A COUNTEREXAMPLE TO A THEOREM OF BREMERMANN ON SHILOV BOUNDARIES - REVISITED

by Marek Jarnicki and Peter Pflug

Abstract

We continue to discuss the example presented in 4]. In particular, we clarify some gaps and complete the description of the Shilov boundary.

For a bounded domain $D \subset \mathbb{C}^{n}$ let $\mathcal{A}(D)$ (resp. $\mathcal{O}(\bar{D})$) denote the space of all continuous functions $f: \bar{D} \longrightarrow \mathbb{C}$ such that $\left.f\right|_{D}$ is holomorphic (resp. f extends holomorphically to a neighborhood of \bar{D}). Let $\partial_{S} D\left(\right.$ resp. $\left.\partial_{B} D\right)$ be the Shilov (resp. Bergman) boundary of D, i.e. the minimal compact set $K \subset \bar{D}$ such that $\max _{K}|f|=\max _{\bar{D}}|f|$ for every $f \in \mathcal{A}(D)$ (resp. $f \in \mathcal{O}(\bar{D})$). Obviously, $\mathcal{O}(\bar{D}) \subset \mathcal{A}(D)$ and hence $\partial_{B} D \subset \partial_{S} D \subset \partial D$. Notice that, in general, $\partial_{B} D \varsubsetneqq$ $\partial_{S} D$, e.g. for the domain $D:=\left\{(z, w) \in \mathbb{C}^{2}: 0<|z|<1,|w|<|z|^{-\log |z|}\right\}$ (cf. 2], § 16).

The algebra $\mathcal{A}(D)$ (resp. $\mathcal{B}(D):=$ the uniform closure in $\mathcal{A}(D)$ of $\mathcal{O}(\bar{D})$) endowed with the supremum norm is a Banach algebra. Then $\partial_{S} D$ (resp. $\left.\partial_{B} D\right)$ coincides with the Shilov boundary of $\mathcal{A}(D)$ (resp. $\mathcal{B}(D)$ in the sense of uniform algebras (cf. [1]). Note that the peak points of $\mathcal{A}(D)$ (resp. $\mathcal{B}(D)$) are dense in $\partial_{S} D\left(\right.$ resp. $\left.\left.\partial_{B}(D)\right)\right)($ cf. $\mathbf{1})$. Recall that a point $a \in \bar{D}$ is called a peak point for $\mathcal{A}(D)$ (resp. $\mathcal{B}(D)$) if there is an $f \in \mathcal{A}(D)$ (resp. $\mathcal{B}(D)$) with $f(a)=1$ and $|f(z)|<1$ for all $z \in \bar{D} \backslash\{a\} ; f$ is called an associated peak function.

Assume that the envelope of holomorphy \widetilde{D} of D is univalent. In 4 we were interested in answering whether $\partial_{S} D=\partial_{S} \widetilde{D}\left(\operatorname{resp} . \partial_{B} D=\partial_{B} \widetilde{D}\right)$.

[^0]Remark 1. Notice that:

- $\partial_{S} \widetilde{D} \subset \partial_{S} D$,
- $\partial_{B} \widetilde{D} \subset \partial_{B} D$,
- if $\left.\mathcal{A}(D) \subset \mathcal{A}(\widetilde{D})\right|_{\bar{D}}\left(\right.$ resp. $\left.\left.\mathcal{O}(\bar{D}) \subset \mathcal{O}(\widetilde{D})\right|_{\bar{D}}\right)$, then $\partial_{S} D=\partial_{S} \widetilde{D}$ (resp. $\left.\partial_{B} D=\partial_{B} \widetilde{D}\right)$.
In [4] we studied the following bounded Hartogs domain $D \subset \mathbb{C}^{2}$:

$$
D:=\left\{\left(r e^{i \varphi}, w\right) \in \mathbb{C}^{2}: \frac{1}{2}<r<1,(\varphi,|w|) \in Q\right\}
$$

where

$$
Q:=\left(\left(0, \frac{\pi}{2}\right] \times[0,1)\right) \cup\left(\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \times[0,3)\right) \cup\left(\left[\frac{3 \pi}{2}, 2 \pi\right) \times(2,3)\right) ;
$$

it is known that D has a univalent envelope of holomorphy \widetilde{D}. The main result of [4] is the following theorem.

Theorem 2. $\partial_{S} \widetilde{D} \not q \partial_{S} D, \partial_{B} \widetilde{D} \nsubseteq \partial_{B} D$, and $\left.\mathcal{O}(\bar{D}) \backslash \mathcal{A}(\widetilde{D})\right|_{\bar{D}} \neq \varnothing$.
The proof consists of the following two parts:
(1) $\partial_{S} \widetilde{D} \cap(I \times \mathbb{D}(3))=\varnothing$, where $I:=\left[\frac{1}{2}, 1\right], \mathbb{D}$ is the unit disc, and $\mathbb{D}(r):=r \mathbb{D}$.
(2) There exists a function $h \in \mathcal{O}(\bar{D})$ (effectively given) such that

$$
h(x, w)= \begin{cases}e^{-2 \pi+i \log x}, & \text { if }(x, w) \in I \times \overline{\mathbb{A}}(2,3) \\ e^{i \log x}, & \text { if }(x, w) \in I \times \overline{\mathbb{D}}\end{cases}
$$

and $|h|<1$ on the remaining part of \bar{D}, where $\mathbb{A}\left(r_{-}, r_{+}\right):=\mathbb{D}\left(r_{+}\right) \backslash \overline{\mathbb{D}}\left(r_{-}\right)$.
Unfortunately, the proof of (1) contains a gap. The aim of the present note is to close the above gap and to prove some new results related to the Shilov and Bergman boundaries of D and \widetilde{D}.

Let

$$
A:=\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<1\right\}, \quad I_{0}:=\left(\frac{1}{2}, 1\right), \quad A_{0}:=A \backslash I_{0} .
$$

By the Cauchy integral formula each function $f \in \mathcal{A}(D)$ extends holomorphically to the domain

$$
G=\left\{(z, w) \in A_{0} \times \mathbb{C}:|w| e^{V(z)}<1\right\},
$$

where

$$
V\left(r e^{i \varphi}\right):=\left\{\begin{array}{ll}
0, & \text { if } 0<\varphi \leq \frac{\pi}{2} \\
-\log 3, & \text { if } \frac{\pi}{2}<\varphi<2 \pi
\end{array} .\right.
$$

Hence (by $\sqrt[3]{ }$, Corollary 3.2.18) the envelope of holomorphy \widetilde{D} is univalent and

$$
\widetilde{D}=\widetilde{G}=\left\{(z, w) \in A_{0} \times \mathbb{C}:|w| e^{\widetilde{V}(z)}<1\right\},
$$

where

$$
\widetilde{V}(z):=\sup \left\{u \in \mathcal{S H}\left(A_{0}\right): u \leq V\right\}
$$

Notice that, by the maximum principle for subharmonic functions, we have $\widetilde{V}(z)<0, z \in A_{0}$. Thus, $\partial D \cap(U \times \mathbb{D}(3)) \subset \widetilde{D}$, where $U:=\left\{r e^{i \varphi}: r \in I_{0}, 0<\right.$ $\left.\varphi<\frac{\pi}{2}\right\}$. Hence $\partial \widetilde{D} \cap(U \times \mathbb{D}(3))$ does not contain points of $\partial_{S} \widetilde{D}$.

We are going to prove the following theorem.
Theorem 3. (a) $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{D}(3)\right)=\varnothing$.
(b) For any $a \in I$ there exists a $g=g_{a} \in \mathcal{O}(\bar{D})$ such that $g(a, w)=1$ for all $w \in \overline{\mathbb{D}}$, and $|g|<1$ on $\bar{D} \backslash(\{a\} \times \overline{\mathbb{D}})$. In particular, $\partial_{B} D \cap(\{a\} \times \overline{\mathbb{D}}) \neq \varnothing$.
(c) $\partial_{B} D \supset\{a\} \times \mathbb{T}$ for every $a \in I_{0}$, where $\mathbb{T}:=\partial \mathbb{D}$. Therefore, $\partial_{B} D \supset I \times \mathbb{T}$.
(d) $\partial_{B} D \backslash\left(\left(i I_{0}\right) \times(3 \mathbb{T})\right)=\partial_{S} D \backslash\left(\left(i I_{0}\right) \times(3 \mathbb{T})\right)$

$$
\begin{aligned}
= & \left\{r e^{i \varphi}: r \in\left\{\frac{1}{2}, 1\right\}, \frac{\pi}{2} \leq \varphi \leq 2 \pi\right\} \times(3 \mathbb{T}) \\
& \cup I_{0} \times(3 \mathbb{T}) \\
& \cup I_{0} \times \mathbb{T} \\
& \cup\left\{r e^{i \varphi}: r \in\left\{\frac{1}{2}, 1\right\}, 0 \leq \varphi \leq \frac{\pi}{2}\right\} \times \mathbb{T} \\
= & M_{1} \cup M_{2} \cup M_{3} \cup M_{4} .
\end{aligned}
$$

REmARK 4. (i) Observe that (a) and (b) close gaps in our former proof.
Indeed, we get $\varnothing \neq \partial_{B} D \backslash \partial_{S} \widetilde{D} \subset\left(\partial_{S} D \backslash \partial_{S} \widetilde{D}\right) \cap\left(\partial_{B} D \backslash \partial_{B} \widetilde{D}\right)$. Hence $\partial_{S} \widetilde{D} \nsubseteq \partial_{S} D$ and $\partial_{B} \widetilde{D} \nsubseteq \partial_{B} D$.

Moreover, if $a \in I_{0}$, then $\left.g_{a} \in \mathcal{O}(\bar{D}) \backslash \mathcal{A}(\widetilde{D})\right|_{\bar{D}}$.
(ii) It seems to be an open problem whether $\left(i I_{0}\right) \times(3 \mathbb{T}) \subset \partial_{S} D$ (resp. $\left(i I_{0}\right) \times$ $\left.(3 \mathbb{T}) \subset \partial_{B} D\right)$.

Proof of Theorem 3. First, let us make the following elementary observation.
$\left(^{*}\right)$ Let Σ be an open subset of the boundary $\partial \Omega$ of a bounded domain $\Omega \subset$ \mathbb{C}^{n}. Suppose that $\max _{\partial \Omega}|f|=\max _{\partial \Omega \backslash \Sigma}|f|$ for every $f \in \mathcal{A}(\Omega)$ (resp. $\mathcal{O}(\bar{\Omega})$). Then $\partial_{S} \Omega \cap \Sigma=\varnothing\left(\right.$ resp. $\partial_{B} \Omega \cap \Sigma=\varnothing$).
(a) For all $a \in I_{0}$ and $f \in \mathcal{A}(\widetilde{D})$ the function $f(a, \cdot)$ extends holomorphically to $\mathbb{D}(3)$.

Indeed, we may define $\widehat{f}(z, w):=\frac{1}{2 \pi i} \int_{|\zeta|=5 / 2} \frac{f(z, \zeta)}{\zeta-w} d \zeta, z \in \mathbb{A}\left(\frac{1}{2}, 1\right), \frac{\pi}{2}<$ $\arg z \leq 2 \pi,|w|<\frac{5}{2}$. Then \widehat{f} is holomorphic and coincides with f when $\frac{\pi}{2}<$ $\arg z<\pi$. Hence using identity theorem we see that $f=\widehat{f}$ on their common domain of definition. Using continuity of f we get the claimed extension of $f(a, \cdot)$.

In particular, $\max _{\{a\} \times \overline{\mathbb{A}}(1,3)}|f(a, \cdot)|=\max _{\{a\} \times 3 \mathbb{T}}|f(a, \cdot)|$. Hence, by (*) with $\Omega:=\widetilde{D}$ and $\Sigma:=I_{0} \times \mathbb{A}(1,3)$, we conclude that $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{A}(1,3)\right)=\varnothing$.

The same argument shows that $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{D}\right)=\varnothing$. (Note that these first two cases can also be handled using the density of the peak points - see the argument in the next case.)

Suppose that $\left(z_{0}, w_{0}\right) \in\left(I_{0} \times \mathbb{T}\right) \cap \partial_{S} \widetilde{D}$. Then there is a peak point $\left(z_{1}, w_{1}\right)$ nearby. Let $f \in \mathcal{A}(\widetilde{D})$ be a function peaking there. The maximum principle excludes the situation where $z_{1} \in I_{0}$. Thus $z_{1} \in U$, but we already know that $\partial_{S} \widetilde{D} \cap(U \times \mathbb{D}(3))=\varnothing$, so it is impossible.

Finally, $\partial_{S} \widetilde{D} \cap\left(I_{0} \times \mathbb{D}(3)\right)=\varnothing$.
(b) Fix an $a \in I$ and let h be as in (2), $w_{0}:=e^{i \log a} \in \mathbb{T}$. Define $\varphi(w):=$ $\frac{1}{2 w_{0}}\left(w+w_{0}\right), g:=\varphi \circ h$. It is obvious that $g \in \mathcal{O}(\bar{D}), g(a, w)=1$ for all $w \in \overline{\mathbb{D}}$, and $|g|<1$ on $\bar{D} \backslash(\{a\} \times \overline{\mathbb{D}})$.
(c) Using (a) we have $\partial_{B} D \cap\left(I_{0} \times \mathbb{D}\right)=\varnothing$. Hence, by (b), $\partial_{B} D \cap(\{a\} \times \mathbb{T}) \neq$ \varnothing for every $a \in I_{0}$. Now using rotational invariance in the second variable of $\partial_{B} D$ leads to $\{a\} \times \mathbb{T} \subset \partial_{B} D$ for all $a \in I_{0}$.
(d) Notice that also $\partial_{S} D$ is invariant under rotations of the second variable.

- Every point from $\partial A \times 3 \mathbb{T}$ is a peak point for $\mathcal{O}(\overline{A \times \mathbb{D}(3)})$.

Indeed, fix a point $(a, b) \in \partial A \times 3 \mathbb{T}$. Then a is a peak point for $\mathcal{O}(\bar{A})$ and b is a peak point for $\mathcal{O}(\overline{\mathbb{D}(3)})$. So it suffices to take the product of the corresponding peak functions to see that (a, b) is a peak point for $\mathcal{O}(\overline{A \times \mathbb{D}(3)})$.

Thus $M_{1} \subset \partial_{B} D \subset \partial_{S} D$.

- Consider the holomorphic function

$$
\bar{D} \ni(z, w) \stackrel{\Phi}{\longmapsto} \log (z) \in R:=[-\log 2,0] \times[0,2 \pi],
$$

where \log is a branch of $\operatorname{logarithm}$ with $\log (-1)=\pi$. Note that $\Phi \in \mathcal{O}(\bar{D})$. For every $a \in I_{0}$ we have $\Phi(a, w) \in(-\log 2,0) \times\{2 \pi\} \in \partial R$ whenever $w \in \overline{\mathbb{A}}(2,3)$. It is clear that there exists a function $\psi_{a} \in \mathcal{O}(\bar{R})$ such that $\psi_{a}(\Phi(a, w))=1, w \in \overline{\mathbb{A}}(2,3)$, and $\left|\psi_{a}\right|<1$ on $\bar{R} \backslash\{\Phi(a, w)\}$. Then the function

$$
\bar{D} \ni(z, w) \stackrel{f_{a}}{\longleftrightarrow} \psi_{a}(\Phi(z, w))
$$

may be considered as a function of class $\mathcal{O}(\bar{D})$. Observe that $f_{a}(a, w)=1$ for all $w \in \overline{\mathbb{A}}(2,3)$, and $\left|f_{a}\right|<1$ on $\bar{D} \backslash(\{a\} \times \overline{\mathbb{A}}(2,3))$. Fix a $b \in 3 \mathbb{T}$ and define $g(z, w):=f_{a}(z, w) \frac{1+w / b}{2}$. Then $g \in \mathcal{O}(\bar{D})$ and g peaks at (a, b). Consequently, $M_{2} \subset \partial_{B} D \subset \partial_{S} D$.

- By (C),$M_{3} \subset \partial_{B} D \subset \partial_{S} D$.
- For every $a=r e^{i \varphi}$ with $r \in\left\{\frac{1}{2}, 1\right\}, 0<\varphi<\frac{\pi}{2}$ there exists a function $\psi \in \mathcal{O}(\bar{A})$ such that $\psi(a)=1$ and $|\psi|<1$ on $\bar{A} \backslash\{a\}$. Hence $\partial_{B} D \cap(\{a\} \times \overline{\mathbb{D}}) \neq$ \varnothing. Now, by $\left({ }^{*}\right)$ with $\Omega:=D, \Sigma:=\left\{r e^{i \varphi}: r \in\left\{\frac{1}{2}, 1\right\}, 0<\varphi<\frac{\pi}{2}\right\} \times \mathbb{D}$, we conclude that $M_{4} \subset \partial_{B} D \subset \partial_{S} D$.

The remaining part of ∂D, i.e. the set $\Sigma:=\partial D \backslash\left(M_{1} \cup M_{2} \cup M_{3} \cup M_{4} \cup\right.$ $\left.\left(\left(i I_{0}\right) \times(3 \mathbb{T})\right)\right)$, is open in ∂D. It remains to use $\left(^{*}\right)$.

Remark 5 . We will try to complete the description of $\partial_{B} D, \partial_{S} D, \partial_{B} \widetilde{D}$, and $\partial_{S} \widetilde{D}$. Any help by the reader will be appreciated.

References

1. Bishop E. A., A minimal boundary for function algebras, Pac. J. Math., 9 (1959), 629-642.
2. Fuks B. A., Special chapters in the theory of analytic functions of several complex variables, Translations of Mathematical Monographs, 14, AMS, Providence, R. I., 1965.
3. Jarnicki M., Pflug P., Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics 34, Walter de Gruyter, 2000.
4. Jarnicki M., Pflug P., A counterexample to a theorem of Bremermann on Shilov boundaries, Proc. Amer. Math. Soc., 143 (2015), 1675-1677.
Received December 02, 2015
Jagiellonian University
Faculty of Mathematics and Computer Science Institute of Mathematics
Łojasiewicza 6, 30-348 Kraków
Poland
e-mail: Marek.Jarnicki@im.uj.edu.pl
Carl von Ossietzky Universität Oldenburg
Institut für Mathematik
Postfach 2503
D-26111 Oldenburg
Germany
e-mail: Peter.Pflug@uni-oldenburg.de

[^0]: 2010 Mathematics Subject Classification. 32D10, 32D15, 32D25.
 Key words and phrases. Shilov boundary, Bergman boundary.
 The research was partially supported by grant no. UMO-2011/03/B/ST1/04758 of the Polish National Science Centre (NCN).

