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In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also 
the corresponding momentum space may have nontrivial geometry has attracted significant attention, 
especially in the context of quantum gravity. The aim of this letter is to extend this concept to the 
domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not 
affine spaces. After discussing the motivation and general aspects of our approach we present a detailed 
analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski 
background. We show that the nonlinear structure of a field space leads to numerous interesting 
predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, 
constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of 
the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural 
way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–
Infeld theory. Thus the presented framework has a variety of potential applications in the theories of 
fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous 
spin chains), and can shed new light on the issue of divergences in quantum field theories.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Depending on its type, the field theoretical description of Na-
ture is assigning scalars, vectors, tensors or spinors to the points of 
space. The space of all possible values of a field, i.e. the field space, 
is a generalization of the particle phase space, with the number 
of degrees of freedom going to infinity. However, while nontrivial, 
curved phase spaces for particles and strings have been investi-
gated in the context of quantum gravity [1–5] and string theory 
[6–8], the spaces of fields are typically assumed to be linear – 
flat and infinite. The known exceptions are lattice field theories, 
defined on discretized spacetime [9] and non-linear sigma mod-
els [10,11], as well as their supersymmetric generalizations [12], 
where values of a multi-component scalar field (but usually not 
field velocities or momenta) are constrained to lie on a Rieman-
nian manifold.

In this letter we consider an extension of the standard field 
theory to the case when the whole field space is not a linear, 
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affine space. By the field space we mean the space of values of 
the field and either field velocities in the Lagrange formulation, or 
field momenta in the canonical formulation. Here we will focus on 
the latter case.

An important advantage of such a nontrivial structure of the 
field space is a possibility of restrictions on field values. This is 
encouraging since one can expect that for physical systems only 
finite values of fields are allowed, whereas in standard field theo-
ries arbitrary large values are possible, leading to different kinds of 
divergences.

Thus we conjecture the standard Field Theory (FT) to be an 
approximation to the more general construction that ensures the 
finiteness of field values. The Nonlinear Field Space Theory (NFST) 
is a proposal for imposing the latter at the kinematical level. We 
do not rule out the consideration of NFST with unrestricted values 
of fields but here we will focus our attention on the compact case.

Some steps towards imposing such a Principle of finiteness for 
field values were already made in the seminal paper [13], where 
M. Born and L. Infeld deformed the Lagrangian of electromag-
netic field so that the field values became constrained, leading, 
e.g., to finite self-interaction energy of electron. However, in the 
Born–Infeld theory the field space is not compact but instead it is 
constrained dynamically by the special form of the Lagrange func-
tion. NFST is different and more similar to the case of a relativistic 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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particle, where the maximal speed of propagation is a result of the 
spacetime geometry, independently of the particular form of the 
Lagrange or Hamilton function. For NFST it is the nonlinear struc-
ture of a given field space that determines the constraints on field 
values.

Let us also stress that NFST should not be confused with Field 
Theories on Curved Spaces [14] or the Group Field Theory [15]. 
In the latter cases the field space is flat, while the background 
space(time), or momentum space, is curved. In NFST the field 
space may be curved but the background manifold is either flat or 
curved. In particular, in the example of NFST studied in the next 
section we assume that the background is Minkowski spacetime.

2. The scalar field

To be more specific, let us consider the NFST for the simplest 
type of field – the (real) scalar field. In the standard case the 
scalar field is a function φ : M → Cφ = R, where M = � × R

is the spacetime manifold. Assuming � = R3, the field configu-
ration space is C = C4∞

φ = R4∞ . In the canonical formulation the 
field φ is accompanied by the canonical momentum π : M → R, 
obeying the Poisson bracket {φ(x, t),π(y, t)} = δ(3)(x − y). Then 
at every spacetime point the pair (φ, π) forms the phase space 
�(x,t) = T ∗(Cφ(x,t)) = R × R and the total phase space is given by ∏

(x,t) �(x,t) .
The idea of NFST is to generalize the phase space, so that 

�(x,t) �= R × R, which not necessarily has to be a cotangent bun-
dle T ∗(Cφ(x,t)). At the kinematical level it is guaranteed (by virtue 
of the Darboux theorem) that the canonical symplectic form can 
be recovered on a sufficiently small neighbourhood in the phase 
space. However, in order to make a connection with the standard 
field theory we also have to define the dynamics in such a way 
that the proper form of the Hamiltonian is obtained in the limit of 
small values of φ and π . This limit can be defined with respect to 
e.g. the curvature scale inbuilt in a given NFST. As we discuss it in 
the Appendix (and it is similarly considered in [7]), the notion of 
curved geometry of a phase space is indeed mathematically con-
sistent, since a Riemannian metric can always be introduced there 
as an element of a so-called compatible triple [16], although its 
explicit form is generally ambiguous.

Alternatively, the NFST may be constructed for field variables 
defined in the Fourier space rather than position space, which ac-
tually turns out to be more convenient. To this end we perform 
the Fourier transform of the field:

φ(x, t) = 1√
V

∑
k

φ̃k(t)eik·x , (1)

and similarly for the momentum π(x, t), whose Fourier compo-
nents will be denoted by π̃k(t). In order to deal with the Kro-
necker rather than Dirac deltas we restricted the position space to 
a 3-volume V .

The Fourier components are complex and, since the fields φ

and π are real, satisfy the so-called reality conditions. With the 
use of a suitable canonical transformation they can be, however, 
redefined so that we will work only with real variables. This can 
be achieved in many different ways but the most convenient trans-
formation is given by:

φ̃k = ei π
4 φk + e−i π

4 φ−k√
2

, π̃k = ei π
4 πk + e−i π

4 π−k√
2

, (2)

where φk, πk ∈R and {φk,πk′ } = δk,k′ .
Then, using the φk and πk variables, the standard Hamiltonian 

of a free massless scalar field:
Hφ =
∫
V

d3x

(
π2

2
+ 1

2
δab∂aφ ∂bφ

)
, (3)

can be Fourier-transformed into

Hφ = 1

2

∑
k

(
π2

k + k2φ2
k

)
, (4)

where k = √
k · k. The Hamiltonian (4) is equivalent to an infinite 

sum of decoupled harmonic oscillators labelled by different wave 
numbers k.

The field variables φk and πk span the phase space on which 
the Hamiltonian is defined. Since the modes are decoupled, the 
total phase space can be denoted by � = ∏

k �k , where �k is 
the phase space of a given mode. Usually the field configuration 
space Ck = R 	 φk , and hence the phase space �k = T ∗(Ck) =R2 	
(φk, πk). Here, similarly to the case of position representation of φ
and π , we will consider the situation when �k �= R2.

3. Spherical phase space

In order to investigate the specific consequences of this frame-
work let us present a concrete example and assume �k to be a 
2-sphere: �k = S2. Such a phase space is indeed nontrivial: it can-
not be decomposed into a product of two subspaces and is a com-
pact manifold, which guarantees the finiteness of field variables 
that was discussed in the Introduction. Furthermore, it corresponds 
to the phase space of a spin (angular momentum), which allows us 
to use intuition from the atomic physics, and can also be compared 
with the fuzzy sphere geometry [17].

To define the Hamiltonian dynamics on the newly introduced 
phase space one first has to introduce a symplectic structure on it. 
Since dim(�k) = 2, the symplectic form ω can be naturally chosen 
as such that it is proportional to the area 2-form. By definition, 
this guarantees closure and non-degeneracy of the ω form, which 
is required for the definition of the Poisson bracket.

Parametrizing the spherical phase space �k = S2 by the stan-
dard angular variables (ϕ, θ) we then obtain the symplectic form 
ω = J sin θ dϕ ∧ dθ , where J is a free parameter of the dimension 
of angular momentum and 

∫
S2 ω = 4π J , as expected for the area 

form. (The “natural” metric on the symplectic manifold (S2, ω) is 
introduced in the Appendix but the only role it plays in this letter 
is by giving the interpretation to J as the inverse of the scalar cur-
vature.) We assume that J is k-independent, which not necessarily 
has to hold in the general case.

The compactness of phase space has profound consequences at 
the quantum level. Namely, since a single degree of freedom occu-
pies the area of 2π�, the phase space having the area of 4π J can 
maximally accommodate nmax := 4π J

2π�
= 2 J

�
degrees of freedom. 

Consequently, the Hilbert space of such a system will be finite-
dimensional.

Before we pass to the more detailed analysis of the quantum 
theory let us relate the original phase space variables (φk, πk) to 
the angular variables (ϕ, θ). In order to have the correct flat limit 
we choose

(−π,π ] 	 ϕ = φk

R
, and [0,π ] 	 θ = π

2
− Rπk

J
, (5)

where R is a constant introduced for dimensional reasons. With 
this redefinition the ω form rewrites to:

ω = cos

(
πk R

)
dπk ∧ dφk . (6)
J
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Clearly, for canonical momenta such that πk � J
R the φk and πk

variables become Darboux coordinates with the standard symplec-
tic form ω = dπk ∧dφk . Furthermore, if we have a symplectic form 
the Poisson tensor P i j can be defined as P i j = (ω−1)i j , allowing 
us to calculate the Poisson bracket { f , g} = P i j(∂i f )(∂ j g). Hence 
the canonical Poisson bracket:

{φk,πk′ } = sec

(
πk R

J

)
δk,k′ , (7)

which generalizes the standard one {φk,πk′ } = δk,k′ . The bracket 
(7) is, however, only locally well defined, because neither set of 
variables (φk, πk) nor (ϕ, θ) is globally given on S2 – there is dis-
continuity at ϕ = π . Therefore, (7) is not a good starting point for 
the quantization of the system. On the other hand, using (φk, πk)

one can construct the well-known globally defined functions:

J x := J sin θ cosϕ = J cos

(
πk R

J

)
cos

(
φk

R

)
, (8)

J y := J sin θ sinϕ = J cos

(
πk R

J

)
sin

(
φk

R

)
, (9)

J z := J cos θ = J sin

(
πk R

J

)
, (10)

which form the su(2) Lie algebra { J i, J j} = εi jk J k .
Let us now discuss the kinematics of the quantized system. On 

the corresponding Hilbert space H J (with a given value of J ) we 
write the su(2) algebra as [ Ĵ i, Ĵ j] = i�εi jk Ĵ k . Then we have to take 
care of the issue of functional representations of states in H J , on 
which the operators Ĵ i are acting. Due to the non-product form 
of the considered phase space, the field configuration and momen-
tum representations of a quantum state will be meaningful only 
locally. Therefore, in general we should instead define a quantum 
quasiprobability distribution (which is not necessarily a positive 
definite function) on the phase space, such as the Wigner func-
tion. With the use of a Wigner function W (ϕ, θ) the expectation 
value of an operator Â can be given as the phase space average 
〈 Â〉 := ∫

S2 d2� A(ϕ, θ)W (ϕ, θ). Following [18,19], the Wigner func-
tion for a pure state |
〉 ∈H J on the spherical phase space can be 
defined as W (ϕ, θ) := tr(|
〉〈
|ŵ(ϕ, θ)), where ŵ(ϕ, θ) denotes 
the Wigner operator.

Analogously to the cylindrical phase space discussed in [5], 
the Ĵ i operators can be expanded in powers of the operators φ̂k
and π̂k . Such a procedure is valid for phase space quasiproba-
bility distributions (such as the Wigner function) supported on 
sufficiently small values of φk and πk (φk � R π

2 , πk � J
R

π
2 ). Lo-

cally, where the phase space can be approximately decomposed 
into a product of configuration and momentum spaces, this con-
dition can be expressed in terms of supports of the configuration 
and momentum representations of a quantum state. In particular, 
the class of states which is expected to fulfill the conditions are 
the “sufficiently peaked” coherent states. Taking this into account, 
with the use of expressions (8)–(10), we find:

Ĵ x = J

(
1 − 1

2R2
φ̂2

k − R2

2 J 2
π̂2

k + · · ·
)

, (11)

Ĵ y = J

R
φ̂k + · · · , Ĵ z = Rπ̂k + · · · , (12)

where dots denote higher powers of the φ̂k and π̂k operators. In 
the leading order, the commutator [ Ĵ y, Ĵ z] = i� Ĵ x results in the 
following modified commutation relation:

[φ̂k, π̂k] = i�

(
Î− 1

2
φ̂2

k − R2

2
π̂2

k + · · ·
)

, (13)

2R 2 J
where, due to the spectral theorem, for O  = φk, πk and f (x) ∈ C∞
the condition f̂ (O ) = f (Ô ) is satisfied.

One can, therefore, associate a nonlinear structure of the field 
phase space with a modification of the standard commutation re-
lations. Furthermore, for the state in which 〈φ̂k〉 = 0 = 〈π̂k〉 the 
commutation relation (13) leads to the following generalized un-
certainty principle:

�φk�πk ≥ �

2

[
1 − 1

2R2
(�φk)2 − R2

2 J 2
(�πk)2

]
. (14)

Inspection of this inequality reveals that (neglecting higher order 
corrections) due to the spherical field phase space either the �φk
or �πk uncertainty can be saturated to zero while the other uncer-
tainty is kept constant. A similar effect was observed in [5], where 
the periodic phase space of the form � = R × S1 was studied.

4. Dynamics

Having the kinematics defined we are now ready to introduce 
the (classical) dynamics of the considered NFST. To this end we 
have to find a Hamiltonian which is satisfying two requirements: 
(i) it is a globally defined function on the phase space, (ii) it re-
duces to the Hamiltonian (4) in the flat phase space limit (i.e. for 
J → ∞).

In order to fulfill the condition (i) we can use globally defined 
variables J i as the Hamilton function’s building blocks. Further-
more, the fact that in Nature one observes field excitations around 
(φk, πk) = (0, 0) suggests that this point in the phase space should 
be the classical minimum of the Hamiltonian. The goal of find-
ing a Hamiltonian satisfying such a property together with the 
condition (ii) can be easily achieved by considering the formal 
analogy with a spin (magnetic moment) immersed in the constant 
magnetic field B, which leads to a breakdown of the rotational 
invariance. Depending on the sign of the magnetic moment of a 
particle, the minimum energy state is associated with either paral-
lel or anti-parallel alignment of the vectors J and B. Consequently, 
we have H ∝ J · B = J x Bx , where the orientation of B has been cho-
sen so that the condition (ii) is satisfied. Analogously, we define 
the Hamiltonian for our model in the following way:

Hφ =
∑

k

Hk , where (15)

Hk := − Jk cos

(
πk√

Jk

)
cos

(√
k

J
φk

)
(16)

= − Jk + 1

2

(
π2

k + k2φ2
k

)
− k

4 J
φ2

kπ
2
k − 1

24 Jk

(
π4

k + k4φ4
k

)
+O( J−2) ,

where the condition (ii) is fixing R = √
J/k and k in front of the 

cosines plays the formal role of Bx from the spin example. In con-
trast to the classical case (4), the Hamiltonian (16) is bounded both 
from below and above: − Jk ≤ Hk ≤ Jk. However, its Taylor ex-
pansion shows that in the J → ∞ limit the standard quadratic 
Hamiltonian is recovered up to the classically irrelevant constant 
contribution − Jk, which sets the lower energy bound.

It is worth stressing that the Hamiltonian (16) is, in some sense, 
similar to the one obtained by considering the so-called polymer 
quantization [20] method, which arose from the Loop Quantum 
Gravity [21] approach to quantum gravity. It has been shown in 
[22] that in this quantization scheme the Hamiltonian for a given 

k-mode has the form Ĥk = 1
2

̂sin2(λkπk)

λ2 + 1
2 k2φ̂2

k , where λk is the 

k
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k-dependent polimerization scale. The above expression has been 
so far considered only at the quantum level, where it is a con-
sequence of the applied type of the Hilbert space – the so-called 
Bohr space of almost periodic functions. However, there is a no-
ticeable similarity of this result to the one that could be obtained 
for the �k = R × S1 classical phase space.

Finally, substituting the Hamiltonian (16) to the Hamilton equa-
tions ḟ = { f , Hk}, f = φk, πk we explicitly calculate that φ̇k =√

Jk tan

(
πk√

Jk

)
cos

(√
k
J φk

)
and π̇k = −√

Jk k sin
(√

k
J φk

)
. Due to 

the closure of the ω form one can also write ω = dχ , where 
χ = J cos θ dϕ is a Liouville one-form, allowing us to perform the 
Legendre transformation of the Hamiltonian Hk . Therefore the La-
grange formulation of the theory can be defined as well, with the 

Lagrangian Lkdt = √
Jk sin

(
πk√

Jk

)
dφk − Hkdt .

The Hamiltonian in the position representation can be obtained 
by applying inverse Fourier transform to the expansion of (16). Al-
though a detailed discussion of this issue goes beyond the scope 
of this letter, a qualitative analysis allows us to observe that the 
extra interaction terms which appear in the position space repre-
sentation of the Hamiltonian will have the non-local character.

5. Quantum dynamics

It turns out that the Hamiltonian (16) can be perturbatively di-
agonalized (at least up to the order J−1) with the use of creation 
and annihilation operators. The procedure is almost completely 
analogous (similarly as in [22]) to the case of standard interact-
ing field theory, with only two differences. Firstly, the specific form 
of the interaction potential, which depends also on the field mo-
mentum. Secondly, due to the deformation in the commutation 
relation (13), the expressions for the creation and annihilation op-
erators â†

k , âk will differ from the usual ones. Furthermore, the â†
k

and âk representation of (13) leads to the q-deformed version of 
their commutation relation: âkâ†

k − qâ†
kâk = Î. Such a structure is 

directly related to the so-called generalized deformed oscillator al-
gebras [23], which are connected with quantum groups.

Namely, expressing the field operators as follows:

φ̂k =
√

�

2k

(
âk + â†

k

)
√

1 + �

2 J

, π̂k = −i

√
�k

2

(
âk − â†

k

)
√

1 + �

2 J

(17)

we calculate that the commutation relation (13) introduces the 
q-deformation factor:

q = 1 − �

2 J

1 + �

2 J

= 1 − �

J
+O( J−2) . (18)

The standard commutation relation of â†
k , âk , as well as usual ex-

pressions for φ̂k and π̂k , are recovered in the J → ∞ limit, as 
expected.

The total Hilbert space of the system is H = ⊗
k Hk , where 

Hk = span
{|0k〉, |1k〉, . . . , |nmax,k〉}. The actions of the â†

k and âk

operators on the |nk〉 basis states are found to have the form:

â†
k|n〉 =

√
1 − qn+1

1 − q
|n + 1〉 , âk|n〉 =

√
1 − qn

1 − q
|n − 1〉 , (19)

giving the q-deformed expression for the occupation number op-
erator â†

kâk|nk〉 = 1−qn

1−q |nk〉.
Then (17) allows us to write down the perturbative expres-

sion for the quantum counterpart of the Hamiltonian (16). Sym-
metrizing the φ2π2 term (which is equivalent to the choice of an 
k k
operator ordering) we obtain:

Ĥk = − Jk Î+
(

1

2
− �

4 J

)
k� Î+ k�

(
1 − �

J

)
â†

kâk

+ k�

24

�

J

(
â4

k + (â†
k)4 − 6(â†

kâk)2 − 6â†
kâk − 6Î

)
+ O( J−2) . (20)

The Hamiltonian can be decomposed into the free and poten-
tial part and, therefore, we can apply to it the time-independent 
perturbation theory. In the 1-st order (the J−1 contributions) 
this gives us the following eigenvalues E(1)

n = − Jk + k� 
(

n + 1
2

)
−

k� �

4 J (1 + 3n + 3n2) + O( J−2) and the corresponding eigenstates 

|n(1)〉 = |n〉 − �

96 J

√
(n+4)!

n! |n + 4〉 + �

96 J

√
n!

(n−4)! |n − 4〉 + O( J−2) for 
a given wave number k.

We note that the vacuum energy in the new ground state 
〈0(1)

k |Ĥk|0(1)

k 〉 = E(1)
0 = − Jk + 1

2 k� − 1
4 k��

J + O( J−2), is reduced 
with respect to the standard case not only by the factor − Jk but 
also due to the contribution proportional to J−1. Analysis of conse-
quences of this effect in the context of the vacuum energy density 
and, presumably, cosmological constant problem is yet to be done.

Another interesting observation is that while in the standard 
free Quantum FT the field operator acting on the vacuum state is 
creating a single quantum φ̂k(0)|0k〉 =

√
�

2k |1k〉 with energy E1, in 
the NFST the creation of a superposition of quanta can be naturally 
expected. Indeed, in the case considered here we have

φ̂k(0) |0(1)

k 〉 =
∑

n

cn|n(1)

k 〉 = c1|1(1)

k 〉 + c3|3(1)

k 〉 , (21)

where, up to the order J−1, the coefficients c1 =
√

�

2k

(
1 − �

4 J

)
and c3 = −

√
�

2k
�

4
√

6 J
.

Analysis of a two-point correlation function in the vacuum state 
H 	 |0〉 = ⊗

k |0(1)

k 〉 provides us with the further interesting re-
sults. Namely, assuming statistical isotropy of the spatial field con-
figurations, the two-point correlation function is given by

〈0|φ̂(x, t)φ̂(y, t′)|0〉 = 1

V

∑
k,n

|cn|2eik·(x−y)−i�En(t−t′)

= 1

V

∑
k

∫
dω

2π
D(ω,k)e

ik·(x−y)−iω(t−t′) ,

where (for a given wave number) �En = E(1)
n − E(1)

0 and, denoting 
p2 = −ω2 + k2, we calculate the propagator:

D(ω,k) =
∑

n

2i�En|cn|2
p2 + �E2

n − k2 − iε

=
i
(

1 − 2
J

)
−ω2 + k2

(
1 − 3

J

)
+ iε

+O( J−2) (22)

= i

−ω2 + k2
+ i

J

k2 + 2ω2

(−ω2 + k2)2
+O( J−2) ,

where for the purpose of transparency we set c = 1 and � = 1. 
We note that the spherical field space leads to changes in the 
pole structure of the particle propagator. Consequently, the dis-
persion relation of field excitations associated with the propagator 
becomes modified. However, since �En naturally remains linear 
in k at any order of the expansion in J−1, the dispersion rela-
tion will always be linear as well. What is modified is the speed 
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of propagation of an excitation. In particular, from the propagator 
given as the single term (22) one can deduce that the “renormal-
ized” speed of light reads cren = 1 − 3

2
�

J +O( J−2).
Finally, the propagator (22) can be used to predict the form of 

interaction potential between two point sources of the scalar field. 
Using the formula from [24] we find:

V (r) = 4π i

∫
d3k

(2π�)3
eik·r D(0,k) Q 0

= − Q 0

r

(
1 + �

J
+O( J−2)

)
, (23)

where Q 0 is the charge of a field source. It is important to note 
that due to the k-independence of J (scale invariance) the func-
tional form of the V (r) potential remains the same as in the stan-
dard case. The only difference is a “renormalization” of the charge 
Q ren = Q 0

(
1 + �

J +O( J−2)
)

.

This effect, similarly to the renormalization of the speed of 
light discussed before, can be absorbed into the definition of vari-
ables, making the predictions possibly indistinguishable from the 
flat phase space results. Identification of the measurable quanti-
ties will be crucial in the context of physical applicability of NFST. 
Some of the potential empirical consequences of the proposed the-
ory are discussed in the following section.

6. Empirical consequences

The general idea of nonlinear field spaces presented in this let-
ter may turn out to be useful in different branches of theoretical 
physics, especially in the context of fundamental interactions and 
condensed matter. Depending on a particular system to which our 
framework is applied, the character of empirical predictions will 
differ.

Let us stress once more that the construction of NFST does not 
affect spacetime itself but what is deformed instead is the phase 
space of field values. As the result, the corresponding field equa-
tions can exhibit different symmetries than the original spacetime, 
on which the theory has been defined. These symmetries reflect 
the effective structure of spacetime, as it is perceived by the field. 
Such a situation is well known in the condensed matter systems, 
where the effective symmetries are generally different from the 
background spacetime symmetries.

Another important issue to note is that the prototype NFST dis-
cussed in Sections 3–5 concerns a single scalar field. While some 
of the features observed in this case can be expected to arise for 
other kinds of fields as well, extrapolations of the present results 
have to be taken carefully. Therefore, at the current stage it is 
premature to e.g. discuss the effects of our theory on the cross-
sections for elementary particles but one can consider the Higgs 
or inflaton fields.

The latter case indeed provides a promising testing arena for 
NFST, including the simple model discussed above. In order to 
apply it to the description of the generation of primordial pertur-
bations, the Hamiltonian (16) has to be generalized so that the 
cosmological evolution is taken into account. We find that for flat 
FRW cosmological background the Hamiltonian of a given mode 
has the following form:

HFRW
k := − Ja3 k

a
cos

(√
a

Jk

πk

a3

)
cos

(√
k

Ja
φk

)

= − Jka2 + 1

2

(
π2

k

a3
+ ak2φ2

k

)

− kφ2
kπ

2
k

4 Ja4
− 1

24 Jk

(
π4

k

a8
+ k4φ4

k

)
+O( J−2) ,

where a denotes the scale factor. In the leading order this Hamil-
tonian leads to the same results as in the standard linear free field 
theory. However, due to the higher order interaction terms, a devi-
ation from the Gaussian nature of cosmological perturbations is ex-
pected. Since interaction terms are even, the first nontrivial contri-
bution to non-Gaussianity should appear at the level of connected 
four-point correlation function 〈0|φk1φk2φk3φk4 |0〉C �= 0, associ-
ated with the so-called trispectrum. The predicted non-Gaussianity 
(parametrized by J ) can be the subject of observational con-
straints, e.g. with the data from the PLANCK mission [25].

Finally, in the model considered in this letter we assumed that 
the curvature scale of phase space J is k-independent. It implies 
that the conformal invariance of Minkowski spacetime is preserved 
at the level of the field structure. This feature is reflected in ex-
pressions for the dispersion relation and interaction potential. In 
both cases, besides the renormalization of constants, the standard 
scalings corresponding to Minkowski spacetime are preserved. The 
conformal symmetry can be broken by introducing a k-dependence 
of the J parameter (i.e. an additional scale). Then it is no longer 
expected that the dispersion relation and interaction potential pre-
serve the standard scalings. The resulting deformed dispersion re-
lation and the associated energy-dependence of the speed of prop-
agation of field excitations could be constrained with the use of 
astrophysical observations [26].

7. Summary

In recent years the idea that not only the configuration space 
but the whole phase space may have a nontrivial geometry has at-
tracted significant attention, especially in different approaches to 
quantum gravity, where it can lead to testable predictions [3,27]. 
The purpose of this letter was to extend this research direction 
into the domain of field theories, which for our use we call NFST. 
We have constructed a particular example of the NFST and showed 
that certain effects, which usually appear in the context of quan-
tum gravity, emerge as a consequence of introducing nonlinearity 
of the field phase space.
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Appendix A

The classical phase space (of an isolated physical system) is a 
certain symplectic manifold (P, ω): a manifold P equipped with a 
symplectic form ω. It is known that on any (P, ω) there exist al-
most complex structures, i.e. linear maps I : TP → TP satisfying 
the relation I2 = −1. Furthermore, a symplectic manifold always 
possesses ω-compatible almost complex structures, which means 
that for a given I the map g(., .) ≡ ω(., I(.)) : TP × TP → R is a 
Riemannian metric on P . I , ω and g together are called a compat-
ible triple [16].

In particular, for any oriented manifold P that can be embed-
ded in R3 (like S2) there exists the natural symplectic form and 
compatible almost complex structure, which are determined by 
the standard scalar and cross products on R3. Namely, for vectors 
�u, �v tangent to P we have the expressions ω(�u, �v) = n̂ · (�v × �u), 
I(�u) = �u × n̂ (in the chosen sign convention), where n̂ is a unit 



J. Mielczarek, T. Trześniewski / Physics Letters B 759 (2016) 424–429 429
normal of P . The resulting metric g(�u, �v) = ω(�u, I(�v)) is the re-
striction to P of the standard Euclidean metric on R3 [16].

Let us apply this to the case of S2 with the radius 
√

J . Taking 
the vectors pointing in the directions of ϕ and θ , denoted by �uϕ , 
�uθ , we obtain ω(�uϕ, �uθ ) = −ω(�uθ , �uϕ) = J sin θ , which gives ω =
J sin θ dϕ ∧ dθ (as in Section 3). Similarly, we find that I(�uϕ) =
sin θ �uθ , I(�uθ ) = − sin−1 θ �uϕ and hence in the matrix notation

I =
(

0 − sin−1 θ

sin θ 0

)
. (24)

The above ω and I indeed determine the usual spherical metric 
g = J (sin2 θ dϕ2 + dθ2), since g(�uϕ, �uϕ) = J sin2 θ , g(�uθ , �uθ ) = J . 
However, in principle other compatible triples can be considered 
on (S2, ω).
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