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1 Introduction and the main idea

Stochastic quantization [1, 2] based on complex Langevin equations [3 , 4] has attracted 
again a new wave of interest. This was caused by reported lately progress in simulating 
lattice QCD at finite chemical potential [5, 6]. At the same time the old issues [7- 9], the ap­
proach suffered with, resurfaced again [10, 11] only to emphasize the difficulty with theoret­
ical foundations o f the method. The latters are much more satisfactory nowadays [12, 13], 
revealing quite complicated nature o f the problem.

In this article a positive representation [14], equivalent to the complex gaussian distri­
bution in the complex Langevin approach, is studied in detail. The problem is not new and 
its classic, by now, solution is known for a long time [7]. The novelty of the present result 
is that it provides, an independent o f any stochastic process, positive representation for 
an arbitrary, complex value o f the inverse dispersion parameter a, while the original one 
applies for R e  a >  0 only. In particular the new solution works also for purely imaginary
a .1 This opens a possibility o f a positive representation for Feynman path integrals directly 
in the Minkowski time —  the quest which still awaits its resolution.

1Somewhat different solution of the general complex gaussian model exists in the literature [15]. It is 
entangled with the particular modification (kernel method) of the stochastic process for a general complex a. 
Consequently the analytic solution quoted there depends on the kernel employed. Present solution does 
not refer to any stochastic process, hence it is independent of any additional parameters.
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Indeed, by the direct extension the one degree of freedom trick, it is shown that such a 
description is possible. It is constructed and applied to few quantum mechanical textbook 
cases. Noteworthy, the construction covers also the path integral description o f a particle 
in a constant magnetic field —  a problem which does not have a positive representation 
after the W ick rotation.

In 2002 Weingarten [16] has addressed analogous question in more general terms and 
has proved that the positive densities actually exist for a wide class of complex probabilities. 
Nevertheless no practical construction o f such distributions was attempted even for the 
gaussian case (see however [17, 18]). Moreover, the continuum limit was explicitly not 
discussed. As will be seen below, existence o f the continuum limit plays an essential role 
in the present solution.

To begin with, we illustrate the main trick for a single integral. In general, quantum 
averages result from weighting observables with complex functions p(x) =  e-S (x ), rather 
than with positive probabilities. The complex Langevin approach can in principle address 
this difficulty by replacing a complex average with the statistical average over the complex 
stochastic process determined by a complex action S(x)

with P ( x , y )  being the distribution o f the above process at large Langevin time. While 
this idea works well and has been proven for real actions, it still rises some theoretical 
questions and encounters practical difficulties in the complex case, even though a much 
more complete theoretical understanding o f the problem has been achieved lately [12, 13].

Instead we have constructed P (x ,y )  directly using ( 1.1) as a starting point and avoid­
ing any reference to stochastic processes and associated Fokker-Planck equations. The 
derivation works as follows. Introduce two independent, complex variables

Contours r z and r z are such that the integrals exists. Above equations will be satisfied 
provided we find P (z, z) such that

p ( z ) =  P  (z ,z )dz.  (1.4)
JTz

This is the key relation o f the new approach. On one side it provides a simple connection 
between a complex weight p and P , while on the other leaves us a freedom to satisfy

f  f (x )e  S(x)dx /  f  f (x  +  i y )P (x ,y )d x d y
f  e -S(x)dx f  f  P ( x ,y )d x d y (1.1)

z =  x  +  iy, z =  x  — iy, (1.2)

and rewrite ( 1.1) as

JR f  (x )p(x)dx  =  f Tz f  ( z )p(z)dz  =
JR p(x)dx f r p(z)dz

frz .fr z- f  ( z ) P  (z , z )dzdz  =  JR 2 f ( x  +  i y )P  (x ,y )dxdy  
Ir fr- P (z, z)dzdz JR2 P (x ,  y)dxdy

(1.3)

positivity and normalizability o f P (z ,z )  restricted to R 2 by ( 1.2) .
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The paper is organized as follows: in the next section we apply above construction to 
the gaussian case thereby generalizing solution o f ref. [7] to an arbitrary complex inverse 
dispersion parameter a. Section 4 contains a first nontrivial application to the nonlinear 
action showing that the approach is not necessarily restricted to the linear systems. In 
section 5 we extend the gaussian case with purely imaginary a  to arbitrary number of 
variables, apply it to the Minkowski path integrals and derive conditions for the existence of 
the continuum limit. Section 6 contains concrete applications to three quantum mechanical 
problems thereby constructing for the first time positive representations for Minkowski path 
integrals. Finally we end with summary and the outlook in section 7.

2 Single integral —  gaussian case

For the gaussian action we take

which is positive and normalizable for |a| <  b. Corresponding complex density follows 
from (1.4) 2

i \ f  tu -\ j -  1 l ~ n  i 2\ |a|2 -  b2p(z) =  / P ( z , z ) a z  =  - J  —  exp y—a z ) , a  = --------------,
JrE 2 y — a a

and indeed is given by a gaussian with arbitrary complex a .
It is a simple exercise to confirm eq. ( 1.3) for power-like observables, e.g. by calculating 

the generating function in both representations.
For Re a >  0 the contour r z can be rotated into the real axis and eq. ( 1.1) established. 

However (2.2) is more general than the original solution [7] since it provides the positive 
representation for arbitrary complex a, or equivalently a € C . For some a, for example 
a € R , a  <  0, the contour r z cannot be rotated back into the real axis. Then eq. (2.2) 
gives the positive and normalizable representation for the averages along the allowed r z, 
or in another words, for the analytic continuation o f the divergent, along the real axis, 
expressions.

To conclude this section we discuss two interesting special cases.
For real and negative a, the complex density blows up along the real axis. On the 

other hand the distribution P ( x , y )  is positive and normalizable at a  >  0 and =  0 
producing the correct average over the “divergent” distribution p. This explains a “striking 
example” observed in the literature [19] , namely that, upon change o f variables, the complex 
Langevin simulation based on old solution of ref. [7] actually has the correct fixed point also 
for negative R e  a  (where the distribution is non-normalizable). The answer is that their

2For r ż one can choose a straight line contained in a wedge determined by a phase of a.

P ( z , z )  =  i  exp ( —(a*z2 +  2bzz +  az2)) , a =  a  +  ifi, b =  b*, (2 .1)

or in terms o f x  and y ,

P ( x , y )  =  exp ( - 2  ((b +  a )x 2 +  2fixy +  (b -  a ) y 2) ) , (2 .2)
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positive distribution used until now is part o f a richer structure (2 .2) , which accommodates 
negative R e  a as well.

Similarly, the complex density p(z) for purely imaginary a  is readily represented by the 
positive distribution P (x ,y ), which is perfectly well defined at a  =  0 and arbitrary , as 
long as |fi| <  b. This opens an exciting possibility o f positive representations for Feynman 
path integrals directly in the Minkowski time, which is explored in detail in this paper.

In both cases the original density [7] does not exists.

3 Single integral —  nonlinear case

Another possible solution o f ( 1.1) obtains if we start from the action

S4(z, z) =  (a*z2 +  2bzz +  az2)(c*z2 +  2dzz +  cZ2),

with complex a and c and real b ^  |a| and d ^  |c|. The density P (x ,y )  is again positive 
and normalizable on the x, y plane. To derive p(z) introduce an arbitrary shift parameter 
e and change the variables. This gives

S4(z, z =  u — ez)  =  A 0z4 +  A ^ 3u +  A 2z 2u2 +  A 3zu3 +  A 4u4,

with

A 4 =  ac,

A 3 =  2(ad +  bc) — 4ace,

A 2 =  a*c +  c*a +  4bd — 6e(ad +  bc) +  6ace2,

A 1 =  2(bc* +  a*d) — 2e(a*c  +  ac* +  4bd) +  6e2(bc +  ad) — 4e3 ac,

A 0 =  (a* — 2be +  ae2)(c* — 2de +  ce2).

Now choose e such that A 3 =  0. The coefficients become

A 4 =  ac,

A 2 =  - ^ -  (2a2(|c|2 — d2) +  2c2(|a|2 — b2) — (ad — bc)2) ,
2ac

A 1 =  —^2 (ad — bc) (a2(|c|2 — d2) — c2(|a|2 — b2)) ,

A 0 =  ~̂3 3 (4c2(|a|2 — b2) +  (ad — bc)2) (4a2(|c|2 — d2) +  (ad — bc)2) .

Then A 1 can be also eliminated setting

d
c =  b a

which essentially reduces S4(z, z) to a square. Remaining coefficients simplify

d 2 A 4 =  -  a2,
b

A2 =  2d (|a|2 — b2) ,

Ao =  d (|a|2 — b2) 2 1 .
^  '  a2
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The complex density p4(z) can be then obtained in a closed form as

p4 (z) =  l-  [  dze-S4(z’z)
 ̂r ź

=  2  exp ( —A 0z4) I duexp ( —A 4u4 — A 2z 2u2) (3.1)
2 JTu

=  2 ( 2d ? ) 4 exp ( —a z 4 )(a z4 ) 4 K  i (a z 4 ) ,

with an arbitrary complex
=  d(b2 — \a\2)2 

a  =  2ba2 •

As before all contours (here and below) are such that the integrals exists. Again one can 
choose straight lines with slopes determined by the phase o f a.

It is a simple exercise to show that normalization o f both densities is the same:

l r  p4(z)dz =  2 ( ) 4 exp ( —<k4) 0 z4) 4 K 4 ( a R  =

=  [  dxdye -4 d ( (b+«)x2+2̂ xy+(b -«)y2)2 =  [  dxdyP4 (x ,y ) .
4 y d(b2 — \a\2) JR 2 JR 2

The difference however, being that while on the l.h.s. the density p is in general complex, 
and contour r z has to be adjusted depending on a phase o f a, the integral on the r.h.s. is 
always over R 2 and the density P4(x ,y ) is positive and normalizable for all complex a. 

The same applies to higher moments:

/ znp4(z)dz =  dxdy(x  +  iy)nP4(x ,y ) .
J r z JR2

In fact the construction works for a larger range of parameters that in the gaussian case 
since the condition \a\ <  b can be released.

The density (3.1) has the simple leading asymptotics

p4(z) ~  e (-2az4), z — > <x>,

and therefore might be o f some practical interest (e.g. in optimizing some reweighting al­
gorithms). The main point o f this example is however, that the original idea, namely con­
structing positive representations with the aid of a second variable, applies not only to the 
gaussian cases, therefore it may indicate the existence of some unexplored yet structures.

Obviously there is a lot o f freedom in choosing an initial action. It remains to be 
seen to what extent this freedom allows to derive complex densities o f wider physical 
interest. In present approach, the freedom results from the nonuniqueness in inverting the 
relation ( 1.4) . It would be interesting to study if it is connected with the one present in 
other approaches based directly on stochastic processes [19]
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4 Many variables

For the action we take N  copies of (2.1) and add the nearest neighbour couplings, with 
periodic boundary conditions in z, and zf. zN+ 1 =  z\, źN+ 1 =  ^1, z0 =  zN , z0 =  źN, 
a, c G C , b G R,

N
Sn (z, z) =  ^  az2 +  2bźizi +  2cź,z,+1 +  2c*z,ź,+1 +  a*z2. (4.1)

i=1

The complex density p(z) results from integrating PN (z, ź) over all ź variables

, N , . x N , N
p(z)  =  J  Y \ d ź i P (z ,ź )  =  y . J  J n dzie x p ( —S n (z ,ź )) .

The integration is elementary and one obtains for the effective action

SN =  -  log j  ( — 4a)  P( { z } )  j  =  S  2a ( zi2 +  C ) zizi+1 +  zi+ l )

2cc*
+-----—  (zi - 1 zi+1 — zf )  , B  =  b2 +  (C +  C*) 2 — |a|2. (4 .2)

If we set c to be real and require

2c =  2y =  - b  +  |a|, (4.3)

the effective action simplifies to

-  S P (z) =  A  £  (zi -  zi+1) 2 -  r ( z i - 1 -  zi+1) 2 , A  =  b(b -  |a|), r =  . (4.4)
i= 1

This is reminiscent o f the discretized Feynman action for a free particle. The second
term however, even though similar to the first one, requires further attention and will be
discussed shortly.

Leaving this for a moment let us check now the positivity and normalizability o f the 
corresponding probability density PN ( x , y )  on R 2N. In terms o f real and imaginary parts 
o f zi the action (4.1) reads

N
Sn  (x ,y ) =  2 (b +  a )x 2 +  2pxiyi  +  (b -  a )y 2 +  2y(xiX i+1 +  yiyi+1). (4.5)

i= 1

Hence
P n (x , y) =  exp ( - S n (x, y)) (4.6)

is obviously positive. W ith 7 given by (4.3) , all 2N  eigenvalues are non-negative —  there 
are no divergent directions. There is one zero mode associated with the translational 
invariance, however this is usual and can be dealt with by standard means.
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5 T h e  continuum  lim it

5.1 A  free particle

The action (4.4) does not agree with the standard, discretized action o f a free particle

N

• 4T  =  2 ¾  E ( z <+1 -  Zi)"■ (5.1)
i= i

except at r =  0. To see better the effect of the next-to-nearest (nn) term, we analyze in 
detail the large N  behaviour of, e.g., the propagator

K n  (zn  , z i ) =  e -A(zN -z i)2 In  (zn  , z i) =  e -A(zN - z i )2 J  dz2 . . .  dzN- i e -S N (zi— zN). (5.2)

For simplicity we shall work in the “exponential accuracy” , i.e. ignore all prefactors. They 
can be dealt with by usual methods and do not affect any conclusions drawn here. We 
also rescale temporarily all variables A z 2 ^  z2 to further simplify all expressions. The 
integral (5.2) can be calculated recursively, k =  2 ,3 , . . . ,  N  — 1,

I^N)(z n ,z i ;  v ,w )  =  J  d u lk -1 (z n ,z i ;  u, v )e (u-v)2-r(u-w)2, 

with the initial condition

Ą N) (zN , zi, u, v) =  exp ((z i — u )2 — r (z i — v )2 — r(zN — u)2) . (5.3)

The propagator obtains after N  — 2 steps

IN (zN , z i ) I iV—i (zN, z i; u , v) |(u,v)-> ( zn,zi) .

It is straightforward to derive recursion relations for the exponents of 1 ^ ) . Define 

W k(u, v) =  log lkN) (z n , z i ; u, v) =  afcu2 +  26fcuv +  cfcv2 +  2dfcu +  2efcv +  f ,

then

_  1 , , 2bk — bk — 1 , _  r — rbk
ak+i =  1 +  ck +  ---------:--------, bk+i =  -̂--------:------ ,1 — r +  ak 1 — r +  ak

-. 1 j  dk bk dk
ck+i =  1 — -̂--------:----- , dk+i =  ek +  -̂--------:------ ,1 — r +  ak 1 — r +  ak

_  —rdk , _  , dk
ek+i =  -̂--------:------ , Jk+i =  Jk — z :------ ,1 — r +  ak 1 — r +  ak

with the initial conditions implied by (5.3)

a i =  1 — r, bi =  0, c i =  —r,

di =  —zi +  rzN , ei =  rzi, f i  =  z )2 — rz )2 — rzN .
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Results are the following: WN(zN, z i) is quadratic and depends only on the difference

W n (z n , z i) =  o n (r )(zN — z i )2,

as required by the translational invariance. The coefficient on  is the ratio of two 
polynomials

f  ̂ Pn (r)
ON (r) =  q N m  •

and can be expanded for large N  as

on  ( r ) =  Vo(r) +  ^  +  ^  +  . . .  (5.4)

At r =  0, all coefficients vi vanish except o f v1(0) =  1. This is the standard Feynman case
without the nn  term, cf. (4.4) , (5.1) . For r =  0 however all vi do not vanish, in particular
Vo =  0. This precludes existence of the continuum limit

N  <x>, Ne  fixed, (5.5)

which requires

A on (r) ^  const. A  ~  - ,

as follows from (5.1) . In principle one might consider renormalizing the divergent term 
away —  the possibility which should be looked at in more detail. However we choose here 
a simpler solution. Both constraints, namely

b(b — | a |) im b — |a|
A  =  - ------ —  ^  — , and r =  ' 1 ^  0,

a 2he 4b

can be satisfied in the limit (referred from now on as lim 1)

m
|a|, b ^  x i ,b  — |a| =  - -  =  const. =  d, a =  — i|a|. (5.6)

2ne

This completes the construction of the positive representation for the path integral o f a 
free particle directly in the Minkowski time.

All quantum averages can now be obtained by weighting suitable, i.e. complex in 
general, observables with the positive and normalizable distribution ( 4.6) , and then taking 
the limit (5.6) followed by the continuum limit ( 5.5) . Subsequent applications illustrate 
how this works in practice.

5.2 A  harmonic oscillator

Interestingly this case is also covered by the action (4.1) , (4.5) . The only difference lies in 
the scaling laws imposed during the first limiting transition ( 5.6) . To see this consider the 
first term in eq. (4.2) , for real c =  7 ,

Dz2  +  2Ezlzl+i  +  D z 2l+ 1 , D  =  ^  +  ^  ~  ^  , E  =  ^ .
2a a
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Rewrite it as

—E  ^ (zi+i -  zi)2 — ^ e  +  ^  (z2 +  z2+ i ^  ,

and compare with an analogous term in the discretization of the Minkowski action o f a 
harmonic oscillator

(x i -  x2)2 -  ^ (x 2 + x2))  ■

Therefore, the general positive distribution (4.5) in 2N  real variables describes a harmonic 
oscillator if we identify

267 im b2 +  4y2 — | a |2 w2e2
-  =  2ft?  --------4bY + 1 =  T - . (5 '7)

Similarly to the free particle case, the nn terms will vanish for large |a| and b. However
the limit has to be taken along the trajectory ( 5.7) . A  possible parametrization in terms 
o f one independent variable v , is

a =  — i|a|, b =  V, |a| =  (v ,p ), 27 =  —vC (v ,p ), (5.8)

where ________________
( ) =  7/1 — 2v 2p +  v 2p2 — v  (1 — p)

Z ( v ,p ) =  1 — v 2 ,
and v  and p depend on N  and parameters o f the harmonic oscillator in the continuum

w2T 2 m ( N  — 1)
P =  2 (N  — 1)2 , V =  2KT '

Vanishing o f the nn term is achieved by taking v ^  0.
This is the main modification compared to the free particle case. W ith the first limit 

taken along the trajectory ( 5.8) the action (4.5) provides a positive representation for 
Minkowski path integral of a one-dimensional harmonic oscillator.

However now one eigenvalue o f (4.5) becomes “weakly negative” and the procedure 
requires additional care. This is the familiar zero eigenvalue encountered before, which for 
general 7  and imaginary a reads

Ao =  2(b — |a| +  27),

with the corresponding eigenvector having all equal components. In the free particle 
case (4.3) A0 =  0 reflecting the translational symmetry. Along the new trajectory ( 5.8) 
however, A0 does not vanish and is negative. Moreover, after the first limit

. .  . m u 2T
lim A0 = ------- ;---------- ,
v-mo 4^(N  — 1)

and tends to zero with N  ^  to. The eigenvector remains the same for arbitrary 7 and 
becomes the true zero mode in the continuum limit. That is why the mode was called 
“weakly negative” . Therefore one can treat it similarly to the usual zero modes, e.g. fix 
it. In fact, a negative mode is simpler than the zero mode since moments o f divergent 
distributions can be defined by the analytic continuation which provides a regularization 
o f the divergent integral. Both ways do not affect the continuum limit as will be seen in 
the following applications.



N aN ( —i(b — d),b) lim1

5 id(16b2+ 2 8 b d - 1 9 d 2) 
8(8b-3d)(b-d) i d14

8 id(16b4+40b3d-70b2d2+23bd3-d 4) 
( b - d)(112b3 -  120b2 d+30bd2 - d 3) i di 7

11 id(1024b5 +3328b4d -  9472b3 d2+6832b2 d3 -  1700bd4+109d5)
i—  1 10(b - d)(1280b4 -  2304b3 d+1344b2 d2 -  280bd3+15d4)

Table 1. The slope of the free propagator (6.2) and its limiting value for few discretizations.

6 Applications

6.1 A  free particle

First, we shall calculate the free propagator integrating explicitly the new representa­
tion (4.5) . The discretized kernel (5.2) reads

r N-1
K n (z n , z 1 ) =  e -A(zi-ZN)2 /  dZ1 ^  dxjdyjdZN exp ( —X TM X ) . (6.1)

The first factor takes away an additional contribution hidden in SN (4.5) due to the periodic 
boundary conditions as explicitly seen in (4.4) . Since zi and zN are fixed, the first and 
the last integrals have to be done over z 1 and ZN and not over the real coordinates. This 
is part o f the construction: only complete traces are represented by integrals of positive 
distributions over the real variables, while deriving quantum amplitudes at fixed end-point 
requires integration over the corresponding complex, barred variables. Consequently X  is 
the vector o f all variables, X T =  (z1,Z1, x 2, y 2, x 3 . . . , y N-1 , z N ,ZN), and M  is the matrix 
o f (4.5) in this mixed representation. Gaussian integration is simple and one obtains up to 
a prefactor

K n (z n , z 1) ~  exp (ffN (a,b)(zN — z ^ 2) , (6.2)

with aN(a, b) given in table 1 for few values of N , and

a =  — i|a|, |a| =  b — d,d =  - ^ .
2 at

Results after the first limit (5.6) are given in the third column. Indeed, as discussed in 
section 3, the v0 term (cf. (6.2) ) does not survive and the limiting aN has the appropriate 
large N  behaviour

lim aN ( —i(b — d),b) =  N T ~ 1 , b^<^ N — 1
which assures the correct and well known form for the Feynman kernel.

f  im (zn — z 1) 2\
lim K n  ~  e x ^ -------------    .

N y  2a 1 J

This can be analytically continued to the real axes.
As a second example we calculate the average (x2(t)) with the new representation. 

Physically this is the dispersion of a Minkowski path o f a free particle at time t. The
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particle is constrained to start from, and return to, the origin after time T. The continuum 
result,

/ 2^ \  /d x K ( 0 ,x ;  T  — i )x 2K (x , 0; i) ih i (T  — i)
(x (t )> =  K (0, 0; T ) =  m  T  , (6 .3)

is purely imaginary and shows the famous statistical broadening o f quantum paths as we 
move away from the fixed initial/final end points.

In our case this is again covered by (6.1) , with M  replaced by its reduction R  which 
does not involve z i and zN . K N (0 ,0 ) =  Z  provides the normalization. Appropriate 
average reads

<z2>|zi=ZAr=0 =  J  d zidx2dy2 . . .dyN-idZN  (xk +  iyk ) 2 exp ( —X T R X  ) / Z

=  2 ( R 2fc-2,2fc-2  +  i (R 2k—2,2k—i +  R 2fc1- 1,2k -2) — R 2k -i,2k - i )  , (6 .4)

and can be easily calculated. After the first limit ( 5.6) it simplifies to

/ z2\ =  i (k — 1)(N  — k) n ^ ^  ih t(T  — t)
limi(Zfc) =  2d N - 1  '

which is just the discretized version o f (6.3) , since

(N  — 1)e =  T, (k — 1)e =  i.

Again the weight is not entirely positive because of the integration over two complex (but
2N  — 4 real) variables. As said above this is the consequence o f the zero mode and how 
it was fixed. It remains to be seen if other ways o f dealing with translational symmetry 
could change that.

The next applications is free o f this problem.

6.2 A  harmonic oscillator

There is no zero mode here, therefore we define now the average over all periodic 
trajectories,

(x2(T)> =  (x2(0)> =  <x -x; T ) ,
/  d x K (x ,x ; T )

which measures the width of a periodic Minkowski trajectory with the length T . This is 
the different observable than was considered in the free particle case. W ith

I i tyi&j I
K (x 6,x a; T ) ~  exp < -  —  — ((x^ +  x f )c o s  wT — 2xax fc) \,

h 2 sin wT )

one easily obtains

<*2(T  )> =  — 4 T  . (6.5)

In our framework, and upon the discretization, this is given by the straightforward average 
over the positive distribution (4.5) o f 2N  real variables X T =  (x i , y i , . . . ,  x N, yN)

1 f  N
(z2> =  — I J | d x jd y j(x i  +  iy i )2 exp { —X TM X } .  (6 .6)

j= i
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Table 2 . Dispersion of a Minkowski trajectory calculated from the positive representation (6.6) 
for few discretizations.

Figure 1. Convergence of (6.7) to (6.5) .

Gaussian average is again given by the same combination o f matrix elements as in (6.4) but 
with the original matrix M . In particular (z|) is independent o f k due to the invariance 
under time shifts.

The explicit expression for (6 .6) in terms of a, b and oscillator parameters is somewhat 
messy. However upon taking the first limit along the trajectory ( 5.8) it simplifies to

!• / 2\ PN (w T /2) f ^
120^  = — —  . (6 '7)

The first few polynomials Pn  (x ) and Q n (x ), x  =  w T /2, are listed in table 2 . They 
gradually build up co t(x ) / 4x with increasing N , cf. figure 1, and one readily recovers the 
continuum result (6.5) at N  ^  to.

The transition from (6.7) to (6.5) is of course well known since the classic works by 
Feynman [20, 21]. The novel element here is that (6.7) was obtained as the probabilistic 
average o f a suitable (i.e. complex) observable over the positive distribution ( 4.6) .

On the other hand, at finite N , the action (4.5) has one negative mode as discussed 
in section 3. Nevertheless the inverse matrix exists meaning that the divergent integral 
over the negative mode is defined by the analytic continuation. This analytic continuation 
provides a regularization o f the divergence and leads finally to the correct result. Moreover, 
by applying the original trick [14] for a second time, and to the negative mode only, one 
could construct the positive and normalizable distribution which would allow for statistical 
calculation o f the above and other averages.
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6.3 Charged particle in a constant magnetic field

This is again the textbook problem in elementary path integrals. It is also the simplest 
example where W ick rotation does not render the positive Boltzmann factor. Since the 
action is again quadratic, it should be possible to construct the corresponding positive 
density PN (x ,y )  similarly to the previous examples. Here we shall follow the simpler 
approach. It is known since the time o f Landau that the problem can be reduced to that 
o f a shifted harmonic oscillator. To use this observation we need to establish the Landau 
reduction on the level o f Feynman propagators. Begin with the phase space path integral

K b (x b, x a,T )  =  y  Vp(t)T>x(t) exp | ^ ( p -% — H (p ,x )^  (6 .8)

In the gauge used by Landau (A  =  B (0, x, 0)) the Hamiltonian reads

1 2 1 f  e B  x 2H  =  px + py ------- x
2m x 2m V c

and one readily obtains from (6.8) , O  =  cpy/Be,

K b (xb,xa] T)  =  J  d O e x p j  ^ m w O (yb — y a ) j  K ^ 0 (x b,x a ; T),  (6.9)

where K//0 (xb, x a; T ) is the kernel for the one dimensional (in x) harmonic oscillator located 
at xo =  O. The integral is again gaussian and is saturated by the classical position o f the 
center o f oscillations

^ 1 , x 1 u T ,Ox =  2  (xa +  xb) +  2 cot ~2 ~ (yb — ya).

Consequently the propagator reads

K B (xb,xa; T ) ~  e x ^ muOx(yb — ya)^j K H0 (xb, x a ; T ).

This (a) corresponds exactly to the Landau solution o f the Schrodinger equation by sep­
aration o f variables and (b) after a simple algebra reproduces the Feynman result in the 
gauge employed by Landau

K lg  ~  e x p j  f  ( 2  cot ((xb — xa)2 +  (yb — ya)2) +  u(xa  +  xb)(yb — ya)^ ^.

Now the reduction (6.9) can be used to extend our positive representation (4.6) also 
to the case o f an external magnetic field. Take as an example the average position o f a 
quantum particle at time 0 < t < T  assuming that at t =  0 and t =  T  it was at x a and x b 
respectively

(x )b  =  j  d2x K ( x b,x ;  T  — t ) x K ( x , x a; t ) / K ( x b, x a; T)  =  x//a,XbT(t ) .  (6.10)
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Since the problem is gaussian the well known, gauge invariant, answer is just the classical 
trajectory which satisfies above conditions. To see how our representation works in this 
case one can use (6.9) to rewrite (6.10) as harmonic oscillator averages

(x ( t) )B =  (x ( t ) )o=O x  , (6 .11)

(y (t ))B =  (y ( t ) )o=O y .

The second line is derived in yet another gauge where the magnetic field problem reduces 
to the oscillator along the y  direction with the analogous classical expression for the center 
o f y  oscillations.

To complete the construction we only need to extend the positive density ( 4.6) such 
that it describes a shifted harmonic oscillator. This is done by simply adding linear terms 
to the action

Sn (z, z) ^  Sn (z, z) +  e *z% +  eZi (6.12)
i

or by just shifting z ^  zi — zc and z ^  zi — z*c . The new density PN remains positive and 
normalizable as before.

Calculation o f the appropriate averages in the new representation is now a simple 
exercise and proceeds analogously to previous applications, e.g. (6.3) . To avoid a confusion 
with the primordial cartesian coordinates x  and y  in (6 .11) , we have renamed the real and 
imaginary parts of their complex extensions zk, i.e. zk =  uk +  ivk, zk =  uk — ivk. Since 
the end-points are again fixed the averages are taken over 2N  — 4 “positive” variables ui ,v i 
and two complex z 1 and zN . Compared to (6.1) there is an additional source term in the 
action caused by the shift (6.12) . The final result obtains after taking the scaling limit 
(lim 1) defined in (5.8) followed by the usual continuum limit.

(x (t)) =  lim lim (zk) =  lim lim (uk +  ivk)pN (z1,u's,v's,zN ).N- ^  v—0 N—to v—0 NV 1 N'

In figure 2 a sample of averages, after taking the first limit, is shown and compared with the 
two corresponding classical trajectories, which differ by the choice o f the u T . Convergence 
with N  is satisfactory and not surprising. The main point, however, is that the averages are 
calculated over the new, positive in the fully inclusive case, distribution and they converge 
in the first limit to the standard Feynman discretization.

7 Summary and conclusions

Problems with complex solutions o f the Langevin equations can be avoided by the direct 
construction o f pairs o f corresponding complex and positive densities, without any reference 
to complex stochastic processes or Fokker-Planck equations. This is done in sections 3 
and 4 for the gaussian model and for its simple nonlinear modification.3 As a byproduct 
the well known solution of the gaussian model was generalized, thereby providing a positive 
representation for an arbitrary complex dispersion parameter. In particular it works also 
for the purely imaginary slope.

3See [14] for some details.
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N= 5, 7, 9; wT/2n =  0.4, 0.7

Figure 2. Two classical trajectories of a charged particle in a constant magnetic field (solid lines). 
Points represent the first limit of averages (6.11) calculated with shifted positive density (4.6), (6.12) 
for finer and finer discretizations.

In is also noteworthy that the method works successfully in a nonlinear case as shown 
in section 4. Hence it is more general than could have been inferred from the gaussian 
applications only.

In the sequel the gaussian solution is generalized to many variables and used to con­
struct the positive representation for gaussian path integrals directly in the Minkowski 
time. For the infinite number o f degrees o f freedom existence o f the continuum limit is 
not trivial and is discussed in some details. In particular the couplings appearing in the 
new representation have to be tuned in a well defined way to assure the existence of the 
continuum limit.

The procedure is then successfully applied to the three textbook quantum mechanical 
problems: a free particle, a harmonic oscillator and a particle in a constant, external 
magnetic field. The latter is the simplest prototype o f a W ilson loop and is known for its 
lack o f a positive weight after the W ick rotation. Consequently the present construction 
provides the first positive representation for this important physical problem.

Many questions remain open, even in the context o f above simple cases. For example, 
how fast is the first limit achieved in practice, how this depends on N , is there a more 
optimal way to combine the first limit with the continuum limit, etc.

Obviously one would like to generalize the present scheme to non-gaussian systems. 
The nonlinear example solved in section 4 shows, that the new structure is not necessarily 
restricted to the gaussian case. A  simple generalizations o f this model to higher degrees of
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nonlinearity can be constructed. An example is given by the action being a higher than 
two (but even) power of the exponent o f (2 .1) . At the same time we point out that the 
general proofs o f the positive representations exist in the literature [16, 18]. Hence the 
above example may be thought o f as providing the concrete realization of these general 
principles.

Related with this is a mathematical problem to what extent can the sum rule ( 1.4) , to ­
gether with positivity and normalizability conditions, determine P  from a complex weight 
p. A  possible strategy to attack this question might be based on the continuity and/or 
deformation principle: for gaussian case the corresponding densities are known explicitly. 
A  small deformation o f the complex density should result in a small change of the corre­
sponding P . It is conceivable that repeating this procedure many times would lead to the 
final P representing the more general, also non-gaussian p .

Certainly all above questions should be studied more systematically and separately. 
At the same time the very fact that the present formulation provided for the first time the 
positive representation o f Minkowski path integrals for some simple, yet concrete physical 
systems4 is nontrivial and interesting.

Barring above, a host o f further problems and applications suggests itself: generaliza­
tion to compact integrals, nonlinear and nonabelian couplings, fermionic integrals, as well 
as extensions to the field theory, are only few examples. We are looking forward to study 
some o f them.

Finally, an intriguing analogy may be enjoyed. Basically the positivity is achieved by 
duplicating the number of variables. In these variables, Minkowski weights become positive 
as long as boundary conditions for Feynman paths are not specified, i.e. when only traces 
o f evolution operators (and/or their moments) are required. Moreover, path integrals in 
above variables involve a new limiting transition, which may lead, via the saddle point 
mechanism, to the dominance o f a concrete class o f trajectories. All this resembles to some 
extent the celebrated history o f hidden variables. At the same time we strongly emphasize 
that none o f the sacred principles o f quantum mechanics is violated. The standard, complex 
quantum amplitudes emerge upon suitable integrations over half o f above variables with 
the usual fixed boundary conditions. Therefore the quantum interference is not violated 
in any way. Similarly, even though some couplings between new variables indeed have to 
tend to infinity in the first limit, there are others which remain constant and are in fact 
0 ( 1 / h), hence they drive the usual quantum fluctuations o f a system.

Interestingly ref. [16] concludes with similar considerations, which however are more 
hypothetical due to the lack of the continuum limit analysis. It will be very interesting to 
study how the existence o f the latter restricts some scenarios mentioned there.

It remains to be seen if the new structure o f quantum amplitudes exposed in this article 
turns out to be o f general interest only, if it is more fundamental (in the sense o f the closing 
speculations of ref. [16]), or last but certainly not least, if it can be generalized to more 
complicated systems.

4Notably including a motion of a particle in an external magnetic field —  the problem which did not 
have positive representation even after the Wick rotation.
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