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A COUNTEREXAMPLE TO A THEOREM OF BREMERMANN

ON SHILOV BOUNDARIES – REVISITED

by Marek Jarnicki and Peter Pflug

Abstract. We continue to discuss the example presented in [4]. In par-
ticular, we clarify some gaps and complete the description of the Shilov
boundary.

For a bounded domain D ⊂ Cn let A(D) (resp. O(D)) denote the space
of all continuous functions f : D −→ C such that f |D is holomorphic (resp. f
extends holomorphically to a neighborhood of D). Let ∂SD (resp. ∂BD) be the
Shilov (resp. Bergman) boundary of D, i.e. the minimal compact set K ⊂ D
such that max

K
|f | = max

D
|f | for every f ∈ A(D) (resp. f ∈ O(D)). Obviously,

O(D) ⊂ A(D) and hence ∂BD ⊂ ∂SD ⊂ ∂D. Notice that, in general, ∂BD  
∂SD, e.g. for the domain D := {(z, w) ∈ C2 : 0 < |z| < 1, |w| < |z|− log |z|}
(cf. [2], § 16).

The algebra A(D) (resp. B(D) := the uniform closure in A(D) of O(D))
endowed with the supremum norm is a Banach algebra. Then ∂SD (resp. ∂BD)
coincides with the Shilov boundary of A(D) (resp. B(D) in the sense of uniform
algebras (cf. [1]). Note that the peak points of A(D) (resp. B(D)) are dense in
∂SD (resp. ∂B(D))) (cf. [1]). Recall that a point a ∈ D is called a peak point
for A(D) (resp. B(D)) if there is an f ∈ A(D) (resp. B(D)) with f(a) = 1 and
|f(z)| < 1 for all z ∈ D \ {a}; f is called an associated peak function.

Assume that the envelope of holomorphy D̃ of D is univalent. In [4] we

were interested in answering whether ∂SD = ∂SD̃ (resp. ∂BD = ∂BD̃).
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Remark 1. Notice that:

• ∂SD̃ ⊂ ∂SD,

• ∂BD̃ ⊂ ∂BD,

• if A(D) ⊂ A(D̃)|D (resp. O(D) ⊂ O(D̃)|D), then ∂SD = ∂SD̃ (resp.

∂BD = ∂BD̃).

In [4] we studied the following bounded Hartogs domain D ⊂ C2:

D := {(reiϕ, w) ∈ C2 : 1
2 < r < 1, (ϕ, |w|) ∈ Q},

where

Q :=
(
(0, π2 ]× [0, 1)

)
∪
(
(π2 ,

3π
2 )× [0, 3)

)
∪
(
[3π

2 , 2π)× (2, 3)
)
;

it is known that D has a univalent envelope of holomorphy D̃. The main result
of [4] is the following theorem.

Theorem 2. ∂SD̃  ∂SD, ∂BD̃  ∂BD, and O(D) \ A(D̃)|D 6= ∅.

The proof consists of the following two parts:

(1) ∂SD̃∩(I×D(3)) = ∅, where I := [1
2 , 1], D is the unit disc, and D(r) := rD.

(2) There exists a function h ∈ O(D) (effectively given) such that

h(x,w) =

{
e−2π+i log x, if (x,w) ∈ I × A(2, 3)

ei log x, if (x,w) ∈ I × D

and |h| < 1 on the remaining part of D, where A(r−, r+) := D(r+)\D(r−).

Unfortunately, the proof of (1) contains a gap. The aim of the present note
is to close the above gap and to prove some new results related to the Shilov

and Bergman boundaries of D and D̃.

Let

A := {z ∈ C : 1
2 < |z| < 1}, I0 := (1

2 , 1), A0 := A \ I0.

By the Cauchy integral formula each function f ∈ A(D) extends holomorphi-
cally to the domain

G = {(z, w) ∈ A0 × C : |w|eV (z) < 1},

where

V (reiϕ) :=

{
0, if 0 < ϕ ≤ π

2

− log 3, if π
2 < ϕ < 2π

.

Hence (by [3], Corollary 3.2.18) the envelope of holomorphy D̃ is univalent and

D̃ = G̃ = {(z, w) ∈ A0 × C : |w|eṼ (z) < 1},
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where
Ṽ (z) := sup{u ∈ SH(A0) : u ≤ V }.

Notice that, by the maximum principle for subharmonic functions, we have

Ṽ (z) < 0, z ∈ A0. Thus, ∂D∩ (U ×D(3)) ⊂ D̃, where U := {reiϕ : r ∈ I0, 0 <

ϕ < π
2 }. Hence ∂D̃ ∩ (U × D(3)) does not contain points of ∂SD̃.

We are going to prove the following theorem.

Theorem 3. (a) ∂SD̃ ∩ (I0 × D(3)) = ∅.
(b) For any a ∈ I there exists a g = ga ∈ O(D) such that g(a,w) = 1 for all

w ∈ D, and |g| < 1 on D \ ({a}×D). In particular, ∂BD∩ ({a}×D) 6= ∅.
(c) ∂BD ⊃ {a}×T for every a ∈ I0, where T := ∂D. Therefore, ∂BD ⊃ I×T.
(d) ∂BD \ ((iI0)× (3T)) = ∂SD \ ((iI0)× (3T))

= {reiϕ : r ∈ {1
2 , 1},

π
2 ≤ ϕ ≤ 2π} × (3T)

∪ I0 × (3T)

∪ I0 × T
∪ {reiϕ : r ∈ {1

2 , 1}, 0 ≤ ϕ ≤ π
2 } × T

=: M1 ∪M2 ∪M3 ∪M4.

Remark 4. (i) Observe that (a) and (b) close gaps in our former proof.

Indeed, we get ∅ 6= ∂BD\∂SD̃ ⊂ (∂SD\∂SD̃)∩ (∂BD\∂BD̃). Hence

∂SD̃  ∂SD and ∂BD̃  ∂BD.
Moreover, if a ∈ I0, then ga ∈ O(D) \ A(D̃)|D.

(ii) It seems to be an open problem whether (iI0)× (3T) ⊂ ∂SD (resp. (iI0)×
(3T) ⊂ ∂BD).

Proof of Theorem 3. First, let us make the following elementary observa-
tion.

(*) Let Σ be an open subset of the boundary ∂Ω of a bounded domain Ω ⊂
Cn. Suppose that max∂Ω |f | = max∂Ω\Σ |f | for every f ∈ A(Ω) (resp. O(Ω)).
Then ∂SΩ ∩ Σ = ∅ (resp. ∂BΩ ∩ Σ = ∅).

(a) For all a ∈ I0 and f ∈ A(D̃) the function f(a, ·) extends holomorphi-
cally to D(3).

Indeed, we may define f̂(z, w) := 1
2πi

∫
|ζ|=5/2

f(z,ζ)
ζ−w dζ, z ∈ A(1

2 , 1), π
2 <

arg z ≤ 2π, |w| < 5
2 . Then f̂ is holomorphic and coincides with f when π

2 <

arg z < π. Hence using identity theorem we see that f = f̂ on their common
domain of definition. Using continuity of f we get the claimed extension of
f(a, ·).

In particular, max{a}×A(1,3) |f(a, ·)| = max{a}×3T |f(a, ·)|. Hence, by (*)

with Ω := D̃ and Σ := I0×A(1, 3), we conclude that ∂SD̃∩ (I0×A(1, 3)) = ∅.
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The same argument shows that ∂SD̃ ∩ (I0 × D) = ∅. (Note that these first
two cases can also be handled using the density of the peak points — see the
argument in the next case.)

Suppose that (z0, w0) ∈ (I0×T)∩∂SD̃. Then there is a peak point (z1, w1)

nearby. Let f ∈ A(D̃) be a function peaking there. The maximum principle
excludes the situation where z1 ∈ I0. Thus z1 ∈ U , but we already know that

∂SD̃ ∩ (U × D(3)) = ∅, so it is impossible.

Finally, ∂SD̃ ∩ (I0 × D(3)) = ∅.

(b) Fix an a ∈ I and let h be as in (2), w0 := ei log a ∈ T. Define ϕ(w) :=
1

2w0
(w+w0), g := ϕ◦h. It is obvious that g ∈ O(D), g(a,w) = 1 for all w ∈ D,

and |g| < 1 on D \ ({a} × D).

(c) Using (a) we have ∂BD∩(I0×D) = ∅. Hence, by (b), ∂BD∩({a}×T) 6=
∅ for every a ∈ I0. Now using rotational invariance in the second variable of
∂BD leads to {a} × T ⊂ ∂BD for all a ∈ I0.

(d) Notice that also ∂SD is invariant under rotations of the second variable.

• Every point from ∂A× 3T is a peak point for O(A× D(3)).
Indeed, fix a point (a, b) ∈ ∂A × 3T. Then a is a peak point for O(A)

and b is a peak point for O(D(3)). So it suffices to take the product of the

corresponding peak functions to see that (a, b) is a peak point for O(A× D(3)).
Thus M1 ⊂ ∂BD ⊂ ∂SD.
• Consider the holomorphic function

D 3 (z, w)
Φ7−→ Log(z) ∈ R := [− log 2, 0]× [0, 2π],

where Log is a branch of logarithm with Log(−1) = π. Note that Φ ∈ O(D).
For every a ∈ I0 we have Φ(a,w) ∈ (− log 2, 0) × {2π} ∈ ∂R whenever
w ∈ A(2, 3). It is clear that there exists a function ψa ∈ O(R) such that
ψa(Φ(a,w)) = 1, w ∈ A(2, 3), and |ψa| < 1 on R \ {Φ(a,w)}. Then the func-
tion

D 3 (z, w)
fa7−→ ψa(Φ(z, w))

may be considered as a function of class O(D). Observe that fa(a,w) = 1 for
all w ∈ A(2, 3), and |fa| < 1 on D \ ({a} × A(2, 3)). Fix a b ∈ 3T and define

g(z, w) := fa(z, w)1+w/b
2 . Then g ∈ O(D) and g peaks at (a, b). Consequently,

M2 ⊂ ∂BD ⊂ ∂SD.
• By (c), M3 ⊂ ∂BD ⊂ ∂SD.
• For every a = reiϕ with r ∈ {1

2 , 1}, 0 < ϕ < π
2 there exists a function

ψ ∈ O(A) such that ψ(a) = 1 and |ψ| < 1 on A\{a}. Hence ∂BD∩({a}×D) 6=
∅. Now, by (*) with Ω := D, Σ := {reiϕ : r ∈ {1

2 , 1}, 0 < ϕ < π
2 } × D, we

conclude that M4 ⊂ ∂BD ⊂ ∂SD.
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The remaining part of ∂D, i.e. the set Σ := ∂D \ (M1 ∪M2 ∪M3 ∪M4 ∪
((iI0)× (3T))), is open in ∂D. It remains to use (*).

Remark 5. We will try to complete the description of ∂BD, ∂SD, ∂BD̃,

and ∂SD̃. Any help by the reader will be appreciated.
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