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1 Introduction

In [1] Elvang and Figueras have presented a family of axisymmetric black hole solutions

to vacuum 4+1-dimensional Einstein equations. Due to the specific topology of the event

horizon: R ×
(

(S1 × S2) ∪ S3)
)

it has been named Black Saturn. It can be regarded as a

spherical Myers-Perry black hole [2] surrounded by a black ring [3, 4]. The configuration

is kept in balance by the angular momenta.

The Black Saturn metrics are of great significance since they provide an example

of well-behaved stationary black hole space-times with disconnected Killing horizon. This

shows a sharp contrast between solutions to Einstein equations in 4+1 and 3+1-dimensions

since, as proven recently [5–8], in the latter case analytic stationary two black hole space-

times are nakedly singular.

The family of Black Saturn solutions is constructed via the inverse scattering method [9]

which introduces 8 real parameters: ai with i = 1, . . . , 5 and c1, c2, k. Moreover, a ninth

one — q is brought in by a change of coordinates to facilitate the asymptotic flatness (see [1,

p. 10, footnote 3]). The ordering of parameters ai assumed in [1] reads

a1 ≤ a5 ≤ a4 ≤ a3 ≤ a2 (1.1)

or in terms of the dimensionless ones κi =
ai+2−a1
(a2−a1)2

,

0 ≤ κ3 ≤ κ2 ≤ κ1 ≤ 1 .
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A thorough analysis (see [1, 10, 11]) has shown that, under the assumption of param-

eters ai being pairwise distinct, the metrics in the Black Saturn family describe asymp-

totically flat, stably causal black hole space-times with smooth domains of outer commu-

nications. To guarantee the above listed desired properties of a well-behaved black hole

space-time one needs to tune the parameters c1, c2, k and q in terms of ai’s.

The purpose of this work is to investigate the possibility of obtaining a well-behaved

metric from the Black Saturn family in the case of coalescence of some of the parameters ai.

Such coalescence corresponds to the “pole fusion effect” in the inverse scattering method,

which may lead to extremal black-hole solutions (see [9, chapter 8.3]). There are however

various ways (paths in the parameter space) in which one can obtain a coalescence of

two or more ai’s. The result will a priori depend on the chosen limiting procedure as

demonstrated in [12].1 For instance, in [1, section A.1] it has been shown that to obtain

the limiting case of a Myers-Perry black hole from the balanced Black Saturn configuration

one needs to take first a5 ր a4 and then a1 ր a4. In general, the assumption that

the coalescence is to be considered after the fine tuning of parameters c1, c2, k, q already

imposes restrictions on the limiting procedure, since, for example, a1 ր a5 causes c1 to

diverge (see [1, (3.7)] or [10, (2.3)]). Let us note that the parameters c1 and c2 may a

priori assume infinite values. Indeed, the line element (A.1) has a well-defined limit for

c1 → ±∞ and/or c2 → ±∞, which moreover commutes with every coalescence considered

in this paper. However, these cases need separate analysis of possible balance conditions.

When the balance conditions are imposed on the Black Saturn solution, the areas of

the horizons of the two disconnected components [1, (3.26), (3.27)] tend to zero in the

limits a3 ր a2 and a5 ր a4 respectively. This suggests that the possible degenerate

solutions are nakedly-singular. However, there is no a priori reason for the procedures of

coalescence of parameters and imposition of the balance conditions to commute, so this

observation does not exclude the possibility of obtaining well-behaved extremal solutions

via some other limiting procedure. Let us note, that the same coalescence that leads to

the vanishing of the horizon area of the black ring component implies the divergence of its

temperature [1, (3.28)]. This suggests that the limiting procedures adopted in [1] are not

the right ones, as one should expect T = 0 for an extremal black-hole solution, since the

temperature is proportional to surface gravity.

The strategy we adopt in this paper is to consider the limits ai → aj at the level

of metric functions of the full Black Saturn solution and then investigate whether the

balance conditions can be fulfilled by a fine tuning of parameters c1, c2, k and q. To make

the paper self-contained we present in the appendix the Black Saturn metric of [1] in

generalised Weyl coordinates. For the details of construction and properties we refer the

reader to [1] and [10, 11].

2 Analysis of the limits

Since we are interested only in the solutions with two disconnected components of the

event horizon (compare with the rod structure [1, figure 1]), we shall assume the strict

1We thank Sebastian Szybka for pointing out this reference to us.
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inequality a4 < a3 in the ordering (1.1). We have thus 3 possible two-fold coalescences

to be considered in the next subsections. Moreover, there are 3 three-fold and 1 four-fold

limit that need to be investigated. When more then two ai parameters coalesce, one can

consider various different paths in the parameter space that lead to the same coalescence.

Fortunately, if the limiting procedure is performed at the level of the metric, the ordering

of the limits does not play a role (compare [1, section A.1]). This is because ai ր aj implies

µi ր µj (A.2) and all of the metric functions (see appendix) are smooth as functions of µi’s.

In each of the subsections we consider a particular coalescence of the ai’s parameters

while keeping the other distinct. The reason for that is that the behaviour of the metric

functions on the axis (ρ = 0) should be studied separately in each region of the axis

ai ≤ z ≤ aj (see [10, section 5.4]). This means that each coalescence needs a separate

procedure of investigation of the metric functions on the axis.

The detailed analysis of the regularity, asymptotic flatness and causality of the seven

limiting cases of the Black Saturn solution is straightforward, but lengthy — one essentially

follows the strategy adopted in [10]. However, since our analysis shows that in neither of

the investigated limits can one tune the parameters to obtain a balanced configuration we

shall only present the part of reasoning that leads to this conclusion.

2.1 a1 ր a5

Let us note first, that if one takes the limit a1 ր a5, then the resulting metric does not

depend on the parameter c1 anymore. Indeed, µ1 = µ5 implies M1 = M3 = M4 = 0 (see

appendix), thus the parameter c1 completely drops out of the line element. According

to [1, p. 7] this configuration would describe a static black ring around an S3 black hole,

which are kept apart by a conically singular membrane. Indeed, one can detect the conical

singularity by investigating the periodicity of the variable ϕ (compare [10, section 4]). To

avoid conical singularities at zeros of the Killing vector ∂ϕ one needs the ratio

lim
ρ→0

ρ2gρρ

gϕϕ

to be constant on the set {z < a1}∪ {a4 < z < a3}, which is an axis of rotation for ∂ϕ. By

investigating the leading behaviour in ρ of the metric functions gϕϕ and gρρ in the relevant

region of the space-time we obtain

lim
ρ→0

ρ2gρρ

gϕϕ
=







k2, for z < a1

k2
(a2−a1)(a3−a4)2

(a3−a1)2(a2−a4)
, for a4 < z < a3 .

Hence, to avoid conical singularities one would need to have

(a2 − a1)(a4 − a3)
2

(a3 − a1)2(a2 − a4)
= 1 ,

which is equivalent to

a4 = a1 or a4 =
a1a2 − 2a2a3 + a23

a1 − a2
.
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The first case is excluded, whereas the second one would require

a1a2 − 2a2a3 + a23
a1 − a2

< a3 ,

as a4 < a3 by assumption. The latter however imply that either a3 < a1 or a3 > a2, which

contradicts the ordering (1.1).

This means that the conical singularity on the axis cannot be avoided.

2.2 a5 ր a4

Let us now investigate the coalescence a5 ր a4. We shall start with the analysis of the

Killing vector field ∂t on the set {ρ = 0, z ≤ a1}. A Mathematica calculation shows that

gtt is a rational function with the denominator given by

(

2(a3 − a1)(a2 − a4) + (a4 − a1)c1c2
)2
(z − a1)(z − a2)(z − a4) ,

which vanishes as z approaches a1 from below. On the other hand, its numerator has the

following limit as z ր a1,

(a2 − a1)
2(a3 − a1)(a4 − a1)

2
(

2(a3 − a1)− c21
)

c22 .

Hence, we have now two possibilities of tuning the parameters to avoid a naked singularity

at ρ = 0, z = a1:

1. c1 = ±
√

2(a3 − a1) , (2.1)

2. c2 = 0 . (2.2)

Keeping them in mind, we shall investigate the behaviour of the Killing vector field ∂t
on the set {ρ = 0, a4 ≤ z ≤ a3}. The function gtt on this domain is a rational function

with the denominator

2(a1 − a2)
2(z − a1)(z − a2)(z − a4) ,

vanishing at z = a4. On the other hand, the numerator of gtt at ρ = 0, z = a4 reads

(a1 − a4)
2(a2 − a4)

2(c1 − c2)
2.

Thus, there is only one possibility to avoid a naked singularity at z = a4: set c1 = c2.

Combining the results obtained so far we end up with the following possible fine tunings:

1. c1 = c2 = ±
√

2(a3 − a1) , (2.3)

2. c1 = c2 = 0 . (2.4)

The choice c1 = c2 = 0 would bring us back to the seed solution [1], which is nakedly

singular, so we are forced to set c1 = c2 = ±
√

2(a3 − a1).

Let us now analyse the behaviour of the Killing vector field ∂ψ on the set {ρ = 0,

a1 ≤ z ≤ a4}. A Mathematica calculation shows that gψψ is a rational function with the

denominator given by

−2
(

(a2 − a4)c1 + (a4 − a1)c2
)2
(z − a1)(z − a2)(z − a4) .

– 4 –
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The singularity at z = a1 is cancelled by the tuning (2.3) since the numerator of gψψ at

z = a1 reads

−(a2 − a1)
2(a4 − a1)

2
(

2(a3 − a1)− c21
)(

2(a2 − a4) + c2q
)2
.

On the other hand, the denominator of gψψ is singular at z = a4 and the numerator has

the following limit for z ր a4,

2(a4 − a1)
2(a2 − a4)

2(a3 − a4)
(

2(a2 − a1)− (c1 − c2)q
)2

= 8(a4 − a1)
2(a2 − a4)

2(a3 − a4)(a2 − a1)
2,

which does not vanish. This means that the naked singularity at ρ = 0, z = a4 persists

regardless of the fine tuning of parameters.

We have so far dealt with the situation of the parameters c1 and c2 assuming finite

values. Let us now turn to the case c1 → ±∞. In this instance gtt, being the norm of the

Killing vector ∂t, is given in the region {ρ = 0, z ≤ a1} by the following formula,

−(a2 − z)(a3 − z)

(a1 − z)(a4 − z)
.

This expression diverges as z ր a1 and the singularity cannot be cancelled by any fine-

tuning of the free parameters.

For c2 → ±∞ we obtain that gtt on the set {ρ = 0, a1 ≤ z ≤ a4} is a rational function

with the denominator,

2(a4 − a1)
2(a2 − z)(a4 − z)(z − a1) ,

vanishing at z = a4. On the other hand, its numerator has the following limit for z ր a4,

2(a4 − a1)
2(a2 − a4)

2(a3 − a4) .

We conclude, that in this configuration there is a naked singularity at ρ = 0, z = a4 that

cannot be avoided.

For c1, c2 → ±∞ we have gtt = −µ2µ3
µ1µ4

, which is singular on the axis {ρ = 0} in the

region a1 ≤ z ≤ a2.

2.3 a3 ր a2

Let us now consider the coalescence a3 ր a2.

To rule out smooth non-trivial solutions it is sufficient to investigate the behaviour

of the Killing vector field ∂t in the region {ρ = 0, a4 ≤ z ≤ a2}. With the help of

Mathematica we obtain that gtt is a rational function with the denominator given by

2(a2 − a1)
2(z − a1)(a2 − z)(a5 − z) ,

which vanishes as z approaches a2 from below. On the other hand, its numerator has the

following limit as z ր a2,

−(a2 − a1)
2(a2 − a5)

2c22 .
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This means, that one should impose the condition c2 = 0 to avoid a naked singularity at

z = a2. But setting a3 = a2 and c2 = 0 completely removes the S3 black hole compo-

nent [1, section A.2] and we are left with a single ψ-spinning black ring.

In the case c1 → ±∞ the function gtt in the region {ρ = 0, z ≤ a1} reads,

− (a2 − z)2

(a1 − z)(a4 − z)
.

Thus, a naked singularity pops out at z = a1.

For c2 → ±∞, gtt in the region {ρ = 0, a5 ≤ z ≤ a4} turns out to also be given by,

− (a2 − z)2

(a1 − z)(a4 − z)
,

now leading to a singularity at z = a4.

Similarly to the case described in section 2.2, for c1, c2 → ±∞ we have gtt = − µ2
2

µ1µ4
,

which becomes singular on the axis {ρ = 0} in the whole region a1 ≤ z ≤ a2.

2.4 a1 ր a5 ր a4

According to [1, section A.1] in this limit the Black Saturn metric reduces to a Myers-Perry

black hole with a single angular momentum, hence no further analysis is needed. Let us

stress however, that to obtain this result independently of the order of the limits one needs

to compute the limits at the level of the metric functions — before the imposition of the

balance conditions.

2.5 a1 ր a5, a3 ր a2

Let us first investigate the behaviour of the Killing vector field ∂t on the set {ρ = 0,

a4 ≤ z ≤ a2}. Again with the help of Mathematica we obtain the following formula for

gtt function in this region
z − a4

a1 − z
+

c22
2(a2 − z)

.

We have a naked singularity at z = a2 unless we set c2 = 0. As argued in section 2.3 this

completely removes the S3 black hole component. What is more, the conical singularity

detected in section 2.1 persists. Indeed, we have

lim
ρ→0

ρ2gρρ

gϕϕ
=

{

k2, for z < a1

k2 a2−a4
a2−a1

, for a4 < z < a2 .

Hence, to guarantee the correct periodicity of ϕ we would have to set a4 = a1, which is

excluded by the assumptions of this section.

Since the parameter c1 has dropped out of the line element in the coalescence considered

in this subsection, we need only to comment on the instance c2 → ±∞. In this case, the

function gtt in the region {z ≤ a1} behaves near the axis {ρ = 0} like

4(a1 − z)(a2 − z)2

(a4 − z)ρ2
+O(ρ0) .

This excludes the possibility of c2 → ±∞ leading to a well-behaved space-time.

– 6 –
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2.6 a5 ր a4, a3 ր a2

It is sufficient to analyse the behaviour of the Killing vector field ∂t on the axis. In the

region {ρ = 0, z ≤ a1} gtt is a rational function with the denominator given by

(

2(a2 − a1)(a2 − a4) + (a4 − a1)c1c2
)2
(z − a1)(z − a2)(z − a4) .

As z ր a1 its numerator reads

(a2 − a1)
3(a4 − a1)

2
(

2(a2 − a1)− c21
)

c22 .

Thus, to avoid a naked singularity at ρ = 0, z = a1 one has to set

c1 = ±
√

2(a2 − a1) or c2 = 0 . (2.5)

Let us now switch to the region {ρ = 0, a1 ≤ z ≤ a4}. A Mathematica calculation

shows that gtt is a rational function with the denominator equal to

2
(

(a2 − a4)c1 + (a4 − a1)c2
)2
(z − a1)(z − a2)(z − a4) .

The continuity of gtt at z = a1 is easily verified for both choices of parameters (2.5). On

the other hand, as z approaches a4, gtt becomes singular since its numerator at z = a4

reads

2(a1 − a4)
2(a2 − a4)

3(c1 − c2)
2.

To bypass the naked singularity at ρ = 0, z = a4 we need to set c1 = c2 in addition to (2.5).

Finally, in the region {ρ = 0, a4 ≤ z ≤ a2} the denominator of gtt is given by

2(a1 − a2)
2(z − a1)(z − a2)(z − a4) .

Again, the continuity of gtt at z = a4 is guaranteed by the tuning of parameters imposed

so far. However, the numerator of gtt at z = a2 reads

−(a1 − a2)
2(a2 − a4)

2c22 ,

so the only way to avoid a singularity at z = a2 is to set c2 = 0. Combining this with the

previous results we conclude that to assure the smoothness of the Killing vector field ∂t on

the axis {ρ = 0} one needs to set c1 = c2 = 0. As already argued, this would bring us back

to the seed solution [1], which is singular itself.

It remains to check the possibility of cancelling the singularities by letting one or

both of the parameters c1, c2 go to ±∞. As c1 → ±∞ we obtain that gtt in the region

{ρ = 0, z ≤ a1} is given by the expression

− (a2 − z)2

(a1 − z)(a4 − z)
,

singular at z = a1.

– 7 –
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For c2 → ±∞ on the other hand, we obtain the following behaviour of gtt near the

axis {ρ = 0} in the region {a4 ≤ z ≤ a2},

4(a2 − z)2(a4 − z)

(a1 − z)ρ2
+O(ρ0) .

Moreover, if we let both c1 and c2 tend to infinity we again obtain gtt = − µ2
2

µ1µ4
.

We conclude that the Black Saturn solution with a5 ր a4, a3 ր a2 and one or both

of the ci parameters infinite is nakedly singular.

2.7 a1 ր a5 ր a4, a3 ր a2

As in the previous cases (see section 2.1) the limit a1 ր a5 implies that the parameter c1
is no longer present in the line element. Furthermore, an investigation of the behaviour

of the Killing vector ∂t on the axis forces us to impose c2 = 0. Indeed, in the region

{ρ = 0, a1 ≤ z ≤ a2} the metric function gtt reads

2(z − a2) + c22
2(a2 − z)

,

so only c2 = 0 allows to avoid a singularity at z = a2. But if c1 drops out of the metric

functions and c2 vanishes we are again back at the seed solution [1], which is of no physical

interest.

Moreover, in the case c2 → ±∞ we obtain gtt =
µ2
2

ρ2
, that clearly leads to singularities

on the axis.

3 Conclusions

We have investigated various different coalescences of parameters defining the Black Saturn

solution. We have shown that either the resulting metric is nakedly singular or it reduces

to a black hole with one connected component of the event horizon: a Myers-Perry black

hole or Emperano-Reall black ring.

Led by the example given by Geroch in [12] one might think that there can still be a

way of obtaining a meaningful coalescence limit in the Black Saturn family by employing

a smart change of coordinate chart. However, as demonstrated in [12], the Killing vectors

are inherited by any limit of a space-time with some parameters. Strictly speaking, this

property has been demonstrated for a 3+1-dimensional case. Nevertheless, as the technique

developed in [12, appendix B] is general, the proof can be adapted in a straightforward

way to a 4+1 dimensional space-time with three Killing vectors. Now, since our analysis

consisted in uncovering singularities in the norms of Killing vector fields, we conclude that

any coordinate transformation would either lead to the same results or not yield a proper

limit space-time at all.

We have thus exhausted the possibility of constructing a smooth extremal Black Saturn

configuration in the family of solutions of Elvang-Figueras.

This outcome is in consent with the known properties of 4+1-dimensional black holes.

Both spherical black holes [2] and black rings [13, 14] require two non-vanishing angular

– 8 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
8

momenta to admit smooth extremal configurations. Unfortunately, the Black Saturn solu-

tion of Elvang-Figueras has angular momentum in a single plane only and it is not clear

if doubly-spinning components can at all be kept in balance [1]. Thus, the question of

the existence of smooth stationary axisymmetric black holes with disconnected degenerate

Killing horizons in 4+1 dimensions remains open.
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A The Black Saturn metric

In the generalised Weyl coordinates (t, ρ, z, ψ, ϕ) the Black Saturn line element [1] reads

ds2 = gttdt
2 + gtψdtdψ + gψψdψ

2 + gρρdρ
2 + gzzdz

2 + gϕϕdϕ
2

= −Hy

Hx

[

dt+

(

ωψ

Hy

+ q

)

dψ

]2

+Hx

{

k2 P (dρ2 + dz2) +
Gy

Hy

dψ2 +
Gx

Hx

dϕ2

}

, (A.1)

where k, q are real constants. The metric functions depend only on variables ρ and z.

Define

µi :=
√

ρ2 + (z − ai)2 − (z − ai) , (A.2)

where the ai’s are real constants. The assumed ordering of ai’s (1.1) implies

µ1 ≤ µ5 ≤ µ4 ≤ µ3 ≤ µ2 and µi = µj ⇔ ai = aj .

Let us list the functions constituting the line element (A.1):

Gx =
ρ2µ4

µ3 µ5
,

P = (µ3 µ4 + ρ2)2(µ1 µ5 + ρ2)(µ4 µ5 + ρ2) ,

Hx = F−1
[

M0 + c21M1 + c22M2 + c1 c2M3 + c21c
2
2M4

]

,

Hy = F−1 µ3

µ4

[

M0
µ1

µ2
− c21M1

ρ2

µ1 µ2
− c22M2

µ1 µ2

ρ2
+ c1 c2M3 + c21c

2
2M4

µ2

µ1

]

,

– 9 –
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where c1 and c2 are real constants, and

M0 = µ2 µ
2
5(µ1 − µ3)

2(µ2 − µ4)
2(ρ2 + µ1 µ2)

2(ρ2 + µ1 µ4)
2(ρ2 + µ2 µ3)

2,

M1 = µ21 µ2 µ3 µ4 µ5 ρ
2 (µ1 − µ2)

2(µ2 − µ4)
2(µ1 − µ5)

2(ρ2 + µ2 µ3)
2 ,

M2 = µ2 µ3 µ4 µ5 ρ
2 (µ1 − µ2)

2(µ1 − µ3)
2(ρ2 + µ1 µ4)

2(ρ2 + µ2 µ5)
2 ,

M3 = 2µ1µ2 µ3 µ4 µ5 (µ1 − µ3)(µ1 − µ5)(µ2 − µ4)(ρ
2 + µ21)(ρ

2 + µ22)

× (ρ2 + µ1 µ4)(ρ
2 + µ2 µ3)(ρ

2 + µ2 µ5) ,

M4 = µ21 µ2 µ
2
3 µ

2
4 (µ1 − µ5)

2(ρ2 + µ1 µ2)
2(ρ2 + µ2 µ5)

2

and

F = µ1 µ5 (µ1 − µ3)
2(µ2 − µ4)

2(ρ2 + µ1 µ3)(ρ
2 + µ2 µ3)(ρ

2 + µ1 µ4)

× (ρ2 + µ2 µ4)(ρ
2 + µ2 µ5)(ρ

2 + µ3 µ5)
5
∏

i=1

(ρ2 + µ2i ) .

Furthermore,

Gy =
µ3 µ5

µ4

and the off-diagonal part of the metric is governed by

ωψ = 2
c1R1

√
M0M1 − c2R2

√
M0M2 + c21 c2R2

√
M1M4 − c1 c

2
2R1

√
M2M4

F
√
Gx

,

with Ri =
√

ρ2 + (z − ai)2.

The determinant of the metric reads

det gµν = −ρ2H2
xk

4P 2.
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