracy is quite 
acceptable, due to the approximate formulas for analytical calculations of the controller parameters 
[2]. 
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r p f, ,Q Q Q  – the volume flow of 

reflux, the evaporated uranium re-
extract and feed solution of uranium 
re-extract, respectively, m3/h; 

r f s, , ,T T T T  – the temperature of 

reflux, solution in the unit, feed 
solution of uranium re-extract and 
heating steam respectively, оС; 

v r f, , ,     – the density of the 

solution in the unit, secondary steam, 
reflux, feed solution of uranium re-
extract respectively, kg/m3; 

k s v, ,W W W  – the mass flow of the 

condensate, heating and secondary 
steam respectively, kg/h; 

s v,P P  – the pressure of the heating 

and secondary steam respectively, kPa; 

s f r v p, , , , ,i i i i i i  – the enthalpy of the 

solution in the unit, the heating steam, 
the feed solution, reflux, secondary 
steam and the evaporated uranium re-
extract respectively, J/kg; 

f,C C  – the concentration of the 

evaporated uranium re-extract and the 
feed solution of uranium re-extract 
respectively, kg/m3 

Figure 1. Evaporator scheme 

2.  Mathematical model 
A mathematical model of uranium re-extract evaporation should represent the following: 
 time history of the solution level in the unit according to the flow of feed solution of uranium 

re-extract, evaporated uranium re-extract, reflux and heating steam flow; 
 time history of concentration / density of evaporated solution, depending on the flow rate and 

the concentration / density of the feed solution and the reflux, flow of the evaporated uranium 
re-extract and heating steam; 

 time history of the solution temperature in the unit depending on the temperature of feed 
solution, reflux, heating steam and its pressure. 

In addition, the model should take into account mutual influence of the controlled parameters, 
mentioned above. 

As a rule, in analytical models of chemical units, mathematical formulation comes to generation of 
equations of mass and heat balance of the system, based on the fundamental laws of nature: the laws 
of conservation of mass and energy [3–6]. 

Mathematical formulation had to be simplified due to the lack of data on the thermodynamic 
properties of the evaporated product, physical and thermodynamic parameters of the heating and juice 
steam, as well as the necessary data for the description of the heat lost to the environment, etc. 

As a result, time history of the material, element and heat flows in the unit is described by the 

following system of equations (1), where A  – cross sectional area of the evaporator, m2; fс  – specific 

s s s s, , ,W T P i

kW

r r r r, , ,Q T i v v v v, , ,W P i

p p, , ,Q T C i

f f f f f, , , ,Q T C i
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thermal capacity of the feed solution, kJ/(Ckg); w  – water density, kg/m3 and the mass flow of 

secondary steam vW  is calculated by the following algebraic expression (2). 
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Enthalpy of heating steam, secondary steam, and dew is determined using the expression obtained 

by fitting the tabular data: 
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The developed approach and mathematical description of the evaporator as a controlled object was 

implemented as a computer model in the MATLAB / Simulink package. For testing qualitative 
adequacy of the model, research results of the evaporators presented in [7] were used. One of the study 
subjects there was a two-stage vacuum evaporator "Edinstvo" [8]. 

3.  Simulation results 
Figure 2 shows the transition processes of the solution level in the second device of "Edinstvo" 
evaporator and in the developed model of uranium re-extract evaporator. The flow of the feed solution 

f 1700 kg/hS   to the unit was changed up to 62%. 

As it is seen from the graphs, the behavior of the level in both cases is identical, and the channel of 
the controlled object can be regarded as an astatic link. 

Figure 3 shows the transient responses of the concentration in the first device of "Edinstvo" 
evaporator and the appropriate transitional process in the developed computer model of the evaporator. 
The fluid flow from the unit p 250 kg/hS    was changed up to 30%. 

The above graphs show that transient responses of concentration obtained at the evaporator and the 
simulation results are qualitatively equal. In addition, this channel of the controlled object can be 
regarded as a first order aperiodic link. 

Figure 4 shows the transient responses of the temperature of the solution in the first device of 
"Edinstvo" evaporator and the appropriate transitional process in the developed computer model of the 

evaporator. The heating steam flow from the unit p 480 kg/hS   was changed up to 17%. 

The above graphs show that the transient responses of temperature, obtained at the evaporation unit 
and the simulation results are qualitatively equal.  
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Figure 2. Transition process in the level 

 

 
Figure 3. Transition process in concentration 

 

 
Figure 4. Transition process in temperature 
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Furthermore, similar to the transient responses of concentration, it can be seen that the object of the 
present channel can be regarded as a first order aperiodic link. Comparison of simulation results with 
the data [9] shows their qualitative agreement. 

The analysis of the given above transient responses shows that the time constant of the evaporators 
for concentration / density is substantially higher than time constant for the level and temperature. This 
fact should be considered when developing ACS of an evaporation unit. 

Qualitative adequacy of the developed model was tested using the experimental data obtained at a 
laboratory evaporator at V.G. Khlopin Radium Institute, St. Petersburg. 

This unit is equipped with an automated control system, based on two control algorithms. 
The first algorithm is designed for evaporation mode with a required density. The level of the 

solution in the still is maintained constant by controlling the flow of feed solution. In the transient 
mode (to achieve the desired density) the solution in the still was not drained. In the continuous mode, 
the solution was drained in proportion to the average flow of the feed solution. 

The second algorithm provides required density of the solution at the output of the evaporation unit 
in a continuous mode. The desired density of the solution in the still was maintained by the flow of 
feed solution, while the level was maintained by draining the solution in the still. 

The following experiment was carried out at the laboratory evaporator. In the starting mode, after 
initial filling with the feed solution and beginning of the evaporation process control was maintained 

by the first algorithm in the transient mode. After reaching a required value of density 31400kg/m  , 

that is, tapering off to a steady-state regime, control was maintained by the second algorithm. If the 
measured density of the solution in the still was greater than  , the maximum flow rate of feed 

solution was set. If it was less than that, the minimum flow rate was set. That is, the control was 
maintained according to the relay rules. 

After tapering off to a steady-state regime, transition process was recorded while set point of 

density was changed from 31400 kg/m   to 31500 kg/m  . 

A similar experiment was carried out on the developed computer model of the evaporation unit. 
The experimental data and simulation results are shown in figure 5. 

Another experiment was carried out at the laboratory evaporator. After reaching a required density 

value of 31315 kg/m  , it was decreased to 31285 kg/m  . The results of the experiment are 

presented in figures 6b–6d. 
 

 
Figure 5. Transition process in density 
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 a) 
 

 b) 
 

c) 
Figure 6. Transition process in density (a), temperature (b), level (c) at a laboratory evaporator and in 

the computer model 
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4.  Conclusion 
The relative standard errors of simulation in the level, density and temperature of the solution were 
less than 9%, 5% and 7%, respectively, which satisfy the required specification. 

Thus, in the course of this work the qualitative and quantitative adequacy of the developed 
computer model was proved, which allows its application for the development of ACS an evaporation 
unit. 
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