Cite this article: Pietras R, Sarewicz M, Osyczka A. 2016 Distinct properties of semiquinone species detected at the ubiquinol oxidation Q_{0} site of cytochrome $b c_{1}$ and their mechanistic implications. J. R. Soc. Interface 13: 20160133.
http://dx.doi.org/10.1098/rsif.2016.0133

Received: 15 February 2016
Accepted: 18 April 2016

Subject Areas:
bioenergetics

Keywords:

cytochrome $b c_{1}$, complex III, ubiquinol oxidation, semiquinone, Q cycle, mitochondria

Author for correspondence:

Artur Osyczka
e-mail: artur.osyczka@uj.edu.pl

Distinct properties of semiquinone species detected at the ubiquinol oxidation Q_{0} site of cytochrome $b c_{1}$ and their mechanistic implications

Rafał Pietras, Marcin Sarewicz and Artur Osyczka

Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland

D RP, 0000-0001-8424-6590; A0, 0000-0002-1637-2365
The two-electron ubiquinol oxidation or ubiquinone reduction typically involves semiquinone (SQ) intermediates. Natural engineering of ubiquinone binding sites of bioenergetic enzymes secures that SQ is sufficiently stabilized, so that it does not leave the site to membranous environment before full oxidation/reduction is completed. The ubiquinol oxidation Q_{o} site of cytochrome $b c_{1}$ (mitochondrial complex III, cytochrome $b_{6} f$ in plants) has been considered an exception with catalytic reactions assumed to involve highly unstable SQ or not to involve any SQ intermediate. This view seemed consistent with long-standing difficulty in detecting any reaction intermediates at the Q_{o} site. New perspective on this issue is now offered by recent, independent reports on detection of SQ in this site. Each of the described SQs seems to have different spectroscopic properties leaving space for various interpretations and mechanistic considerations. Here, we comparatively reflect on those properties and their consequences on the SQ stabilization, the involvement of SQ in catalytic reactions, including proton transfers, and the reactivity of $S Q$ with oxygen associated with superoxide generation activity of the Q_{o} site.

1. Introduction

Cytochrome $b c_{1}$ is one of the key enzymes of respiratory and photosynthetic electron transport chains. The enzyme couples electron transfer between ubiquinone/ubiquinol and cytochrome c with proton translocation ${ }^{1}$ across the membrane. Typically, the transfer of electrons from ubiquinol to cytochrome c contributes to generation of protonmotive force used for adenosine triphosphate synthesis (for recent reviews, see $[1,2]$). However, in some cases, the direction of electron flow through cytochrome $b c_{1}$ can be reversed, leading to oxidation of cytochrome c and reduction of ubiquinone $[3,4]$.

The translocation of protons across the membrane involves two types of ubiquinone-binding sites facing opposite sides of the membrane: one site oxidizes ubiquinol, whereas the other reduces ubiquinone (figure 1). The joint action of these sites defines the basis of catalytic Q cycle. To secure energetic efficiency of this cycle, the ubiquinol oxidation site (the Q_{o} site) directs electrons into two separate cofactor chains. One electron is used to reduce cytochrome c_{1} via electron transfer through the Rieske cluster (FeS) and haem c_{1} in one cofactor chain (the c-chain), whereas the other electron is transferred across the membrane to the Q_{i} site via two haems b (haem b_{L} and b_{H} of the b-chain).

The idea that oxidation of ubiquinol in complex III directs electrons into two separate chains, one involving cytochrome b and the other cytochrome c, was introduced by Wikström \& Berden in 1972 [7]. It emerged from a number of earlier observations documenting the intriguing effect of oxidant-induced

[^0]

Figure 1. Diagram of homodimeric cytochrome $b c_{1}$ structure describing the general mechanism of enzymatic turnover. The ubiquinone binding sites $\mathrm{Q}_{\mathrm{i}}, Q_{0}$ together with haems b_{L} and b_{H} (b-chain) are embedded in cytochrome b subunit (light orange rectangle). The Rieske protein (light magenta) harbouring $2 \mathrm{Fe}-2 \mathrm{~S}$ (FeS) iron-sulfur cluster and cytochrome c_{1} subunit (dark orange) with haem c_{1} transfer the electrons from Q_{0} site to cytochrome $c(r e d)$. The proton uptake and release is indicated by red arrows. The intermonomer electron transfer at the level of two haems $b_{\mathrm{L}}[5,6]$ is indicated by dashed arrow. For clarity, the second monomer is shown in grey. Ubiquinone (UQ) and ubiquinol (UOH_{2}) constitute the Q pool.
haem b reduction in the presence of antimycin (inhibitor of the Q_{i} site) (see [7] and references therein). This idea was preceded by a tentative scheme published in 1967 by Baum et al. [8], who also proposed two separate electron acceptors of ubiquinol, but in that work the connection between the two chains of cofactors was not yet understood. In 1975, Peter Mitchell adopted the idea of Wikström \& Berden [7] and introduced the cyclic arrangement of electron transfer through the protonmotive Q cycle featuring two quinone binding sites (as we now know Q_{o} and Q_{i} sites), each standing at a divide of two cofactor chains [9,10]. In 1983, the Q cycle was modified by Crofts et al. [11], who realized that electrons for ubiquinone reduction at the Q_{i} site both come from the same cofactor chain, leaving Q_{o} as the only site separating the route for two electrons upon catalysis.

The reaction at the Q_{o} site, often referred to as a bifurcation, is unusual in biology. Its mechanism is still a matter of intense debate. The lack of crystal structures containing native ubiquinone molecule bound in the Q_{o} site [12] and a long-standing difficulty in spectroscopic identification of the intermediate states of the Q_{0} site catalysis have left a high degree of freedom for mechanistic considerations [13-21].

Typically, because of the two-electron nature of ubiquinol oxidation or ubiquinone reduction, a semiquinone (SQ) species is expected to be formed as an intermediate of the reaction [22,23]. Indeed, such intermediates were detected by electron paramagnetic resonance (EPR) spectroscopy in several quinone binding sites, including the Q_{i} site of cytochrome $b c_{1}$ [24-26], the Q_{B} site of photosynthetic reaction centre, and quinone sites of mitochondrial complex I and II (reviewed in
[27-29]). All those sites are connected to a single chain of cofactors and, consequently, the two-electron oxidation/reduction of $\mathrm{QH}_{2} / \mathrm{Q}$ must proceed step-wise involving a relatively stable and manageable for experimental trapping SQ intermediate. However, the architecture of the Q_{o} site creates distinctly different conditions for ubiquinol oxidation: the substrate binds in between the two chains of cofactors and thus can experience simultaneous presence of two redox centres (FeS cluster and haem b_{L}) ready to engage in electron transfers. In this case, the two-electron reaction does not need to proceed through the relatively long-lived SQ intermediate. With this simultaneous access to the two electron paths, a detection of SQ intermediate has proven difficult.

One of the early attempts of detection of a semiquinone radical within the Q_{o} site $\left(\mathrm{SQ}_{\mathrm{o}}\right)$ by equilibrium redox titration failed to detect a radical signal in CW EPR spectra of redoxpoised bacterial chromatophores [30]. In mitochondrial system, the first report of detection of SQ_{0} [31] was questioned in later work [32] which led to a commonly accepted view that detection of this species, if it exists, falls beyond the limits of EPR sensitivity. This has been considered as confirmatory of Mitchell's original idea that the stability constant of $\mathrm{SQ}_{\mathrm{o}}\left(K_{\mathrm{s}}\right)$ must be less than unity. However, recently three groups reported a detection of a $S Q$ at the Q_{o} site [33-36]. Intriguingly, each of the described SQs seems to have different spectroscopic properties. Additionally, the conditions in which they were trapped and subsequently detected by EPR were different. Here, we summarize those reports focusing on comparison of SQ species with respect to their interactions with paramagnetic cofactors of cytochrome $b c_{1}$
and interaction with nearby magnetic nuclei of protein surroundings (tables 1 and 2). We reflect on new mechanistic perspectives offered by these discoveries.

2. First report of antimycin-insensitive semiquinone signal on submitochondrial particles

In 1981, de Vries et al. [31] reported the detection of a new SQ in antimycin-inhibited submitochondrial particles under conditions of oxidant-induced reduction of haems b initiated by addition of fumarate/succinate to the membranes. This SQ signal was antimycin-insensitive but disappeared after addition of British anti-Lewisite-a thiol-containing compound that disrupts the Rieske cluster in cytochrome $b c_{1}$ and abolishes activity of the Q_{0} site. Spectral properties of this $S Q$ were different from the antimycin-sensitive SQ signal originating from the Q_{i} site $\left(\mathrm{SQ}_{\mathrm{i}}\right)$. This new SQ had clearly slower spin-lattice relaxation rate than SQ_{i} and exhibited smaller linewidth; the reported values were 8.3 and 10 G for the new SQ and SQ_{i}, respectively. It should be noted that subsequent literature reported the linewidth of approximately 8.5 G for SQ_{i} signal [24,38,39].

The possible sensitivity of the antimycin-insensitive SQ to specific inhibitors of the Q_{o} site was not tested by the authors of the original report. However, the later work by Rich and co-workers [32] showed that under similar experimental conditions this SQ signal was not sensitive to inhibitors that block the activity of the Q_{o} site (myxothiazol, MOA-stilbene or stigmatellin), but at the same time, it was at least partially sensitive to several inhibitors of complex I and II.

3. Light-induced transient semiquinone in photosynthetic membranes

In 2007, Dutton and co-workers [33] generated SQ_{o} in chromatophore membranes of photosynthetic bacterium Rhodobacter (R.) capsulatus, which consisted of a complete cyclic electron transfer system that can be activated by light. In this system, cytochrome $b c_{1}$ is coupled to photosynthetic reaction centre via cytochrome c_{2} and ubiquinone pool (figure $2 a$). The authors predicted that $\mathrm{SQ}_{\text {o }}$ should be visible at high pH which lowers the redoxmidpoint values of the quinone couples provided that multiple flashes are delivered to mostly oxidized c-chain. The key to promoting SQ_{o} was to use the haem b_{H} knockout in which the b-chain can accept only one electron [14]. Indeed, with the help of these predictions, they detected flash-induced SQ in this mutant which, based on its properties, was assigned as SQ_{o}. The radical signal at $g=2.004$ was detected by EPR after freezing of the light-induced samples, and the amplitude of the signal was different depending on the time delay before freezing suggestive of its transient character. The signal was sensitive to stigmatellin, a potent inhibitor of the Q_{o} site, but not to myxothiazol-another inhibitor of the Q_{o} site. To explain the differential sensitivity to the two inhibitors, the authors assumed that in the case of myxothiazol, the inhibitor and ubiquinone bind simultaneously. In this mode, the residual activity of the Q_{o} site (interaction of ubiquinone with Rieske cluster) can still generate SQ_{o}. The idea of a simultaneous presence of ubiquinone and myxothiazol within the Q_{0} site is inspired from
crystallographic data which show that inhibitors can bind to distinctly different domains of the Q_{o} site: stigmatellin forms hydrogen bond with histidine ligand of FeS cluster while myxothiazol binds closer to haem b_{L} [40]. Furthermore, simultaneous binding of ubiquinol and β-methoxyacrylate inhibitors or binding of two molecules of ubiquinol was implicated from biochemical work $[41,42]$ and more recent NMR studies [43]. However, recent data obtained from molecular dynamics (MD) simulations of cytochrome $b c_{1}$ suggest that the Q_{0} site is a rather compact cavity and binding of additional quinone-like molecule next to the ubiquinol is energetically unfavourable [44].

To ascertain that the stigmatellin-sensitive signal originated form the Q_{o} site but not from other ubiquinone reactive protein, the authors tested conditions where oxidizing power of high potential c-chain was severely limited by slowing the electron transfer through haem c_{1} by orders of magnitude. As predicted, the light-induced SQ was not observed under those conditions, confirming that efficient outflow of electrons from Q_{o} through the c-chain is necessary for SQ_{o} generation.

The SQ_{o} spectrum, having an EPR linewidth of 11.7 G , appeared broader than the spectrum of SQ formed at the Q_{i} site (8.5 G). To explain the greater width of SQ_{o} spectrum, the authors considered the possibility of magnetic interactions with reduced Rieske cluster. This should manifest itself in a difficulty to saturate the CW EPR signal of SQ $_{\mathrm{o}}$ which, however, was not observed experimentally. Factors other than interaction with fast-relaxing paramagnetic centre that would explain the greater linewidth of the SQ_{o} signal include greater g-tensor anisotropy [39] and/or hyperfine interactions with nearby magnetic nuclei [45] that are not resolved in CW EPR spectra at X-band.

4. Destabilized semiquinones in the Q_{0} site detected in isolated cytochrome $b c_{1}$

Two publications by Kramer and co-workers [34,35] reported detection of $S Q$ in the Q_{0} site in isolated antimycin-inhibited bacterial and yeast cytochrome $b c_{1}$ under anaerobic conditions. In 2007, SQ was observed in the samples of R. capsulatus cytochrome $b c_{1}$ freeze-quenched 10 ms after mixing with ubiquinol analogue-decylubiquinol $\left(\mathrm{DBH}_{2}\right)$. Because cytochrome c was absent (figure 2b) [34], to initiate the reaction at the Q_{o} site, a significant fraction of Rieske cluster and cytochrome c_{1} must have been in the oxidized state prior to mixing. This, however, is problematic given the relatively high redox midpoint potentials of these two cofactors and the fact that the experiments were carried out under anaerobic conditions. Native cytochrome $b c_{1}$ in this species, without any external oxidant added, typically shows $70-80 \%$ reduction level of cytochrome c_{1} while significantly lower reduction levels may indicate some structural distortions or protein damage.

While the EPR radical signal was generally sensitive to stigmatellin, approximately 30% of the signal ($\mathrm{SQ}_{\text {res }}$) still remained in the presence of this inhibitor. $\mathrm{SQ}_{\text {res }}$ shared some of the characteristics of stigmatellin-sensitive signal which was assigned as SQ_{o}. Both SQ_{o} and $\mathrm{SQ}_{\mathrm{res}}$ signals were broader than the signal of SQ_{i} and both showed similar powersaturation profiles. On the other hand, addition of exogenous relaxation enhancer (Ni^{2+} ions) suggested that the $\mathrm{SQ}_{\text {res }}$ was more exposed to the aqueous phase. For that reason, $\mathrm{SQ}_{\text {res }}$ was assigned to non-enzymatic oxidation of DBH_{2} in solution. However, as the experiment was performed in the absence of
Table 1. Comparison of spectroscopic features of different semiquinones reported for the Q_{0} site. n.s., data not shown in the paper or experiment not performed; n.a., not applicable; $S Q_{0}$, semiquinone in the Q_{0} site; $S Q_{i}$, semiquinone in the Q_{i} site; $\mathrm{SQ}_{\text {res }}$, stigmatellin-insensitive radical signal.

properties of the signal/signals		SQoreported by					
						Sarewicz et al. [36]	
		de Vries et al. [31]	Zhang et al. [33]	Cape et al. [34]	Vennam et al. [35]	SQ \mathbf{O}_{0} uncoupled	$\begin{aligned} & \mathrm{SQ}_{0}-\mathrm{FeS} \\ & \text { spin-coupled } \end{aligned}$
transience of signal		n.s.	yes	n.s.	n.s.	yes	yes
sensitivity to specific Q_{0}-site inhibitors:	stigmatellin	n.s.	yes	yes	yes	yes	yes
	myxothiazol	n.s.	no	n.s.	n.s.	yes	yes
	strobilurins	n.s.	n.s.	n.s.	n.s.	yes	yes
presence of stigmatellin-insensitive residual signal		n.a.	n.a.	yes	yes	no	no
g-factor of central line		2.005	2.0040	2.0054	$2.0044^{\text {a }}$	2.005	1.94
linewidth of X -band spectrum of $\mathrm{SQ}_{0}[\mathrm{G}]$		8.3	11.7	11.9	11.6	14.2	n.a.
microwave power saturation		saturable; slower relaxation than $S Q_{i}$	saturable at 130 K ; similar $\text { to } \mathrm{SQ}_{\mathrm{i}}$	saturable at 77 K ; similar to $S Q_{\text {res }}$	n.s.	non-saturable at $200 \mathrm{~K}$	n.s.
temperature-dependence of the EPR spectrum amplitude		n.s.	n.s.	n.s.	n.s.	anti-Curie behaviour	n.s.
spin-spin exchange interactions		no	no	no	no	no	yes
dipole-dipole interactions with:	reduced FeS	no	no	no	no	possibly yes	n.a.
	oxidized haem b_{L} c_{1}	no	no	no	yes	yes	yes ${ }^{\text {b }}$
interaction with magnetic nuclei	hydrogen	n.s.	n.s.	deprotonated	deprotonated	n.s.	n.s.
	nitrogen	n.s.	n.s.	no	no	n.s.	n.s.

${ }^{\mathrm{b}}$ Interaction between $\mathrm{SQ}_{0}-$ FeS coupled centre and oxidized haem b_{L} is inferred from pulse EPR measurements [37].
(a)

(b)

(c)

Table 2. Comparison of the experimental conditions of trapping and measurements of semiquinone in the Q_{0} site. n.s., not shown or not performed; SMP, submitochondrial particles; cyt., cytochrome; R. caps., Rhodobacter capsulatus; S. cerev., Saccharomyces cerevisiae.

						Sarewicz et	
		de Vries et al. [31]	Zhang et al. [33]	Cape et al. [34]	Vennam et al. [35]	SQ_{0} uncoupled	$\begin{aligned} & \mathrm{SQ}_{0}-\text { FeS } \\ & \text { spin-coupled } \end{aligned}$
aerobic (A) or an		A	AN	AN	AN	A	A
external oxidant		cyt. C	cyt. c_{2}	none	cyt. 6	cyt. C	cyt. c
isolated protein	anes (M)	M (SMP)	M	1	1	1	1
source/organism		beef heart	R. caps.	R. caps.	R. caps. and S. cerev.	R. caps.	R. caps.
temperature of	CW EPR	50	130	77	77	105-210	20
detection (K)	pulsed EPR	n.s.	n.s.	60	10-100	n.s.	10, 20
Q_{i} site blocked by		yes	yes	yes	yes	yes	yes

oxygen, this oxidation could not have been associated with O_{2}. Rather, one can envisage that $\mathrm{SQ}_{\text {res }}$ formation might have been a result of a comproportionation. $\mathrm{SQ}_{\text {res }}$ exhibited different proton electron nuclear double resonance (ENDOR) spectrum from the SQ chemically induced in buffer $\left(\mathrm{SQ}_{\text {chem }}\right)$. At the same time, SQ_{0} signal was reported to have indistinguishable CW EPR spectrum from the chemically produced $\mathrm{SQ}_{\text {chem }}$. Both SQ_{o} and $\mathrm{SQ}_{\text {res }}$ showed decreased amplitudes (greater than 10 -fold) in the presence of molecular oxygen. The signals were not seen in the $b c_{1}$ subcomplex (a complex of cytochromes b and c_{1} but lacking FeS subunit [46]).

Analysis of proton ENDOR spectra indicated that all three types of SQs (i.e. $\mathrm{SQ}_{\mathrm{o}}, \mathrm{SQ}_{\text {res }}$ and $\mathrm{SQ}_{\text {chem }}$) were in the anionic form. This was inferred from the observation that hyperfine coupling constant of five-methyl group to the SQ electron spin in all three cases was different from the values characteristic for protonated/neutral SQs. A contribution of central line in SQ_{o} and $\mathrm{SQ}_{\mathrm{res}}$ ENDOR spectra was different from that found in the spectrum of $\mathrm{SQ}_{\text {chem }}$ which was taken as indication that both SQ_{o} and $\mathrm{SQ}_{\text {res }}$ are located in the environment of lower
proton concentration comparing with the aqueous phase of the $\mathrm{SQ}_{\text {chem }}$ environment. Electron spin echo envelope modulation (ESEEM) spectra showed no indications that SQs form hydrogen bonds with amide group of polypeptide chain nor histidine residues. Importantly, the properties of SQ_{o}, including power saturation behaviour, did not reveal signs of dipolar magnetic interactions between SQ_{o} and neighbouring paramagnetic cofactors of the Q_{o} site, such as reduced FeS or oxidized haem b_{L}. This, together with the confusing, in our view, properties of SQ_{o} versus $\mathrm{SQ}_{\text {res }}$ and problematic initial state of the enzyme raise concern about the origin of the signals.

In 2013, Kramer and co-workers [35] described SQ $_{\mathrm{o}}$ trapped using a method similar to that described previously [34], except that this time cytochrome c was added to provide oxidizing power to the c-chain and initiate the reactions in the Q_{o} site (figure 2c). While the width of new EPR signal of SQ_{o} was similar to that reported previously, the relaxation properties were clearly different. The spin echo of SQ_{o} decayed (2 p -ESEEM experiment) much faster in comparison with $\mathrm{SQ}_{\text {chem }}$ signal in buffer which indicated that this time, unlike the previous case,

Figure 3. Structural model explaining the existence of two populations of $S Q_{0}$ detected by $C W$ EPR [36]. (a) Reduced FeS cluster is in the Q_{0} site and putative hydrogen bond between $S Q_{0}$ and the cluster liganding histidine 156 (R. capsulatus numbering) facilitates spin-spin exchange interaction. (b) Increasing the distance between $S Q_{0}$ and the FeS cluster owing to the dynamics of the FeS head domain and/or semiquinone within the site abolish the spin-spin exchange interaction and only dipoledipole magnetic interactions between SQ_{0} and neighbouring fast-relaxing metal centres are possible. Structures shown in left panel are based on MD simulations [44].
the SQ_{o} interacted with fast-relaxing paramagnetic species. The authors concluded that the paramagnetic species that affect $\mathrm{SQ}_{\text {o }}$ are haems nearest to SQ_{o} which, based on simulations, were proposed to be either two haems b_{L} (each coming from individual monomers of cytochrome $b c_{1}$ dimer) or haem b_{L} and haem c_{1} (both coming from the same monomer; figure 2c). However, no spectroscopic data verifying the oxidation state of haems were provided, nor relaxation rates for haems used in simulations, which are crucial parameters in determining distances by the use of relaxation enhancement [47,48]. The FeS cluster was excluded because of its slow relaxation when compared with haems at the temperature used in the experiments.

While the new SQ signal was generally sensitive to stigmatellin, around 30% of the signal was still observed in CW EPR spectra in the presence of substoichiometric concentration of this inhibitor. The sensitivity to other Q_{0} site inhibitors was not reported and it was not shown whether this new SQ signal disappears in the control mutants with inactive Q_{o} site. The overall shape of SQ_{o} proton ENDOR spectrum was similar to those reported previously for SQ_{o} and $\mathrm{SQ}_{\text {res }}$ indicating that SQ_{o} was deprotonated. Nevertheless, the splitting of doublet signals flanking the distant protons peak in ENDOR spectra was clearly larger than previously reported [34] implying that the detected SQs were in different environments.

The analysis of 4 p -ESEEM spectra combined with the lack of the signal of nitrogen in 2p-ESEEM indicated that SQ_{o} was not hydrogen-bonded to the protein. Comparison of bacterial and yeast cytochrome $b c_{1}$ did not reveal any spectral differences which indicated that SQ_{o} in both cases is the same chemical species trapped in similar environment.

The properties of SQ_{o} that emerged from ESEEM and ENDOR data led the authors to propose a model of 'electrostatic cage' trapping deprotonated SQ_{o}. In this model, SQ is
destabilized by lack of specific binding through hydrogen bonds or salt bridges. Insulating dielectric cage blocks the proton uptake back to $\mathrm{SQ}_{\text {o }}$ which secures that it does not leave the site. At the same time, the cage is supposed to prevent escape of any superoxide anion (or SQ) formed in the site. However, the destabilized SQ_{o} is proposed to conserve sufficient redox energy to reduce haem b_{L} which seems difficult to reconcile with the statement that SQ_{o} interacts paramagnetically with the oxidized haem b_{L}. Furthermore, it is important to bear in mind that in photosynthetic reaction centres a similar concept of low dielectric gate around the SQ binding site was introduced to rationalize high stability of SQ, because the contributions from electrostatic energy and hydrogen bonds were not enough to explain SQ stabilization [49].

5. Semiquinone uncoupled and spin-spin coupled to Rieske cluster in isolated cytochrome $b c_{1}$

In 2013, our group reported a discovery of two EPR transitions associated with the activity of the Q_{o} site [36]. Those transitions revealed the presence of two distinct populations of SQ_{o} formed at this site. The first signal at $g=1.94$ was assigned as one of the transitions originating from the spinspin exchange of two unpaired electron spins: one coming from SQ_{o} and the other from the reduced Rieske cluster (figure $3 a$). The second transition near $g=2.0$ corresponded to the population of SQ_{o} for which the spin-spin exchange did not exist or was too weak to be resolved (figure 3b). Both populations were observed in samples of isolated, antimycininhibited cytochrome $b c_{1}$ of R. capsulatus exposed to substrates,
DBH_{2} and oxidized cytochrome c, under aerobic conditions. The changes in the amplitudes for these two signals (radical at $g=2.0$ and $\mathrm{SQ}_{\mathrm{o}}-\mathrm{FeS}$ spin-coupled centre at $g=1.94$) during the catalytic turnover can be divided into two time regions. In the first (earlier) region, the amplitudes increase until they reach maximum, whereas in the second (later) region, the amplitudes progressively decrease to zero at the time point when the system reaches equilibrium.

Both signals were sensitive to stigmatellin and several other Q_{o}-site-specific inhibitors (including myxothiazol and various synthetic strobilurins). Both signals were not observed in specific mutants that disabled activity of the Q_{o} site (such as cytb:G158 W) [42,50] or the bc-subcomplex [46]. Moreover, in the presence of these inhibitors or mutations, no residual radical signals were detected. On the other hand, in +2 Ala mutant (a mutation that makes the FeS head domain stay at Q_{o} site for prolonged time), the signal amplitude was higher compared with the native protein. More recent experiments indicate that both signals can also be generated under anaerobic conditions and that the characteristic $g=1.94$ can be observed in native chromatophore membranes of R. capsulatus [37].

We proposed that the two populations of SQ_{o} reflect two configurations of the Q_{o} site. The spin-spin exchange ($g=$ 1.94) by its nature has a clear distance constraint and can take place only when SQ_{o} and Rieske cluster are in proximity, as shown in figure $3 a$. In this configuration, a formation of a hydrogen bond between histidine residue coordinating Rieske cluster and ubiquinone molecule is possible. At larger distances (figure $3 b$) or upon breaking the putative hydrogen bond between SQ_{0} and histidine ligand, spinspin exchange disappears and SQ_{0} becomes detected as a separate free radical species having a signal near $g=2.0$. Nevertheless, in this case, SQ_{o} exhibited unusually fast relaxation compared with the relaxation of chemically generated SQ in buffer (by auto-oxidation of DBH_{2} in alkaline pH), which was expected given that the SQ_{o} is located in proximity to fast-relaxing paramagnetic metal centres of the Q_{o} site: oxidized haem b_{L} [51] and/or reduced FeS [52]. The fast spin-lattice relaxation of SQ_{o} manifested itself in significant homogeneous broadening of the EPR lines (both at X and Q band), the inability to saturate it with microwave power, and the presence of a Leigh effect (decrease in amplitude without apparent line broadening upon decrease of temperature). All these specific properties differentiated this SQ_{o} from the radical signals described in [33-35].

The two populations of SQ_{o} were incorporated to the model of electronic bifurcation of the Q_{o} site. We envisaged that the $\mathrm{SQ}_{\mathrm{o}}-\mathrm{FeS}(g=1.94)$ form might represent an initial step of ubiquinol oxidation when oxidized FeS withdraws an electron from ubiquinol. This state evolves into the state where SQ_{o} and reduced FeS exist as separate identities (distinguished by separate spectra, one of which is radical $g=2.0$) before reduction of haem b_{L} by SQ_{o} takes place to complete the oxidation of QH_{2} at this site.

6. Semiquinone intermediates in relation to proton management of the Q_{0} site

The process of uptake and release of protons is an inherent part of redox chemistry of ubiquinones. As the energy of the SQH_{2}^{+}(double protonated SQ) is very high [53], at least
one proton needs to be released during oxidation of QH_{2} to make transfer of the first electron possible. Accordingly, in the ubiquinol oxidation at the Q_{o} site, a release of one or two protons is often considered to be a step initiating the entire reaction $[15,54,55]$. While the proton paths are largely unknown for the Q_{o} site, the detected SQ_{o} intermediates offer interesting new insights into this issue.

The radicals with typical $g=2.0$ are believed to be in a deprotonated/anionic form. Thus, it is plausible to expect that these SQs are relevant to a state having the two protons already released (here we consider the direction of ubiquinol oxidation; figure $4 a)$. However, the spin-spin exchange state ($g=1.94$), which most likely involves the hydrogen bond between histidine ligand of Rieske cluster and ubiquinone molecule, could represent a state before the proton release. For this state, at least two scenarios are possible.

The first scenario would accommodate an early model of proton pathway which proposed that initially deprotonated histidine ligand of Rieske undergoes protonation upon formation of hydrogen bond with ubiquinone molecule to subsequently withdraw the first proton from ubiquinone $[55,56]$. This hydrogen bond could be a good candidate for an element of the spin-spin exchange configuration ($g=1.94$; figure $4 b$). This model, however, requires that histidine residue is maintained by the enzyme in a deprotonated form before it reacts with ubiquinol, which, as discussed in [44,57], is disputable.

The attractive alternative emerges from recent MD simulations which indicate that water molecules in the Q_{o} site can directly accept protons from ubiquinol upon its oxidation [44]. In this scenario, water molecules form hydrogen bonds with ubiquinol molecule. While protonated waters are shortlived, they may form an easy path for protons out of the protein through the cavity filled with water molecules. Hydrogen bond is also formed between histidine residue (protonated) and ubiquinol molecule but this bond is not involved in proton transfers from ubiquinol to the aqueous phase. This hydrogen bond may also serve as an inherent part of the configuration supporting spin-spin exchange between SQ_{o} and FeS cluster (figure 4c). Unlike the first scenario, this model allows the hydrogen-bonded configuration for spin-spin exchange to be assembled independently of ubiquinol proton stripping events.

7. Emerging questions about stability of SQ_{0} and its reactivity with oxygen

Quinones in solution under equilibrium undergo comproportionation (reverse of disproportionation) reaction according to the scheme $[23,58]$:

$$
\mathrm{Q}+\mathrm{QH}_{2}=2 \mathrm{SQ}^{-}+2 \mathrm{H}^{+} .
$$

The equilibrium constant K_{s} for this reaction is often referred to as the stability constant for SQ which depends on the redox potentials of Q / SQ and $\mathrm{SQ} / \mathrm{QH}_{2}$ pairs $\left(\mathrm{E}_{\mathrm{Q} / \mathrm{SQ}}\right.$ and $\mathrm{E}_{\mathrm{SQ} / \mathrm{QH}_{2}{ }^{\prime}}$, respectively):

$$
K_{\mathrm{s}}=\frac{\left[\mathrm{SQ}^{-}\right]^{2} \cdot\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{Q}] \cdot\left[\mathrm{QH}_{2}\right]}=10^{\left[E_{\mathrm{Q} / \mathrm{sQ}}^{\prime}\right.}(\mathrm{mV})-E_{\mathrm{S} / / \mathrm{H}}^{2} /(\mathrm{mV}) / / 59.1 .
$$

For ubiquinone-10, the redox potentials of $E_{\mathrm{Q} / \mathrm{SQ}}$ and $E_{\mathrm{SQ} / \mathrm{QH}_{2}}$ couples at pH 7 are -230 and +190 mV in bulk solution [23], respectively, which means that K_{s} is around 10^{-8}. When
(a)
 <

(b)

(c)

Figure 4. Different possibilities of proton involvement in the interactions of SQ_{0} (green) with the cluster liganding histidine (black) and/or water (blue). (a) SQ_{0} anion does not form a hydrogen bond with the histidine that reversibly exchange proton (red) with water molecules (arrows represent the reversibility of the reaction). (b) Protonated $S Q_{0}$ reversibly donates proton to histidine which results in formation of hydrogen bond between this histidine and $S Q_{0}$ anion. (c) Neutral $S Q_{0}$ forms hydrogen bond with protonated histidine, whereas the proton originating from $S Q_{0}$ is exchanged with water molecule. All three cases ($a-c$) may exist in an equilibrium but only in cases (b, right-hand panel) and (c, both panels) is a relatively strong spin-spin exchange interaction expected between SQ_{0} and the FeS cluster (magenta shadow shows the possible paths for the electron spin exchange).
concentrations of both Q and QH_{2} are, for example $100 \mu \mathrm{M}$, then equilibrium concentration of SQ^{-}is approximately 30 nM , which is at the lower limit of concentration needed to detect this species by EPR spectroscopy.

The K_{s} has a strict sense when considering comproportionation/disproportionation of $\mathrm{Q} / \mathrm{SQ} / \mathrm{QH}_{2}$ triad under equilibrium in solution but it is often used to describe the stability of SQ that can be formed within the Q_{o} sites of cytochrome $b c_{1}$ even though species formed in the catalytic sites are insulated from bulk solution and they are unable to disproportionate directly [59]. Since original Mitchell's description of the Q cycle, SQ_{o} has been considered as highly unstable with the low stability constant K_{s} of the order of 10^{-7} or less [13,30,32,42,59,60]. This however remains an open question in the light of the SQ_{o} detections which report signals in the range from 1% up to 17% of the total Q_{o} sites. Cape et al.
reported that $S_{\text {o }}$ occupies $0.01-0.1 \mathrm{Q}_{\mathrm{o}}$ sites per monomer [34]. Given the total concentration of $10 \mu \mathrm{M}$ for both cytochrome $b c_{1}$ and QH_{2}, it is possible to calculate the value of K_{s} around 10^{-2}. Similar calculations performed by Sarewicz et al. give the estimated K_{s} of the order of $10^{-2.6}$ [36]. These values are in agreement with measured concentration of radicals reported for chemically modified SQs in solutions ($10 \mu \mathrm{M}$ of chloride-substituted quinone produces 260 nM of SQ with K_{s} that is larger than 10^{-2}) [61]. Such relatively large values of K_{s} suggest some kind of stabilization of SQ_{o} in comparison with bulk solutions. We emphasize, however, a potential difficulty in describing stability of SQ_{o} using the K_{s} parameter, because all reported SQ_{o} signals in cytochrome $b c_{1}$ were detected under non-equilibrium conditions for which the $K_{\text {s }}$ parameter defining thermodynamic equilibrium may not be valid.

Considering the properties and conditions of trapping (table 1 and 2, respectively) the SQ_{o} intermediates summarized above it appears as if different $S Q$ species for the Q_{o} site have been reported. A feature that unites all these reports is the observation that SQ_{o} cannot be detected in cytochrome $b c_{1}$ unless the Q_{i} site is inhibited by antimycin or haem b_{H} is knocked-out by mutation. This effectively impedes reoxidation of haem b_{L} through the path involving haem $b_{\mathrm{H}} / \mathrm{Q}_{\mathrm{i}}$. It thus appears that the state with reduced haem b_{L} is required as condition for increasing probability of trapping $S Q_{0}$. In reversibly operating Q_{o} site, SQ_{o} can, in principle, be formed in two ways and both indeed require reduced haem b_{L} as an initiation [62-66]. In a semiforward reaction, reduced haem b_{L} prevents electron transfer from SQ_{o} to haem b_{L} after oxidized FeS initially withdraws one electron from QH_{2} forming SQ_{o}. In a semireverse reaction, reduced haem b_{L} initiates SQ_{0} formation by electron transfer to Q . In this context, the properties of $S Q_{o}$ in $[33,34]$ suggest that $S Q_{o}$ was formed along with reduced haem b_{L} pointing towards the semiforward reaction scheme. On the other hand, the properties of SQ_{o} in [36] and [35] indicate that it was trapped along with oxidized haem b_{L} which points towards the semireverse reaction scheme. This mechanism is also supported by the observation that the rate of superoxide generation has a bell-shaped dependence on $\mathrm{Q} / \mathrm{QH}_{2}$ ratio $[67,68]$.

Interestingly, the semireverse reaction has recently been considered as the one leading to formation of SQ_{o} that can interact with oxygen and thus is responsible for generation of superoxide by the Q_{o} site [63-65]. In this scheme, unlike in a semiforward scheme, $S Q_{o}$ can be formed in the configuration of the Q_{o} site that misses the second cofactor necessary to complete the reaction. The missing cofactor is the FeS cluster embedded in the head domain which during the catalytic cycle naturally undergoes movement between the Q_{o} site and haem c_{1} (outermost cofactor of the c-chain) [69]. It is thus possible that Q is reduced by haem b_{L} at the time when FeS cluster occupies positions remote from the Q_{o} site and is unable to immediately engage in electron transfer reaction with SQ_{o}. This increases the probability of reaction of $S Q_{o}$ with oxygen (if all electron transfers compete kinetically), as indeed implicated experimentally [64,65,68].

The presumed high reactivity of SQ_{o} with oxygen implies that anaerobic conditions should promote trapping SQ_{o}. The reports of detection of SQ_{o} signals under anaerobic condition follow this expectation [33-35]. In one of these cases, it was additionally recognized that SQ_{o} could not have been observed under aerobic conditions [34]. There was also another report of failure to detect SQ_{o} in the presence of molecular oxygen, but those experiments were performed using freeze-quenched samples of cytochrome $b c_{1}$ non-inhibited by antimycin [20]. However, the report of detection of two populations of SQ ($g=1.94$ and $g=2.0$) concerned aerobic conditions [36].

The relatively large quantities of SQ_{o} (spin-spin coupled to the Rieske cluster) detected under these conditions suggest that SQ_{o} is not as highly reactive with oxygen as commonly presumed at least in the presence of the spin exchange. In addition, high levels of SQ_{o} were observed in +2Ala mutant, which does not produce any detectable superoxide [64], implying that conditions of spin-spin coupling between SQ_{o} and FeS ($g=1.94$) might be protective against superoxide generation.

8. Concluding remark

The assumption about extremely low K_{s} of SQ_{o} has traditionally been used to explain the long-standing difficulty in experimental detection of SQ_{o}. We now seem to face the opposite situation where several seemingly different SQ_{o} intermediates have been exposed. The differences concern both the properties of $S Q_{\mathrm{o}}$ species and the experimental conditions used to trap the SQ_{o} intermediates. In our view, this certainly does not make it easier for a general reader to follow the progress in understanding the mechanism of ubiquinol oxidation at the Q_{o} site as it leaves space for various interpretations and mechanistic considerations that at this stage do not seem to converge into one generally accepted model of action. It remains to be seen whether the detected SQ_{o} signals represent the same intermediate of the Q_{o} site, or rather reflect different states of the reaction scheme. Are all of them truly associated with the operation of the Q_{o} site? What is the role of haem b_{L} in the formation of SQ_{o} and superoxide production? How does the intermonomer electron transfer between the two haems b_{L} influence these reactions? The available set of data on SQs provides now a framework for further studies in which various hypotheses can be critically examined and verified. Hopefully, this will lead to the formulation of the integrated model of the Q_{0} site catalysis and its involvement in superoxide generation.

Authors' contributions. R.P., M.S. and A.O. wrote the article. Competing interests. We declare we have no competing interests.
Funding. This work was supported by a Wellcome Trust International Senior Research Fellowship (to A.O.). The Faculty of Biochemistry, Biophysics and Biotechnology of Jagiellonian University is a partner of Leading National Research Center (KNOW) supported by Ministry of Science and Higher Education.

Endnote

${ }^{1}$ We use the 'proton translocation' term in the context of cytochrome $b c_{1}$ catalysis to describe creation of proton gradient by coupled oxidation/reduction of ubiquinol/ubiquinone taking place at the opposite sides of the membrane which is a different mechanism from active 'proton pumping' via specific proton channels within protein interiors.

References

1. Sarewicz M, Osyczka A. 2015 Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol. Rev. 95, 219-243. (doi:10.1152/ physrev.00006.2014)
2. Osyczka A (ed.). 2013 Respiratory complex III and related $b c$ complexes [special issue]. Biochim. Biophys. Acta 1827, 1257-1428. (doi:10.1016/j. bbabio.2013.08.002)
3. Miki T, Miki M, Orii Y. 1994 Membrane potentiallinked reversed electron transfer in the beef heart
cytochrome $b c_{1}$ complex reconstituted into potassium-loaded phospholipid vesicles. J. Biol.
Chem. 269, 1827-1833.
4. Elbehti A, Brasseur G, Lemesle-Meunier D. 2000 First evidence for existence of an uphill electron transfer through the $b c_{1}$ and NADH-Q
oxidoreductase complexes of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans. J. Bacteriol.
182, 3602-3606. (doi:10.1128/JB.182.12.36023606.2000)
5. Świerczek M, Cieluch E, Sarewicz M, Borek A, Moser CC, Dutton PL, Osyczka A. 2010 An electronic bus bar lies in the core of cytochrome $b c_{1}$. Science 329, 451-454. (doi:10.1126/science.1190899)
6. Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Daldal F. 2013 Intermonomer electron transfer between the b hemes of heterodimeric cytochrome $b c_{1}$. Biochemistry 52, 7196-7206. (doi:10.1021/ bi400561e)
7. Wikström MKF, Berden JA. 1972 Oxidoreduction of cytochrome b in the presence of antimycin. Biochim. Biophys. Acta 283, 403-420. (doi:10.1016/0005-2728(72)90258-7)
8. Baum H, Rieske JS, Silman HI, Lipton SH. 1967 On the mechanism of electron transfer in complex III of the electron transfer chain. Proc. Natl Acad. Sci. USA 57, 798-805. (doi:10.1073/pnas.57.3.798)
9. Mitchell P. 1975 Protonmotive redox mechanism of the cytochrome $b-c_{1}$ complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56, 1-6. (doi:10.1016/0014-5793(75)80098-6)
10. Mitchell P. 1975 The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137-139. (doi:10.1016/0014-5793(75)80359-0)
11. Crofts AR, Meinhardt SW, Jones KR, Snozzi M. 1983 The role of the quinone pool in the cyclic electrontransfer chain of Rhodopseudomonas sphaeroides: a modified Q-cycle mechanism. Biochim. Biophys. Acta 723, 202-218. (doi:10.1016/0005-2728(83)90120-2)
12. Xia D, Esser L, Tang W-K, Zhou F, Zhou Y, Yu L, Yu C-A. 2013 Structural analysis of cytochrome $b c_{1}$ complexes: implications to the mechanism of function. Biochim. Biophys. Acta 1827, 1278-1294. (doi:10.1016/j.bbabio.2012.11.008)
13. Osyczka A, Moser CC, Dutton PL. 2005 Fixing the Q cycle. Trends Biochem. Sci. 30, 176-182. (doi:10. 1016/j.tibs.2005.02.001)
14. Osyczka A, Moser CC, Daldal F, Dutton PL. 2004 Reversible redox energy coupling in electron transfer chains. Nature 427, 607-612. (doi:10. 1038/nature02242)
15. Link TA. 1997 The role of the 'Rieske' iron sulfur protein in the hydroquinone oxidation $\left(Q_{p}\right)$ site of the cytochrome $b c_{1}$ complex. FEBS Lett. 412, 257-264. (doi:10.1016/S0014-5793(97)00772-2)
16. Brandt U. 1998 The chemistry and mechanics of ubihydroquinone oxidation at center $P\left(Q_{0}\right)$ of the cytochrome $b c_{1}$ complex. Biochim. Biophys. Acta 1365, 261-268. (doi:10.1016/S0005-2728(98)00078-4)
17. Brandt U, Trumpower B. 1994 The protonmotive Q cycle in mitochondria and bacteria. Crit. Rev. Biochem. Mol. Biol. 29, 165-197. (doi:10.3109/ 10409239409086800)
18. Brandt U. 1999 Control of ubiquinol oxidation at center $P\left(Q_{0}\right)$ of the cytochrome $b c_{1}$ complex. J. Bioenerg. Biomembr. 31, 243-250. (doi:10.1023/ A:1005471829569)
19. Mulkidjanian AY. 2005 Ubiquinol oxidation in the cytochrome $b c_{1}$ complex: reaction mechanism and prevention of short-circuiting. Biochim. Biophys.
Acta 1709, 5-34. (doi:10.1016/j.bbabio.2005.03. 009)
20. Zhu J, Egawa T, Yeh S-R, Yu L, Yu C-A. 2007 Simultaneous reduction of iron-sulfur protein and cytochrome b_{L} during ubiquinol oxidation in cytochrome $b c_{1}$ complex. Proc. Natl Acad. Sci. USA 104, 4864-4869. (doi:10.1073/pnas.0607812104)
21. Cape JL, Bowman MK, Kramer DM. 2006 Understanding the cytochrome bc complexes by what they don't do. The 0 -cycle at 30 . Trends Plant Sci. 11, 46-55. (doi:10.1016/j.tplants.2005.11.007)
22. Rich PR. 2004 The quinone chemistry of $b c$ complexes. Biochim. Biophys. Acta 1658, 165-171. (doi:10.1016/j.bbabio.2004.04.021)
23. Song Y, Buettner GR. 2010 Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic. Biol. Med. 49, 919-962. (doi:10.1016/j. freeradbiomed.2010.05.009)
24. Robertson DE, Prince RC, Bowyer JR, Matsuura K, Dutton PL, Ohnishi T. 1984 Thermodynamic properties of the semiquinone and its binding site in the ubiquinol-cytochrome $c\left(c_{2}\right)$ oxidoreductase of respiratory and photosynthetic systems. J. Biol. Chem. 259, 1758-1763.
25. Gray KA, Dutton PL, Daldal F. 1994 Requirement of histidine 217 for ubiquinone reductase activity $\left(Q_{i}\right.$ site) in the cytochrome $b c_{1}$ complex. Biochemistry 33, 723-733. (doi:10.1021/bi00169a014)
26. Kolling DRJ, Samoilova RI, Holland JT, Berry EA, Dikanov SA, Crofts AR. 2003 Exploration of ligands to the Q_{i} site semiquinone in the $b c_{1}$ complex using high-resolution EPR. J. Biol. Chem. 278, 39 747-39 754. (doi:10.1074/jbc. M305913200)
27. Wraight CA, Gunner MR. 2009 The acceptor quinones of purple photosynthetic bacteria: structure and spectroscopy. In The purple phototrophic bacteria (eds CN Hunter, F Daldal, MC Thurnauer, JT Beatty), pp. 379-405. Dordrecht, The Netherlands: Springer.
28. Hirst J, Roessler MM. In press. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I. Biochim. Biophys. Acta (doi:10.1016/j.bbabio.2015.12.009)
29. Maklashina E, Cecchini G, Dikanov SA. 2013 Defining a direction: Electron transfer and catalysis in Escherichia coli complex II enzymes. Biochim. Biophys. Acta 1827, 668-678. (doi:10.1016/j. bbabio.2013.01.010)
30. Takamiya KI, Dutton PL. 1979 Ubiquinone in Rhodopseudomonas sphaeroides. Some thermodynamic properties. Biochim. Biophys. Acta 546, 1-16. (doi:10.1016/0005-2728(79)90166-X)
31. de Vries S, Albracht SP, Berden JA, Slater EC. 1981 A new species of bound ubisemiquinone anion in QH_{2} : cytochrome c oxidoreductase. J. Biol. Chem. 256, 11 996-11 998.
32. Jünemann S, Heathcote P, Rich PR. 1998 On the mechanism of quinol oxidation in the $b c_{1}$ complex.
J. Biol. Chem. 273, $21603-21$ 607. (doi:10.1074/ jbc.273.34.21603)
33. Zhang H, Osyczka A, Dutton PL, Moser CC. 2007 Exposing the complex III Q_{0} semiquinone radical. Biochim. Biophys. Acta 1767, 883-887. (doi:10. 1016/j.bbabio.2007.04.004)
34. Cape JL, Bowman MK, Kramer DM. 2007 A semiquinone intermediate generated at the Q_{0} site of the cytochrome $b c_{1}$ complex: importance for the Q-cycle and superoxide production. Proc. Natl Acad. Sci. USA 104, 7887-7892. (doi:10.1073/pnas. 0702621104)
35. Vennam PR, Fisher N, Krzyaniak MD, Kramer DM, Bowman MK. 2013 A caged, destabilized, free radical intermediate in the Q-Cycle. ChemBioChem 14, 1745-1753. (doi:10.1002/cbic.201300265)
36. Sarewicz M, Dutka M, Pintscher S, Osyczka A. 2013 Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome $b c_{1}$. Biochemistry 52, 6388-6395. (doi:10.1021/bi400624m)
37. Sarewicz M et al. In preparation.
38. Robertson DE, Ding H, Chelminski PR, Slaughter C, Hsu J, Moomaw C, Tokito M, Daldal F, Dutton PL. 1993 Hydroubiquinone-cytochrome c_{2} oxidoreductase from Rhodobacter capsulatus: definition of a minimal, functional isolated preparation. Biochemistry 32, 1310-1317. (doi:10.1021/bi00056a016)
39. Dikanov SA, Holland JT, Endeward B, Kolling DRJ, Samoilova RI, Prisner TF, Crofts AR. 2007 Hydrogen bonds between nitrogen donors and the semiquinone in the Q_{i}-site of the $b c_{1}$ complex. J. Biol. Chem. 282, $25831-25$ 841. (doi:10.1074/ jbc.M702333200)
40. Esser L, Quinn B, Li Y-F, Zhang M, Elberry M, Yu L, Yu C-A, Xia D. 2004 Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome $b c_{1}$ complex. J. Mol. Biol. 341, 281-302. (doi:10.1016/ j.jmb.2004.05.065)
41. Brandt U, Schagger H, von Jagow G. 1988 Characterisation of binding of the methoxyacrylate inhibitors to mitochondrial cytochrome c reductase. Eur. J. Biochem. 173, 499-506. (doi:10.1111/j. 1432-1033.1988.tb14026.x)
42. Ding H, Moser CC, Robertson DE, Tokito MK, Daldal F, Dutton PL. 1995 Ubiquinone pair in the Q_{0} site central to the primary energy conversion reactions of cytochrome $b c_{1}$ complex. Biochemistry 34, 15979-15 996. (doi:10.1021/bi00049a012)
43. Bartoschek S et al. 2001 Three molecules of ubiquinone bind specifically to mitochondrial cytochrome $b c_{1}$ complex. J. Biol. Chem. 276, 35 231-35 234. (doi:10.1074/jbc.C100365200)
44. Postila PA, Kaszuba K, Sarewicz M, Osyczka A, Vattulainen I, Róg T. 2013 Key role of water in proton transfer at the Q_{0}-site of the cytochrome $b c_{1}$ complex predicted by atomistic molecular dynamics simulations. Biochim. Biophys. Acta 1827, 761768. (doi:10.1016/j.bbabio.2013.02.005)
45. Narayanan M, Leung SA, Inaba Y, Elguindy MM, Nakamaru-Ogiso E. 2015 Semiquinone intermediates are involved in the energy coupling
mechanism of E. coli complex I. Biochim. Biophys. Acta 1847, 681-689. (doi:10.1016/j.bbabio.2015. 04.004)
46. Valkova-Valchanova MB, Saribas AS, Gibney BR, Dutton PL, Daldal F. 1998 Isolation and characterization of a two-subunit cytochrome $b-c_{1}$ subcomplex from Rhodobacter capsulatus and reconstitution of its ubihydroquinone oxidation $\left(Q_{0}\right)$ site with purified Fe-S protein subunit. Biochemistry 37, 16 242-16 251. (doi:10.1021/bi981651z)
47. Hirsh DJ, Brudvig GW. 2007 Measuring distances in proteins by saturation-recovery EPR. Nat. Protoc. 2, 1770-1781. (doi:10.1038/nprot.2007.255)
48. Ulyanov D, Bowler BE, Eaton GR, Eaton SS. 2008 Electron-electron distances in spin-labeled low-spin metmyoglobin variants by relaxation enhancement. Biophys. J. 95, 5306-5316. (doi:10.1529/biophysj. 108.141887)
49. Shinkarev VP. 2006 Ubiquinone (coenzyme Q_{10}) binding sites: low dielectric constant of the gate prevents the escape of the semiquinone. $F E B S$ Lett. 580, 2534-2539. (doi:10.1016/j.febslet.2006. 04.022)
50. Czapla M, Borek A, Sarewicz M, Osyczka A. 2012 Enzymatic activities of isolated cytochrome $b c_{1}$-like complexes containing fused cytochrome b subunits with asymmetrically inactivated segments of electron transfer chains. Biochemistry 51, 829-835. (doi:10.1021/bi2016316)
51. Sarewicz M, Dutka M, Froncisz W, Osyczka A. 2009 Magnetic interactions sense changes in distance between heme b_{L} and the iron-sulfur cluster in cytochrome $b c_{1}$. Biochemistry 48, 5708-5720. (doi:10.1021/bi900511b)
52. Sarewicz M, Dutka M, Pietras R, Borek A, Osyczka A. 2015 Effect of H bond removal and changes in the position of the iron-sulphur head domain on the spin-lattice relaxation properties of the $[2 \mathrm{Fe}-2 \mathrm{~S}]^{2+}$ Rieske cluster in cytochrome $b c_{1}$. Phys. Chem. Chem. Phys. 17, 25 297-25 308. (doi:10.1039/ C5cp02815a)
53. Gunner MR, Madeo J, Zhu Z. 2008 Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers. J. Bioenerg. Biomembr. 40, 509-519. (doi:10.1007/s10863-008-9179-1)
54. Brandt U, Okun JG. 1997 Role of deprotonation events in ubihydroquinone: cytochrome C oxidoreductase from bovine heart and yeast mitochondria. Biochemistry 36, 11 234-11 240. (doi:10.1021/bi970968g)
55. Crofts AR, Hong SJ, Ugulava N, Barquera B, Gennis R, Guergova-Kuras M, Berry EA. 1999 Pathways for proton release during ubihydroquinone oxidation by the $b c_{1}$ complex. Proc. Natl Acad. Sci. USA 96, 10021 - 10 026. (doi:10.1073/Pnas.96.18.10021)
56. Covián R, Moreno-Sánchez R. 2001 Role of protonatable groups of bovine heart $b c_{1}$ complex in ubiquinol binding and oxidation. Eur. J. Biochem. 268, 57835790. (doi:10.1046/j.0014-2956.2001.02521.x)
57. Barragan AM, Crofts AR, Schulten K, Solov'yov IA. 2014 Identification of ubiquinol binding motifs at the Q_{0}-site of the cytochrome $b c_{1}$ complex. J. Phys. Chem. B 119, 433-447. (doi:10.1021/jp510022w)
58. Rich PR. 1981 Electron transfer reactions between quinols and quinones in aqueous and aprotic media. Biochim. Biophys. Acta 637, 28-33. (doi:10. 1016/0005-2728(81)90206-1)
59. Zhang H, Chobot SE, Osyczka A, Wraight CA, Dutton PL, Moser CC. 2008 Quinone and non-quinone redox couples in complex III. J. Bioenerg. Biomembr. 40, 493-499. (doi:10.1007/s10863-008-9174-6)
60. Crofts AR, Wang Z. 1989 How rapid are the internal reactions of the ubiquinol: cytochrome c_{2} oxidoreductase? Photosynth. Res. 22, 69-87. (doi:10.1007/BF00114768)
61. Song Y, Buettner GR, Parkin S, Wagner BA, Robertson LW, Lehmler H-J 2008 Chlorination increases the persistence of semiquinone free radicals derived from polychlorinated biphenyl hydroquinones and quinones. J. Org. Chem. 73, 8296-8304. (doi:10.1021/j0801397g)
62. Muller F, Crofts AR, Kramer DM. 2002 Multiple Q-cycle bypass reactions at the Q_{0} site of the cytochrome $b c_{1}$ complex. Biochemistry 41, 7866-7874. (doi:10.1021/bi025581e)
63. Dröse S, Brandt U. 2008 The mechanism of mitochondrial superoxide production by the cytochrome $b c_{1}$ complex. J. Biol. Chem. 283, 21 649-21 654. (doi:10.1074/jbc.M803236200)
64. Borek A, Sarewicz M, Osyczka A. 2008 Movement of the iron-sulfur head domain of cytochrome $b c_{1}$ transiently opens the catalytic Q_{0} site for reaction with oxygen. Biochemistry 47, 12 365-12 370. (doi:10.1021/bi801207f)
65. Sarewicz M, Borek A, Cieluch E, Świerczek M, Osyczka A. 2010 Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome $b c_{1}$. Implications for the mechanism of superoxide production. Biochim. Biophys. Acta 1797, 1820-1827. (doi:10.1016/j.bbabio.2010.07.005)
66. Quinlan CL, Gerencser AA, Treberg JR, Brand MD. 2011 The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J. Biol. Chem. 286, 31361 - 31 372. (doi:10.1074/ jbc.M111.267898)
67. Bleier L, Dröse S. 2013 Superoxide generation by complex III: from mechanistic rationales to functional consequences. Biochim. Biophys. Acta 1827, 1320-1331. (doi:10.1016/j.bbabio.2012.12.002)
68. Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A. 2015 Mitochondrial disease-related mutation G167P in cytochrome b of Rhodobacter capsulatus cytochrome $b c_{1}$ (S151P in human) affects the equilibrium distribution of [2Fe-2S] cluster and generation of superoxide. J. Biol. Chem. 290, 23 781-23 792. (doi:10.1074/jbc.M115.661314)
69. Darrouzet E, Moser CC, Dutton PL, Daldal F. 2001 Large scale domain movement in cytochrome $b c_{1}$: a new device for electron transfer in proteins. Trends Biochem. Sci. 26, 445-451. (doi:10.1016/S0968-0004(01)01897-7)

[^0]: (C) 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

