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Abstract. According to the approach based on the commonality of problems of determining 

effective moduli of composites and viscoelastic solids, which properties are time- 

inhomogeneous, it is assumed that a viscoelastic solid is a two-component composite. One 

component displays temporal properties defined by a pair of Castiglianian-type effective 

moduli, and the other is defined by a pair of Lagrangian-type effective moduli. The Voigt and 

Reuss averaging is performed for the obtained two-composite solid with the introduction of a 

time function of volume fraction. In order to determine closer estimates, a method of iterative 

transformation of time effective moduli is applied to the viscoelastic Voigt–Reuss model. The 

physical justification of the method is provided. As a result, new time effective moduli of the 

viscoelastic solid are obtained which give a closer estimate of temporal properties as compared 

to the known models. 

1. Introduction 

The problems of calculating the stress-strain state of viscoelastic solids are reduced to the solution of a 

system of integro-differential equations of equilibrium in the region occupied by the solid, with 

specified boundary loads and displacements. At the same time, these problems can be considered from 

the viewpoint of composite mechanics because composite properties are inhomogeneous with respect 

to coordinates and properties of viscoelastic solids, which are time-inhomogeneous. This makes the 

application of effective modulus theory to viscoelasticity [1-4] possible. Earlier we derived 

expressions for time effective moduli of the Lagrangian and Castiglianian type [5] and used them to 

construct transformations for the Voigt–Reuss model [6]. However, this model gives insufficiently 

close estimates for approximate solutions, as in the case of elastic composites. 

The present paper is aimed at obtainment of iteratively transformed time effective characteristics. 

Earlier we successfully applied this approach for composites [7]. The requirements to iterative 

transformations are the following: 

(i) classical theorems on minimum of strain energy and additional work functionals must be valid, 

and 

(ii) inequalities for effective moduli (Voigt–Reuss bounds) on each iteration step must be satisfied. 

The convergence of iterative transformation of time effective characteristics is verified both 

numerically and by analytical determination of the limit of the iteration sequence. 

2. Derivation of expressions for iterated effective moduli 

The constitutive equations of a linearly viscoelastic solid is as follows: 
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    (2.1) 

Here, sij, eij are the deviatoric stress and strain components, and σ(t) = σii(t), θ(t) = εii(t), (i = 1, 2, 3), 

R(t), K(t) are the shear and bulk relaxation functions. 

The relations inverse to Equations (2.1) have the following form: 
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Π(t), Π1(t) are the shear and bulk creep functions, and G
*
, K

*
, G

*–1
, K

*–1
 are the shorthand notations for 

direct and inverse integral operators. 

Approximate constitutive equations can be represented as 
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where the Lagrangian and Castiglianian-type time effective moduli are determined by relations [5]: 
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h is the Heaviside function. 

Using Equations (2.4), we constructed the Voigt–Reuss models of time effective characteristics [6]: 
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where α is a numerical parameter [6]. 

Let us introduce expressions for iteration sequences: 
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   (2.6) 

It is possible to show that sequences 
   n

VG t , 
   n

RG t  converge to the same limit at n: 

           n n

V R V RG t G t G t G t  .     (2.7) 

Sequences 
   n

VK t , 
   n

RK t  have the same limit at n: 

           n n

V R V RK t K t K t K t  .    (2.8) 

3. Physical justification 

Let us consider the strain energy and additional work functionals of a homogeneous isotropic elastic 

solid with time-dependent elastic moduli: 
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   (3.1) 

Here, K(t), G(t) are the elastic bulk compression and shear moduli, ti, 
i

su  are the stresses and 

displacements specified on portions of boundary S = StUSu, σij, εij, ui are the stress tensor, strain tensor 

and displacement vector components, and fi, ti are the bulk and surface force vector components. 

Functionals Π, Ψ assume minimum values on admissible displacement and stress fields that obey 

equilibrium and compatibility equations. 

Now let us consider Voigt–Reuss bounds 

* *,V R V RG G G K K K    .    (3.2) 

Here, G*, K* are the moduli of the homogeneous elastic medium whose specific potential energy is 

equal to the corresponding potential of a two-component composite with moduli (2.4). Thus, the Voigt 

and Reuss inequalities give the upper and lower bounds for moduli G
*
, K

*
. However, using Equations 

(3.2) it is impossible to calculate G
*
 and K

*
 as well as specific strain energy W* and additional work 

Λ*. 

Let us now demonstrate that iteration sequences (2.6) can be used to derive expressions for G*, K* 

and W*, Λ*. 

Since we consider an elastic medium with constitutive equations (2.4), functionals Π, Ψ and 

specific potentials W, Λ depend on time t. The same is true of sought moduli G*, K*. We assume that 

minimum values Π* = Πmin, Ψ* = Ψ min correspond to moduli G*, K* for each particular value of t. We 

denote the specific potentials corresponding to 
   1

, , ... ,
n

V V VG G G  and    1
, , ... ,

n

R R RG G G  by W, W1, … 

, Wn and Λ, Λ1, … , Λn. Then, owing to inequalities 
       1 1

... , ...
n n

V V V R R RG G G G G G      ,   (3.3) 

the following inequalities are fulfilled: 

1 1... , ...n nW W W         .    (3.4) 

Since moduli 
 n

VG  and 
 n

RG  for any n satisfy inequality 

   
*

n n

V RG G G  ,     (3.5) 

inequalities 

* *,n nW W         (3.6) 

are also satisfied for the specific potentials. 

In the limit at n we have: 

* *,n nW W   .     (3.7) 

The Voigt–Reuss bounds shrink to a single point in which moduli 
 n

VG , 
 n

RG  become equal to the 

limit (2.7). Thus, the sought limit values of G*, K* really correspond to specific potentials W*(εij), 

Λ*(σij) equal to the specific potential energy and specific additional work of the two-component elastic 

solid with constitutive equations (2.3). 

 

MEACS2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 124 (2016) 012099 doi:10.1088/1757-899X/124/1/012099

3



4. Discussion of results 

Expressions for new effective characteristics of viscoelastic solids were derived using the following 

mathematical procedures: 

1. Approximate representation of constitutive equations of viscoelasticity through relations of 

elastic Hooke's law with time-dependent moduli of Lagrangian and Castiglianian type. 

2. Representation of the elastic medium as a two-component one, and formulation of the Voigt–

Reuss model for the averaging of properties based on this representation. 

3. Construction of iteration sequences for the Voigt–Reuss moduli. 

4. Application of minimum variational principles for the functionals of potential strain energy and 

additional work. 

It has been shown that the sequence of iteratively transformed Voigt and Reuss moduli allows the 

contraction of the Voigt–Reuss bounds. In the limit we obtain effective characteristics of a 

homogeneous isotropic elastic medium with specific strain and stress potentials equal to the 

corresponding potentials of a two-component medium. These effective characteristics can be called 

energetically equivalent. 

The reported theoretical findings can be applied to calculate the stress-strain state of structures 

made of viscoelastic materials, which will be discussed in the second part of this paper [2]. 

5. Conclusion 

Contraction mappings for the Voigt–Reuss bounds were obtained for a two-component homogeneous 

isotropic elastic medium with time-dependent moduli. 

It was shown using theorems on minimum potential strain energy and additional work that the limit 

of the sequence of iteratively transformed Voigt–Reuss moduli is the effective characteristics of 

energetically equivalent specific strain and stress potentials of the homogenous medium of 

comparison. Expressions for these characteristics have been derived. 
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