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We present a calculation of the spectral properties of a single charge doped at a Cu(3d) site of the Cu–F
plane in KCuF3. The problem is treated by generating the equations of motion for the Green function by means
of subsequent Dyson expansions and solving the resulting set of equations. This method, dubbed the variational
approximation, is both very dependable and flexible, since it is a systematic expansion with precise control over
elementary physical processes. It allows for deep insight into the underlying physics of polaron formation as well as
for inclusion of many physical constraints, such as excluding crossing diagrams and double occupation constraint,
which are not included in the self-consistent Born approximation. Here we examine the role and importance of
such constraints by analyzing various spectral functions obtained in second order variational approximation.
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1. Introduction

Strongly correlated electron systems with long range
ordered ground states exhibit a variety of interesting
and complicated phenomena [1–4]. Among the principal
problems of interest are those of itinerant charge prop-
agation and its coupling to the polarized background,
e.g. a hole propagating in an antiferromagnetic CuO2

plane of a high Tc cuprate superconductor [5]. Such a
system is described by the well known t–J model with a
SU(2) symmetric Heisenberg Hamiltonian, where fluctu-
ations play a crucial role in the coherent propagation of
a charge. In particular, because of the total spin conser-
vation, in the absence of fluctuations the only avenue of
coherent charge propagation would be through Trugman
loops, a self-healing effective second neighbor hopping [6].

On the other hand, the orbital models offer a much
wider range of charge propagation scenarios. In a system
with long range orbital order, the exchange interaction
always has a symmetry lower than SU(2), since the fluc-
tuations are suppressed, while the orbital flavor might
not necessarily be conserved. Because of that, even if or-
bital fluctuations are neglected, the charge propagation
itself can lead to orbital (de)excitations in the system [7].

Smaller fluctuations of the orbital exchange models
mean that orbital systems behave more classically than
their spin analogues. For instance, t2g orbital systems ex-
hibit Ising exchange [8], i.e., no fluctuations at all. How-
ever, weak hole propagation is still allowed because of
three-site processes, which are of the same energy scale
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as the regular exchange itself. On the other hand, eg
orbital systems, such as KCuF3, are more complicated,
with fluctuations only slightly suppressed due to the or-
bital symmetries, accompanied by a very strong orbital
non-conservation, which is kinetic in nature and governed
by the hopping energy scale t [9]. Since this is the dom-
inating interaction of the model, allowing for coherent
propagation even if exchange fluctuations and three site
terms are neglected, one would expect a quasiparticle
(QP) dispersion on the scale of the hopping energy t.
The fact that previous research, based on the popular
self-consistent Born approximation (SCBA) method, sug-
gested extremely small QP dispersion seems to contradict
this intuition. Hence it was suggested that the numerous
simplifications required by the SCBA are in fact too re-
strictive and a more resilient approach is needed to better
understand the effective models of eg systems. Here we
make such an attempt via the variational approximation
(VA) [10–13], i.e., solving the equations of motion for the
Green function. This method has previously been used
by the authors to study a variety of interacting prob-
lems, among them an exactly solvable p–d system with
FM order, which is a possible model for spin chains in
cuprates [14]. On the other hand, SCBA is analytically
solvable only for a handful of 1D systems, e.g., in the
case of a CuO chain with AF coupling, where it has been
shown that the agreement of the numerical solution is
satisfactory only for the ground state [15].

2. Methodology

An effective two-dimensional (2D) orbital model of a
KCuF3 ferromagnetic plane can be derived by second or-
der canonical perturbation expansion using σ-bond hop-
ping t along |3z2

α − r2〉 (where α = {x, y, z} is the bond
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orientation). This derivation, whose details can be found
in [13], leads to the following Hamiltonian in the basis of
eg orbitals: {|z〉 = |3z2 − r2〉 , |z̄〉 = |x2 − y2〉}:

Ht = − t
4

∑
〈ij〉⊥z

(d†iz ∓
√

3d†iz̄)(djz ∓
√

3djz̄) + H.c. (1)

where the ∓ sign refers to the x/y direction,

HJ = J
2

∑
〈ij〉

[T zi T
z
j +3T xi T

x
j ∓
√

3(T xi T
z
j +T zi T

x
j )], (2)

where the operators Tα are analogous to regular spin
operators (i.e., 1/2 times the respective Pauli opera-
tor), only acting in the eg orbital space spanned by the
{|z〉 , |z̄〉} basis.

Henceforth we shall neglect the orbital fluctuations and
only keep the Ising part of the exchange Hamiltonian.
The reason is that the fluctuations have a smaller am-
plitude than the leading term of the Hamiltonian [16],
while the kinetic energy (1) does not conserve the or-
bital flavor and so is the source of orbital excitations on
a much bigger scale. Furthermore, we will be performing
an expansion around a Néel-type ground state, which is
inconsistent with keeping the orbital fluctuations.

Since the Ising part of the Hamiltonian is the lead-
ing 3T xi T

x
j term, the basis states are the eigenstates of

those operators, i.e., |±〉 = (|z̄〉 ± |z〉)/
√

2, and so the
Hamiltonian needs to be transformed accordingly. Tak-
ing into account that the exchange coupling constant J
is positive, we can ascertain that the orbital ground state
exhibits an alternating orbital (AO) order.

At this point it is useful to decouple the orbital de-
gree of freedom from the fermionic operators by means
of slave boson a(†) formalism

d†i0 = f†i , d†i1 = f†i ai, (3)
where the {0, 1} indices denote the ground or excited
orbital state, i.e., |+〉 or |−〉 depending on the sublat-
tice. After performing those transformations the result-
ing Hamiltonian takes the final form

HJ = 3
8J
∑
〈ij〉

(1− σzi σzj ), (4a)

T = − t
4

∑
〈ij〉

(f†i fj + H.c.) =
∑
k

εkf
†
kfk, (4b)

V = − t
4

∑
i,δ

[
(2 +

√
3e iπyδ e iQ·Ri)a†i+

+(2−
√

3e iπyδ e iQ·Ri)ai+δ + a†iai+δ

]
f†i+δfi, (4c)

where εk = −tγk is the energy of a free particle, with
γk = (1/z)

∑
δ e ik·δ. For simplicity, (4a) has been trans-

formed from AO to ferro-orbital state by a rotation on
one sublattice, which changes the overall sign of the in-
teraction, hence the −3/8 factor in front of J . Note the
constant added to the Hamiltonian to put the ground
state energy at zero to simplify the calculations. The in-
teraction V comes from the kinetic Hamiltonian and is a
consequence of the orbital flavor non-conservation of the
model. The phase factors πy = (0, π), Q = (π, π) serve
to incorporate the model’s dependence on direction and

delta is the vector pointing to a site’s nearest neighbors.
The variational approximation consists in a series of

the Dyson expansions,
G(ω) = G0(ω) + G(ω)VG0(ω), (5)

to generate the equations of motion for the Green func-
tion, where H0 = T +HJ corresponds to G0(ω) and V is
given by Eq. (4c). Let us define the Green function as:
G(k, ω) ≡ 〈k| G(ω) |k〉, where G(ω) = (ω + iη −H)−1 is
the resolvent and
|k〉 ≡ f†k |0〉 = 1√

N

∑
i

e ik·Rif†i |0〉 , (6)

is the free electron Bloch state. The core idea underlying
the variational approximation is that the energy cost of
an orbiton creation is proportional to J , hence for large
J only a small number of orbitons can be created [11].

Since G0(k, ω) is known and diagonal in k, the key
part of the Dyson expansion is evaluating V |k〉, which is
done in real space, leading to

G(k, ω) =
[
1− t

2

∑
δ

F1(k, ω, δ)+

−
√

3t
4

∑
δ

F̄1(k, ω, δ)e iπyδ
]
G0(k, ω − 4J ′), (7)

where J ′ = 3
8J and the generalized Green functions

F1(k, ω, δ) = 〈k| G(ω) 1√
N

∑
i

e ik·Rif†i+δa
†
i |0〉 , (8)

F̄1(k, ω, δ) = 〈k| G(ω) 1√
N

∑
i

e i (k+Q)·Rif†i+δa
†
i |0〉 .(9)

These functions are unknown and need to be calculated
by further Dyson expansions which, after applying V to
the f†i+δa

†
i |0〉 state, generate the other Green functions,

such as G,F1 and the 2-orbiton functions
F2(k, ω, δ, ε) =

〈k| G(ω) 1√
N

∑
i

e ik·Rif†i+δ+εa
†
i+δa

†
i |0〉 , (10)

which also need to be expanded further. This process
could be continued indefinitely, so at some point the
equations have to be cut by disallowing the creation of
any further orbitons in the system, hence it is controlled
by the number of orbital excitations.

Once the system has more than one orbiton, there are
numerous ways to de-excite it, namely at each step an
orbiton can be removed from either end of the string. In
particular, destroying an orbiton other than the one cre-
ated last is a process analogous to the crossing-diagrams
excluded in SCBA. Here we try to establish the impor-
tance of such processes by comparing the Green func-
tions which include or exclude them in the 2-orbiton
regime of VA.

After the first orbiton is added, certain constraints
have to be imposed on the electron’s movement, namely:
(i) the electron cannot occupy the same site as the or-
biton, and (ii) in the case where the electron is on a site
adjacent to the orbiton the HJ energy increase is 10J ′,
compared to the regular energy 12J ′ when the particles
are far apart. Because of this, the translational invari-
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ance is broken, so that k is no longer a good quantum
number. Therefore, at higher levels of the expansion one
has to calculate the real space Green functions while in-
cluding the above constraints, which is added as a term
to the Hamiltonian H0 to cancel the corresponding pro-
cesses:
V1 = t

4

∑
ε

(f†i fi+ε + H.c.)− 2J ′
∑
ε

ni+ε, (11)

where i is the location of the orbiton and ni+ε is
the electron number operator. The constrained non-
interacting Green function is then calculated from the
non-constrained one similarly, by Dyson expansion
G1(ω) = [1 + G1(ω)V1]G0(ω), (12)

which leads to a matrix equation, describing propaga-
tions between the orbiton neighboring sites

Gγδ1 = Gγε0

[
Iδε − t

4G
δ0
0 + 2J ′Gδε0

]−1
, (13)

where the Greek indices denote the orbiton neighboring
sites, so the matrix element Gγδ1 = G1(γ, δ, ω) is the con-
strained Green function describing the |i+ δ〉 → |i+ γ〉
propagation in real space. A similar equation is found
for the case of two or more orbitons, only the indices run
over all the neighboring sites of the orbiton string.

Once the equations of motion for the Green function
are generated and cut at the desired level, one is left
with a set of equations for the various Green functions.
In principle, the system can be solved for all of them,
but usually we are only interested in the normal Green
function G(k, ω). However, what is typically plotted is
the normalized spectral function

A(k, ω) = − 1
π =[G(k, ω)], (14)

which has the interpretation of the quasiparticle density
of states. Furthermore, here we plot tanh[A(k, ω)], which
amplifies the low amplitude part of the spectra, while
treating the large amplitudes almost uniformly by map-
ping them into values close to 1.

3. Results and discussion

In Fig. 1 the calculated spectral functions are shown
in a nonlinear tanh-scale to emphasize the low amplitude
features of the spectral functions. Part (a) shows the full
Green function, including the crossing diagrams and the
translational constraints, while parts (b)–(d) focus on the
difference functions when constraints are neglected, see
below.

The huge advantage of the VA is that it is an analyt-
ical method with precise control of the states spanning
the Hilbert space. When performing the expansion and
evaluating the interaction, one can easily include or omit
processes according to their importance or likelihood of
occurrence. For instance, if the system, after creating
multiple bosons, starts removing them in an order re-
verse to the order of creation, then it is a non-crossing
process, because the bosonic lines of its Feynman diagram
can never cross. Any other sequence of boson removals
leads to crossing diagrams, and the relative number of
such processes is the bigger the more bosons there are in

the system. However, their importance can be hard to
ascertain as it mostly depends on the interaction vertex
and the boson energy. Knowing the significance of the
crossing-diagrams is very important for using methods
like the SCBA, since it is an approximation that by its
very nature includes only non-crossing diagrams, while
adding other processes can be very tricky. However, since
VA makes it easy to turn those processes on or off, it is
a good method to check their role, even if only within a
low expansion order.

Fig. 1. Spectral functions A(k, ω) for J/t = 0.1:
(a) the full function, including cross-diagrams and
constraints, (b) difference for the case without cross-
diagrams, (c) difference for the case without constraints,
(d) difference for the case without both effects. The
dashed green line indicates the free electron dispersion
ω = εk + 4J ′ for reference. The color bar refers only to
parts (b)–(d). Note the tanh-scale.

On the other hand, SCBA, being a Fourier space ex-
pansion, requires full translational invariance. However,
as already explained, this is broken once there are bosons
in the system. Therefore, SCBA simply ignores that, as-
suming that for a big system with a small number of
bosons the lattice is almost fully translational invari-
ant. However, polaronic physics is strongly local, with
all the interactions happening in the vicinity of the bo-
son. Therefore, in general the translational constraints
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are expected to play a crucial role. Unfortunately, SCBA
cannot include those effects at all, while VA does it ex-
actly and fully.

In this paper we use the VA [10] to examine the im-
portance of the two effects described above. To do so,
we calculate the Green functions including both of the
effects, excluding either of them, or excluding both.

Part (b) shows the difference function for the case
without cross-diagrams, but including translational con-
straints. Somewhat surprisingly, we see that at the low-
est order of expansion the cross-diagrams play a very
small, almost negligible role, with maximal values of am-
plitude change at around 5%. The qualitative change of
the spectrum is also very subtle, with only a tiny trans-
fer of weight at Γ and M points and a small reduction of
bandwidth (indicated by a pair of parallel red-blue lines
in the function, which mean that the reference maximum
of part (a) has to move away from the blue line and to-
wards the red line).

On the other hand, the effect of the translational con-
straints is very strong. Part (c) shows that neglecting
this effect causes the QPs to gain additional energy, by
shifting the whole spectrum upwards. This is especially
dramatic for the excited state in the upper part of the
spectrum where the shift is around 0.13t and the ampli-
tude is very big, while in the ground state at the bottom
the effect is somewhat smaller, with a shift of 0.06t and
the amplitude change of around 3%. This however is
still bigger than the effect of cross-diagrams. In the inco-
herent part of the spectrum in the middle, the influence
of the constraints is quite strong but qualitatively com-
plicated. The exclusion of constraints seems to narrow
the width of the pseudo-band visible in the middle of
part (a) on one hand, and tend to split the band into
two around ω = 0 on the other, but not enough to sepa-
rate them completely. This has the effect that although
the spectrum in the middle becomes more coherent, it
appears even less so because the various bands blend to-
gether. This in principle is in accordance with SCBA,
which shows a broad incoherent continuum, with a barely
discernible ladder of low amplitude states. However, this
effect does not seem to account for the whole difference,
since the two results still differ quite substantially.

Finally, part (d) shows the results when both cross-
diagrams and constraints are turned off. Since the two
effects are completely independent and do not interfere
with each other, it is no surprise that their combined ef-
fect does not differ much from those effects treated sep-
arately. In particular, since the cross-diagram effects are
so small, it is clear that the results in part (d) are nearly
identical to those in part (c). A close inspection might
reveal that some of the features are more pronounced, es-
pecially where the two effects would combine positively,
such as in the ground state or in the incoherent part
around the Γ point. However, qualitatively the picture
remains mostly the same.

In conclusion, we have shown, using a highly accurate
and primarily analytical method, the effects of two most
important approximations employed by the SCBA, which
is a standard method widely used in polaronic physics.
We have shown that within our eg orbital model the ef-
fects of cross-diagrams are very small and can mostly
be neglected. However, due to the highly local nature
of the polaronic QPs, the translational constraint effects
are very important and cannot conceivably be neglected.
Furthermore, they can to some extent explain the differ-
ence between SCBA and VA, although not fully. Since
there is no way to include those constraints in SCBA,
that method should be used with caution.
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