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Abstract Differentiation of the written text can be per-

formed with a non-invasive and non-contact tool that

connects conventional imaging methods with spectroscopy.

Hyperspectral imaging (HSI) is a relatively new and rapid

analytical technique that can be applied in forensic science

disciplines. It allows an image of the sample to be acquired,

with full spectral information within every pixel. For this

paper, HSI and three statistical methods (hierarchical

cluster analysis, principal component analysis, and spectral

angle mapper) were used to distinguish between traces of

modern black gel pen inks. Non-invasiveness and high

efficiency are among the unquestionable advantages of ink

differentiation using HSI. It is also less time-consuming

than traditional methods such as chromatography. In this

study, a set of 45 modern gel pen ink marks deposited on a

paper sheet were registered. The spectral characteristics

embodied in every pixel were extracted from an image and

analysed using statistical methods, externally and directly

on the hypercube. As a result, different black gel inks

deposited on paper can be distinguished and classified into

several groups, in a non-invasive manner.

1 Introduction

Analysis of the written text is still a vexing issue. A

number of papers cover the problem of written text analysis

and differentiation. However, only few of them discuss the

application of non-destructive instrumental methods,

especially in relation to forensic and cultural heritage

studies. Discrimination of different inks is essential in

detecting forgery [1], but also seems to be critical in the

study of historical documents. Analysis is mostly directed

at backdating and chemical composition studies of writing

media, and of assessing the state of preservation of docu-

ments [2, 3]. Nowadays, determination of ink formulas is

widely performed using, for example, thin-layer chro-

matography of ink extracts [4] or capillary electrophoresis

[5]. However, such methods are invasive and time-con-

suming [6], and these disadvantages must be considered.

Different approaches, such as Raman spectroscopy [7–10],

UV–Vis spectroscopy [4, 11], and IR spectroscopy [12],

are based on the interaction of light with the substrate.

Those methods ensure the physical integrity of the docu-

ment, and yield data on organic and inorganic components

of a sample. That allows for the identification of dyes and

pigments used, and hence for ink differentiation.

Hyperspectral imaging (HSI), used in this study, is one

of the modern spectroscopic techniques combining stan-

dard reflectance spectroscopy with photography, therefore

enabling analysis of an object both ways. Spectral infor-

mation collected from many channels (up to several hun-

dred) enhances the capability of standard photography. HSI

can be applied in different ranges of the electromagnetic

spectrum. Depending on the sensor type, an image can be

registered from ultraviolet (UV) to mid-infrared (MIR), or

even to the far infrared range (FIR). Data are stored in a

three-dimensional file called a hypercube or datacube. This
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file has one spectral and two spatial dimensions [13].

Consequently, the information collected in the datacube

allows materials to be identified and the registered image to

be classified. HSI analysis, like photography, enables the

contrast between selected features of an object and its

surface to be enhanced. This kind of imaging therefore

simplifies discrimination, especially when the sought-for

features are invisible to the human eye (for example, text

written in black ink on dark paper). An outstanding feature

of this technique is that it allows non-destructive qualita-

tive analysis, which is essential for research focused on

fragile objects. HSI has been used successfully for the

identification of areas with different compositions of cov-

ering materials, evaluation of object degradation, recovery

of the underdrawings, and for the purpose of colour mea-

surements [14, 15]. In forensic science, hyperspectral

imaging has been used for the fingerprint testing, com-

parative analysis of blood and drugs traces, and analysis of

fibres, with a view to determining their origin [16, 17].

Recently, and for the first time, HSI was successfully uti-

lised in the analysis of micro-traces [16, 18] to evaluate the

chemical changes taking place in different objects during

the examination of a crime. As a non-destructive method of

examination, HSI has also been applied to recognise fraud

in documents [1]. Nevertheless, the differentiation issue

requires further investigation.

Regarding the current demands in the fields of forensic

and preservation science, hyperspectral imaging seems to

be a suitable tool. A few papers discuss the use of HSI as

an analytical technique for ink discrimination [19, 20]. The

results depend strongly on the spectral properties of anal-

ysed inks. Comparison of inks performed only by detection

of changes between different spectra does not always yield

good and satisfying results, and enhancing standard

investigation with multivariate statistical methods is nec-

essary. Statistical methods have proved to be an efficient,

time-saving, and more powerful tool than a classical visual

comparison of samples or registered spectra [21, 22].

Differentiation of pen inks of the same colour and formed

by mixtures of same dyes with additives cannot be

accomplished due to high similarity of the spectra. Devices

for automatic analysis of documents (for example, the

Spectrum FORAM 685-2 by Foster and Freeman and the

HSI Examiner 100 QD by ChemImage) [20] have become

commercially available in recent years, but their relatively

high price and limited technology make them unsuit-

able for use by every scientific institution. Still, optical

analysis remains the cheapest approach for ink comparison

and is often successful.

The aim of this work was to use HSI–VIS–NIR and

multivariate analysis to identify a set of different kinds of

common black gel pens produced by various manufacturers

and available on the Polish market. The analyses were

conducted to evaluate the possibility of identifying pens

with inks of a similar colour, and to present the hyper-

spectral imaging technique as a non-destructive and non-

invasive tool for document analysis. The literature about

the forensic application of HSI mostly focuses on crime

scene investigation, so we decided to investigate the

problem of differentiation of writing traces by using HSI as

an alternative to conventional approaches. The results of

the application of HSI, presented further on in this paper,

indicate that this technique might be used to distinguish

between different gel ink pens of similar colour. The

selection of an effective spectral range to 470–930 nm

limited by camera sensitivity and intensity of the popular

halogen light source is not conducive to easy visual dif-

ferentiation; thus, we decided to apply a chemometric

approach. This step included hierarchical cluster analysis

(HCA), which is the basis for spectral classification and

gives a general overview of the existing relationship in a

dataset; principal component analysis (PCA), as a fast and

robust method of spectral classification and analysis; and

spectral angle mapper (SAM), an efficient and conceptually

simple method that gives information about the spectral

similarity of selected spectra. HCA and PCA have already

proved to be powerful tools for discriminating between

other types of writing media [7, 23], while SAM seems to

be applied for this purpose for the first time. The combi-

nation of HSI with chemometric methods offers an easy

methodology that does not require any expensive equip-

ment and could be applied for routine analysis in the

forensic laboratory.

2 Materials and methods

2.1 Sample characteristics

The study involved two independent sets of inks. The first

is the test set of four selected black gel pen inks (Lexi 5,

Bic Medium, Pentel BK437, and Paper Mate), which were

applied on a paper support as three independent lines for

each pen. This set was used to verify whether differences

found between groups of inks were reproducible. The main

analysis was performed on a set of 45 modern gel pen ink

marks deposited on a paper sheet (see Fig. 1). A list of the

35 different pen inks tested (ten pairs were repeated) is

given in Table 1. In order to verify the correctness of the

classification, ten pairs of identical gel pen inks were

chosen to validate further classification. The surveyed

material was prepared by the Institute of Forensic Research

(IES) in Cracow. All pens are produced by various man-

ufacturers and available on the Polish market. These inks

were chosen to reflect the colour most commonly

encountered in casework.
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2.2 Hyperspectral imaging tests

Hyperspectral images were acquired using a hyperspectral

camera (Headwall Photonics model VNIR C-series,

Fitchburg, USA) in a push-broom configuration system

(see Fig. 2). The camera was equipped with a C-Mount

lens (Schneider–Kreuznach Xenoplan, F/1.4, FL 23 mm)

with improved transmittance in the NIR range. The CCD

(charge-coupled device) sensor used in the current study

registered data in the spectral range from 369 to 1027 nm.

The working distance (the distance between the document

and the camera) was 60 cm. The final resolution of cap-

tured hyperspectral images of the primary dataset was

1392 9 1701 (pixels) 9 658 nm (one image with a spatial

dimension of 1392 9 1701 for every nanometre). Spatial

resolution for this study (size of a pixel) equals 0.15 mm.

The sample was illuminated by an optically stabilised

halogen lamp (Fiberoptics SOL-R) back fitted with a

Xenophot HLX 64635 halogen source. The line-light

accessory was mounted at a distance of 30 cm from the

surface of analysed document. The light beam was trans-

ferred through a line-light accessory equipped with a

cylindrical lens. The heat received by the document from

the light was not monitored. The camera was placed above

the horizontal motorised stage, which enabled one axis

movement of a sample. Data acquisition software was

developed in the LabVIEW programming language (Lab-

oratory Virtual Instrument Engineering Workbench) for

self-use.

2.3 Data collection

The prepared sample with 45 traces of different black pen

gel was scanned using the HSI system. The effective

spectral range was 470–930 nm, due to low camera sen-

sitivity and the low intensity of the light source beyond this

range. The scan was performed in a stepwise mode with an

average of 10 readings with 40 ms exposure time for each

reading. This image registration path led to an improve-

ment of the S/N ratio. During acquisition, the data were

normalised on the fly using readings obtained for dark and

white standards under the same conditions as used during

scanning. Dark standard data (dark noise of the CCD

camera) were acquired by covering the lens. A BaSO4 plate

was used as a white reference, giving the maximum

reflectance value along the scanned line.

The light source variation and dark noise effect were

corrected by applying the following equation:

In ¼
Isample � Iblack

Iwhite � Iblack
ð1Þ

where In is the relative reflectance value and Isample, Iblack,

Iwhite are the absolute reflectance values for the sample,

the dark standard (*0 % reflectance), and the white

standard (*99.9 % reflectance), respectively. As a result,

a block of 658 images with dimensions of 1392 9 1701

was created. The 2D xy representation was extended in

the third dimension z using spectral information collected

for every single pixel. The hyperspectral image data were

analysed using the ENVI 5.1 (Exelis Visual Information

Solutions, Herndon, USA) and Spectronon Software

(Resonon, USA). The extracted spectral information was

further analysed using Statistica software version 12

(StatSoft Inc., Tulsa, USA). While the goal of using HSI

is to obtain one spectrum per pixel, the spectral infor-

mation contained in one pixel is influenced by external

factors and acquisition systematic error. Thus, regions of

interest (ROIs) have to be selected to extract average

spectra for every ink line as representative spectra for

every region. ROIs including at least 100 pixels were

defined for each of the 45 traces of black pen gel. ROIs

were selected in the areas with the highest chroma using

Fig. 1 Page with the 45 tested

pen gel traces registered by

hyperspectral imaging. The

image presented is a result of a

combination of different images

derived from three

representative wavelengths,

namely 460 (blue), 550 (green),

640 (red) nm as RGB

components
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intensity thresholding of the total reflectance at 550 nm.

At this wavelength, the registered pens were clearly vis-

ible, while above this value, in the infrared region, ink

areas become almost completely transparent. Addition-

ally, it has to be noted that such simple threshold con-

ditions on individual (if carefully selected) images yield

results that avoid the problems caused by the ‘‘mixed’’

pixels at the border of an ink line. The intention of

defining ROIs was to select the areas with representative

and homogeneous spectral response for specific ink areas.

Reflectance spectra (as mean spectra) extracted from the

ROI were used to perform chemometric analysis based on

hierarchical cluster analysis, principal component analy-

sis, and spectral angle mapping, in order to establish a

method of distinguishing between the inks. The procedure

of registering and selecting the regions of interest was

identical for the test and main set of samples.

2.4 Data processing principles

2.4.1 CIE L*a*b colour parameters

Colour parameters were calculated using the CIE

L*a*b colour space system [24, 25], in which L* is the

lightness variable, and chromaticity coordinates are repre-

sented by a* (redness/greenness) and b* (yellowness).

Colour measurements were performed using a diffuse CIE

standard ‘‘D65’’ illuminant, at an angle of observation of

10�. Table 1 shows the mean colour data from ROIs

selected in the previous step.

Table 1 List of gel pen brands used during analysis

No Name CIE L*a*b*

L* a* b*

1 Uni Lakubo Fine 22.53 1.41 -2.83

2 Uni Laknock Fine 20.46 4.67 -6.75

3 Uni Laknock II Fine SD-108 20.06 4.44 -6.79

4 NFI from TD 20.71 1.32 -2.67

5 BIC fine (orange) 21.62 3.91 -6.26

6 Renishaw 21.91 1.36 -2.48

7 BIC medium 19.03 2.06 -4.61

8 BIC N-S Fine 22.11 1.59 -3.15

9 Pilot BP-S Fine 19.40 1.74 -3.36

10 Pilot BPS-GP hFi 19.58 1.81 -3.38

11 Pentel Star 20.30 -0.21 -2.04

12 Pentel BK 101-AE 19.06 0.74 -3.01

13 Pentel BK77 Superb 21.05 0.95 -2.07

14 Pentel Meteor Fine 19.97 0.13 -3.29

15 Rystor Fun STAR 20.75 0.70 -3.43

16 Pelikan Stick 21.10 0.90 -3.36

17 Zebra JIMNIE Fine 20.17 0.81 -4.32

18 Sanford Saga fine Korea 22.18 1.39 -4.08

19 Corvina ‘‘51’’ made in Italy 22.35 1.17 -2.39

20 Markant orange 21.15 1.00 -3.50

21 Warwick 18.37 2.19 -3.65

22 Pilot BPP-GPL-F-B 20.13 3.34 -5.54

23 BIC Diamante 20.97 1.68 -3.70

24 Zebra JIMNIE Light 21.12 1.21 -3.29

25 PILOT BPRG-10R-F-B RexGrip 18.86 3.05 -4.99

26 Pentel BK437 19.58 1.45 -3.73

27 STAEDTLER triplus ball M 21.20 1.20 -3.35

28 Penac CH6 23.16 0.63 -3.17

29 PAPER MATE Stick 2020 F 21.17 0.70 -2.62

30 PAPER MATE Click 2020 M 20.41 0.60 -2.62

31 Pentel BK77 Superb 21.41 1.03 -2.80

32 Uni Laknock Fine 20.91 0.89 -2.57

33 PILOT BPRG-10R-F-B RexGrip 20.84 1.56 -3.34

34 Zebra JIMNIE Light 21.18 0.53 -2.94

35 Pelikan Stick 22.13 1.44 -3.56

36 PAPER MATE Stick 2020 F 21.15 0.53 -3.53

37 Rystor Fine STAR 23.25 0.70 -4.23

38 Warwick 20.81 1.16 -3.54

39 BIC N-S Fine 21.51 1.39 -4.54

40 Renishaw 20.95 1.07 -3.68

41 Toma Superfine 069 23.79 0.86 -3.18

42 Patio Vigo 23.49 0.59 -3.34

43 Pentel BK-77 Superb 22.23 0.94 -2.89

44 Karin 113 BNP 22.21 1.30 -3.85

45 Lexi 5 21.82 1.31 -4.82

Fig. 2 Hyperspectral imaging system configuration during data

acquisition: 1 hyperspectral imaging Headwall Photonics model

VNIR C-series; 2 cylindrical lens; 3 light line on the sample surface; 4

fibre optic light line; 5 motorised table
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2.4.2 Hierarchical cluster analysis (HCA)

Hierarchical cluster analysis is one of the unsupervised

methods of classification and is usually used at the begin-

ning of research to obtain general information about the

patterns present in the dataset. The approach provides a

graphical representation of the existing relationships

between objects. The clusters are shown in a hierarchical

tree, where each case is assigned to a separate group by the

distance between objects (for example, the square Eucli-

dean distance). As the distance increases, objects are

arranged in bigger clusters until a single cluster is created.

Cluster analysis allows the detection of patterns in a dataset

without explaining why they occur. Besides selecting a

distance measure, choosing the appropriate agglomeration

method is an important aspect of the study. The classifi-

cation of elements for one cluster depends on the correct

determination of the distance between clusters.

In this study, Ward’s method and squared Euclidean

distance were used. Analysis of variances led to the esti-

mation of the distance between clusters [26]. Such an

approach allows both the sum of squared deviations of any

two clusters for each step of cluster analysis and the

number of calculated clusters to be minimised. The hier-

archical method chosen in this study produces families of

clusters which themselves contain other clusters. The

objective of cluster analysis was to determine similarities

and dissimilarities between inks, and to categorise them.

The purpose was to establish whether there is a spectral

distinction between particular inks based on spectral

response over the registered wavelengths.

2.4.3 Principal component analysis (PCA)

Principal component analysis is the main method of mul-

tivariate data analysis. The idea behind this approach is to

allow comprehensive analysis of a dataset by reducing the

dimensionality of data, and to present the patterns and data

structure through new independent vectors called principal

components (PC). The procedure uses orthogonal trans-

formation to convert a system into a set of values of lin-

early uncorrelated variables, retaining as much variation

present in the dataset as possible. The newly designated

components contain all the variations present in the data,

but the value decreases as the number of components

increases [27]. Thus, the first component contains the most

information about data variation, the second less, and so

on. Principal component analysis is mainly based on the

determination of the eigenvalue and eigenvectors, which

are essential for further analysis and for the calculation of

principal components and determining their correlation

with the variables based on the factor loadings.

In this study, we provide two kinds of analysis based on

the spectral information. These are the numerical approach,

with the extracted spectral fingerprints of all inks, and the

faster one directly in the hyperspectral image. The second

approach gives, as a result, graphical data; it is time-saving

and leads to similar differentiation of ink traces, making it

an effective and useful method. The necessary transfor-

mations were executed using ENVI software.

The purpose of the PCA was to determine whether

component spectra can result in distinguishing between the

spectra of representative inks. The calculation was per-

formed on an extracted mean spectra for every 45 ink

traces, as well as on the entire hyperspectral image, to

produce numerical and graphical results. Orthogonal

transformation was applied to the correlation matrix in this

study. This rotates results in component patterns that are

more open to visual interpretation and allows loading

analysis in order to estimate how the spectra of inks load to

the principal component.

2.4.4 Spectral angle mapper (SAM)

Spectral angle mapper is an algorithm that permits the

measurement of spectral similarity between two spectra

which could be expressed on a numerical scale (from 0—

no similarity to 1—identical spectra). In this approach,

selected spectra are treated as vectors in n-dimensional

space, in which the number of dimensions is equal to the

number of recorded spectral lines. This allows the calcu-

lation of the spectral angle [28]. It is worth mentioning that

the SAM method is resistant to illumination variation,

which can be explained by considering two spectra as

vectors with each point on the line representing the same

material characteristics but a different illumination value.

The calculated angle between these two vectors with the

same origin is constant and independent of illumination.

Smaller angles represent a closer similarity to the pattern,

and the pixels outside the specified threshold of maximum

angle are not classified. Similarly to the PCA approach, the

data can be analysed numerically, leading to a matrix of

results that combines every pair of traces, or, in a graphical

approach, that shows the similarity of a selected ROI with

every pixel within the image.

In this study, the first step was to establish the correct

spectral angle that met the requirement of sample differ-

entiation. This was done by determining the maximal value

of the spectral angle for two identical spectra (and repeated

for every ten pairs of selected identical inks). The maxi-

mum value of spectral angle was determined experimen-

tally, based on the similarity between a pair of spectra for

samples P21 and P38, the spectral responses of which in

the analysed spectral range were almost identical. The
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angle was determined by adjusting its value in such a way

that the numerical similarity between these two samples

was as high as possible, while simultaneously, the simi-

larity between this pair of samples and other samples was

lower. The maximum spectral angle determined by this

method was 0.1 rads, and this value was used in further

studies. In this approach, each ROI (each one corre-

sponding to one trace of pen) was used alternately as ref-

erence spectra for SAM algorithm. That methodology was

chosen because of the resistance of the calculated similarity

between every two spectra to the level of illumination, and

because it allows differences to be expressed as numerical

values.

3 Results and discussion

Hyperspectral scanning gives the opportunity to select

many image pixels within a very narrow line of trace, and

to average their spectral response. The spectral character-

istics of all of the pens used in this study are shown in

Fig. 3a. Each spectrum represents the mean absorption of

inks within previously selected ROIs. The wavelength

range chosen in the study was that of the visible and near-

infrared region as an attempt to cover all regions of lamp

light emission with good intensity. It can be seen that the

studied inks have similar spectra. The regions in which the

inks vary the most are in the range of 700–750 nm, and

around 650 nm. These two major differences were com-

mon for all inks. The inks spectra that are different from

other and can be selected visually from the whole group

were P5, P7, P15, P16, P18, P19, P28, P35, and P37.

Radiation in this range is orange–red in colour and is

absorbed by blue–green substances. This suggests a dif-

ferent amount of these pigments or dyes. These average

spectra do not allow direct classification and discrimination

of the samples, and nothing can be said about the differ-

ences observed in the rest of the spectra of inks because of

the high level of similarity. Due to the subtle differences

between the samples, simple comparison is not efficient for

differentiation. The colorimetric data presented graphically

in Fig. 3b do not show significant differences between

samples. The distances between particular points in the

graphs presented do not allow classification of the pens into

separate groups. The obtained results suggest ink colours

so similar that the human eye cannot see the differences.

Therefore, advanced statistical tests were judged necessary

for the establishment of their classification into groups.

In this study, the independent test set was prepared, and

inks were examined to ascertain whether those from the

same source were more similar to each other rather than to

those from other sources, and to establish whether obtained

results were reliable. The test included four different pen

inks (from BIC, Pentel, Lexi 5, and Paper Mate). For each

pen, three lines were placed on a paper substrate. Those

inks were chosen based on their spectral response, and

while they have similar characteristics, it is possible to

determine regions that may allow differentiation. Selected

chemometric methods (HCA, PCA, and SAM) were used.

The results of independent test set analysis are presented in

Fig. 4. Correct classification rates of 100 % were obtained

for the test set. Separation obtained by HCA agreed well

with the principal component analysis results. HCA, as an

unsupervised technique, not only identified four clear

clusters but also showed similarities between samples. The

inks vary mostly in the region around 650–700 nm, as

shown in Fig. 4C.

SAM results help establish the similarities between

every pair of analysed spectra. Before the calculation of

final similarity/dissimilarity, the maximum spectral angle

has to be selected. This was done experimentally following

procedure similar to described above. A maximum spectral

Fig. 3 a The average spectrum (from selected ROI) for each ink line

used in this study; b colorimetric data calculated on hyperspectral

images and extracted as a mean value from the same ROI as spectral

data; each point represents the mean CIE L*a*b* over analysed ROI
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angle of 0.1 radians was determined. The test proved the

power of SAM in distinguishing the Lexi 5 inks from those

of the Pentel and BIC pens, and the Paper Mate and BIC

from the Pentel inks (see Fig. 4d). The HCA, PCA, and

SAM methods correctly divided the spectral data into four

groups consisting of three different pens. Results proved

that analysis is reproducible.

The spectra included in the main set were analysed

similarly. The aim of using these algorithms for these data

was to differentiate between 35 various black inks. The

prepared set may simulate a real case, in which the number

of inks is not known. The first step in distinguishing

between the black traces in the main dataset was to carry

out HCA on the averaged extracted spectra from the

hyperspectral image. The appropriate clustering algorithm

and applied parameter settings are significant steps that

must be taken before analysis, and depend on individually

analysed data. The results of cluster analysis are encour-

aging with respect to the separability of ink reflectance.

Such analysis does not focus on the selection of the highest

number of groups, but on the determination of several

probable clusters, the content of which is consistent with

the results achieved by other methods.

The dendrogram is shown in Fig. 5. The left site indi-

cates as many clusters as spectra, while on the right, there

is only one cluster. Arbitrarily, through the clusters, the

vertical red line that intersects the horizontal lines is placed

at a particular Euclidean distance to establish the number

of clusters present in the dataset. The obtained dendrogram

(Fig. 5) can be divided into two levels of cut-off, which

indicates the presence of two or three clusters. The final

dendrogram shows a group of samples that are relatively

close. Due to the presence of a significant gap between the

first and second branch, it looks as if two very well-defined

clusters are present on the dendrogram. It was noted that by

Fig. 4 Results of independent test set analysis. a Results of HCA

analysis; the four groups of samples were adequately classified; b,
c results of PCA analysis; b PC1 versus PC2 plot—the separation of

samples suggests the presence of four clusters; c wavelength versus

loadings for the first three PCs; d results of SAM analysis with the

spectral angle equal to 0.1 radians. The red marked areas indicate the

samples with high similarities; e preview of the registered test image

[an RGB image constructed from images registered at 640 (red), 550

(green), 460 (blue) nm]

Fig. 5 Dendrogram representation of HCA results. Obtained data can

be divided into two main groups at the distance of about 1250 (the red

line represents cut-off level). The following subgroups can be

correlated with other classification methods
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selecting the cut-off level for a smaller bond length, some

traces made by using the same ink were classified into

separate clusters. The selected cut-off level indicates two

clusters corresponding to a stronger separation. This was

the basis for classification into two groups (Table 2). The

partitioning results in two yielding clusters consisting of 33

and 12 elements. Ten pairs of traces were created using the

same black pen. In Table 2, each pair is marked with the

same colour. According to the results of cluster analysis,

these pairs have been assigned to the same group. This

separation agreed well with the principal component

analysis results (see below). HCA, as an unsupervised

technique, not only determined specific differences but also

showed similarities between inks. Further steps of analysis

were focused on detection of subgroups in order to dis-

tinguish as many pairs of traces as possible.

The PCA can be applied directly to the hyperspectral

image, which is especially useful when the RGB image of

the hyperspectral data does not show any visible differ-

ences between traces. Selected images of the calculated

principal component are presented in Fig. 6. PC1 does not

provide information about differences between analysed

traces, but it can explain the difference between all writing

traces and the background (most of the variance in the

image is the difference between black and white as has

already been mentioned). PC6 and PC8 show the distinct

division of the samples into two separate groups, which

corresponds to the results of cluster analysis when two

traces (P5 and P7) diverged significantly from the rest.

In the next step, the PCA algorithm based on the cor-

relation matrix was applied on the average spectra defined

by ROIs. The first three principal components explain more

than 96 % of all the variation in the examined dataset (PC1

47.08 %; PC2 40.84 %; PC3 8.89 %; PC4 1.35 %; PC5

1.08 %; PC6 0.34 %; PC7 0.21 %; PC8 0.08 %; and PC9

0.03 %). It is worth mentioning that the first PC represents

data that differentiate the white background from the

written text, and as such are irrelevant to the differentiation

between 45 analysed ink traces. Representation of the

original correlated variables using principal components in

orthogonal space reduces the dimensionality of the system

while retaining essential information about the variability

in the data. As described earlier, graphical representations

of PCs helped in the choice of PCs for drawing loading and

scatter plots. The loadings were plotted (Fig. 7) for the

PC1, PC2, PC3, PC6, and PC8. This kind of graph gives

information about the correlation between loadings and

variables. The interpretation of the principal components is

Table 2 Results of hierarchical

cluster analysis. The two main

clusters can be separated. The

colour marks represent pairs of

same pen media used during

analysis

Cluster no. Name of the black pen traces

1 P6, P40, P8, P39, P15, P37, P2, P32, P24, P34, P29, P36, P25, P33, 

P21,P38, P27, P20, P22, P5, P7,  P1, P45, P44,  P41, P42,  P30,  P17, P23, 

P3, P10, P9, P4,

2 P13, P31, P16, P35, P18, P19, P12, P26, P28, P43, P11,  P14,

Fig. 6 Graphical representation of the principal components taken

from the hyperspectral cube analysis. The first component divides the

background information from the gel pen inks; the sixth and eighth

principal components represent the division of the ink traces into two

different groups (white vs. black traces)
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generally based on finding which variables are most

strongly correlated with each component, and how these

variables are correlated with loadings. PC1 has a strong

negative correlation with variables within the spectral

range 700–930 nm. PC2 has a strong positive correlation

between approximately 470–670 nm. PC3 has a strong

positive correlation between 670 and 700 nm. In order to

achieve a complete picture of the correlation of principal

components with variables in that dataset, the loadings plot

(Fig. 7) was compared with a scatter plot of selected

principal component scores. Scatter plots of principal

component scores were prepared by plotting the first, sec-

ond, third, sixth, and eighth components against each other

(Fig. 8). According to this analysis, the samples can be

divided into two groups of traces dependent on the corre-

lation with the principal components. Scores between the

two groups are differentiated primarily by PC1. This, in

combination with the loadings graph (Fig. 7), indicates that

differences in the spectra occur mainly within the spectral

range 700–930 nm. Additionally, the results shown in

Figs. 7 and 8 suggest that pen traces P5 and P7 are nega-

tively correlated with PC3 and are far from the other traces

(both of these samples have a greater value of calculated

distance), creating a separate cluster. This cluster can be

distinguished from the other by the different spectral

response in the range of 670–700 nm, which is associated

with a strong positive correlation of variables to PC3

within the considered spectral range. This indicates that

discussed pairs of traces were prepared using the same

black ink or very similar in composition. These pairs could

be expected to have a close correlation with the principal

components, and to be within a short distance of each other

on the scatter plot. This separation agreed well with the

HCA results in Fig. 5, where it can be seen that samples P5

and P7 create separate branch. Thus, this pair of inks seems

to be different from the rest (see Fig. 3), so data corre-

sponding to P5 and P7 were removed and the PCA algo-

rithm was applied to the remaining data to see if other

clusters were visible. The fact that this analysis did not

show additional grouping of samples suggests a strong

similarity between the rest of the samples.

However, significant differences were noted in some

cases, which might have been caused by a different

response in the reflectance level (higher background in

spectra) in spite of the fact that this effect should be

compensated for by the PCA algorithm applied to averaged

spectra. It is probable that an uneven distribution of media

on the paper surface could also influence the results, as

PCA is relatively sensitive to illumination and the albedo

effect. To confirm that observation, the reflectance plot was

constructed for some pairs of samples using the same gel

pen inks (Fig. 9). When a pen media was applied to the

white surface as a thinner layer, it had a higher reflectance

value in comparison with the thicker layer. Thus, observed

differences are not a result of different sample composition,

but are associated with the thickness of the deposited gel

layer. Unequal distribution of cellulose fibres in the paper

(resulting in a non-homogeneous paper surface) could have

an impact on the lower correlation between those traces.

Using the graphical representation of PCA (as presented

in Fig. 6) is not always an easy way to distinguish exactly

the same group comparing to numerical values (presented

in Fig. 8). Graphical representation analysis is based on the

recognition of the areas with the colour/shade different

from the background (or other areas). This assessment is

subjective. The analysis is affected by perception of very

small differences in the areas colour. That sometimes may

lead to wrong conclusions. To avoid that effect in this

study (part with graphical representation of PCA results),

only selected PCs with observed differences between inks

were presented. As a result of distinguishing between

samples, only those which clearly vary (are darker/brighter

than others) from each other can be selected. With data

processing procedure, where the graphical representation is

obtained as result, as an input the whole area (that includes

both inks areas and the paper background) is taken into

account. This approach benefits from easy extracting of the

main groups present in the dataset after computing the PCs.

On the other hand, relatively long time of computing the

PCs (in case with high-resolution hyperspectral image) and

relatively poor information about the variation of data in

the dataset can be considered as main drawbacks.

Numerical results of PCA analysis should be in good

agreement with graphical representation. Nevertheless, as

described above, some misclassified can be presented for

some samples due to wrong colour/shade recognition.

Numerical representation provides more easily available

Fig. 7 Loadings plot for the first, second, third, sixth, and eighth

principal components
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data that where each sample has its place in selected space

of PCs (Fig. 8).

PCA results allowed another three groups to be deter-

mined among the clusters described by HCA and showed

samples P5 and P5 to be widely separated from the main

cluster. Furthermore, PCA showed the spectral range where

the samples seem to vary from each other, which may be

caused by different components used during ink production

resulting in different levels of reflectance mostly in the

range of 650–750 nm.

The third applied method was the SAM classification

algorithm. It was selected due to its better performance

compared to other classification algorithms [29], and

because it is relatively insensitive to illumination effects. In

this study, the spectra were extracted from region of

interest (ROI) defined over hypercube data. Each two

spectra among 45 were then tested to calculate similarity

level (for each step, one was used as a reference spectrum

and other as a test spectrum, resulting in 45 values of

similarity for each pair of spectra on a scale of 0–1). The

maximum spectral angle value was selected as described

earlier. Since SAM is a supervised method, in which the

operator has the ability to control the maximum spectral

angle value, the results depend on the spectral angle

threshold applied, the value of which should be defined

during analysis. The summarised results obtained using the

numerical SAM method are shown as a matrix in Fig. 10.

Higher scores represent closer matches to the reference

Fig. 8 Scatter plot of the selected principal components: a PC1 versus PC3; b PC1 versus PC2; c PC2 versus PC3; d PC3 versus PC6; e PC3

versus PC8; f PC6 versus PC8. Different colours represent pairs of identical inks used in this study
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spectrum. This approach provides a lot of information

about the similarities and dissimilarities between the

samples within the analysed dataset and proves that with a

maximum spectral angle value of 0.1 radians, samples P5

and P7 vary from the others. The score of spectral simi-

larity equals zero when compared to other ink spectra. A

similar conclusion can be drawn from samples P35, P19,

P18, and P16 which have almost identical responses to

each other and differ from the rest of the samples. More-

over, HCA analysis confirms that fact, so these samples are

included in one cluster.

With SAM analysis, it was possible to determine and

prove the clusters of data obtained with PCA and HCA

analysis. The summarised results of differentiation are

shown in Fig. 11. Optical analysis of black inks does not

yield differentiation results for all inks. Indeed, such dif-

ferentiation would be impossible using optical methods,

due to the almost identical spectral characteristics over the

analysed spectral region of 470–930 nm. This seems to be

one of the limitations to this study, but it can be overcome

with hyperspectral imaging working in a wider spectral

range. It makes the HSI a useful alternative method of

analysis for forensic purposes. The analysis of inks can

Fig. 9 Selected pairs of the same gel pen inks and their spectral

characteristics in the Vis–NIR range

Fig. 10 Spectral angle mapper results. Higher scores represent closer matches of the tested spectrum to the reference spectrum

Fig. 11 Final separation of the analysed gel pen inks traces obtained

by chemometric analysis
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even be extended with the formation of a reference library.

HSI with relatively coarse resolution and a library of inks

would provide cheap and reliable classification within an

entire document in a time efficient manner. Invasive

methods (such as thin-layer chromatography or capillary

electrophoresis) have to be repeated at several places

within an ink line to give results that can be reproduced,

while hyperspectral imaging allows inks to be separated

from background information, and the response within

selected ROIs to be averaged, all in one expeditious step.

4 Conclusions

Among the non-destructive methods of differentiation of

inks, hyperspectral imaging seems to be one of the most

promising tools and can be considered as an excellent

alternative to invasive ones. The analysis of registered data

could be based on conventional and well-known proce-

dures, as was shown in this study. Thanks to the specific

manner of measurement—registering the entire object with

full spectral information within every single pixel and

providing sufficient data for detailed analysis—the method

is highly efficient and time-saving.

In this paper, on a study to determine the methodology

for black pen analysis with HCA, PCA and hierarchical

cluster analysis, principal component analysis, and spectral

angle mapping were conducted using hyperspectral ima-

gery. The results showed that combining the information

extracted from the hyperspectral image with statistical data

treatment can, in a non-invasive manner, provide differ-

entiation of black inks deposited on paper. The HSI tech-

nique, in the range of 470–930 nm, allows differentiation

analysis for black pen traces due to the existing differences

in the chemical composition of analysed inks, mostly

within spectral range 650–750 nm. Chemometric analyses

allowed samples to be classified into two major separate

groups and other subgroups based on HCA, PCA, and

SAM analysis (see Fig. 11). The results do not allow all the

inks to be distinguished, mainly due to their high similarity

within the analysed spectral range, but could divide the

whole set of 35 different inks into several groups. One

possible way of improving these results could be UV or IR

spectral range extension, as specific inks may have dif-

ferent reflectance responses in those regions. As shown by

the colorimetric data, inks do not vary enough in colour to

provide simple differentiation.

The results have been shown to be influenced not only

by ink composition, but also by the degree of coverage of

the tested surface. For a thin layer of the medium, spectral

information of a trace may contain mixed information from

the paper and the gel, which should be considered during

selection of the particular regions of interest for further

analysis. Nevertheless, it could be compensated for by

averaging the spectral response. Gel pen inks consist of

complex systems. Many additives such as dyes, pigments,

resins, solvents, and emulsifiers are usually employed in

ink production to provide not only colour but also other

necessary features. In this study, the statistical methods

were applied on mean spectra, as we know the number of

different inks, but in real cases, where the spatial reparti-

tion of the different inks is not known, the selection of ROI

would also be crucial. Using ROIs leads to a loss of spatial

information, but it also helps to compensate for other

factors such as heterogeneity, light fluctuation, and more.

For unknown data, the presented methods can be applied

directly on a hyperspectral image, resulting in graphical

classification and allowing data quality to be quickly

verified.

Another factor that affects the results of analysis is the

choice of the correct spectral region. During the analyses

described, such selection was limited by the imaging sys-

tem configuration due to the low sensor sensitivity to UV

and far-IR light. Another limitation was the light source

used. The spectral power distribution of the halogen lamp

does not cover spectral regions that could be helpful in

distinguishing different media traces. The response from

the higher wavelengths might provide results that could be

more useful in distinguishing pen gels. On the other hand,

working with the IR light source and very fragile docu-

ments can be dangerous for the analysed material due to

heating that would occur during measurement. All these

factors influence the possibility of differentiating between

samples.
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