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We consider thermodynamics of the van der Waals fluid of quantum
systems. We derive general relations of thermodynamic functions and pa-
rameters of any ideal gas and the corresponding van der Waals fluid. This
provides unambiguous generalization of the classical van der Waals the-
ory to quantum statistical systems. As an example, we apply the van der
Waals fluid with Fermi statistics to characterize the liquid-gas critical point
in nuclear matter. We also introduce the Bose–Einstein condensation in the
relativistic van der Waals boson gas, and argue that it exhibits two-phase
structure separated in space.
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1. Introduction

The well-known theory of the van der Waals fluid is a very useful ex-
tension of the thermodynamics of classical ideal gases. It accounts for the
repulsive interactions of particles with extended volume, as well as for the
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inter-particle attractive force. In addition, it makes it possible to study
phase transitions. It is a semi-quantitative theory which has many applica-
tions to model the observed experimental behaviors of critical phenomena in
the liquid-gas phase transition. In particular, under some approximations,
it can be used as a phenomenological tool to describe phase structure of
nuclear, or thermodynamical properties of hadronic matter [1–16].

In general, the van der Waals equation of state is restricted to describe
classical fluids, where the effects of quantum statistics are neglected. Re-
cently, an interesting extension of the theory of quantum ideal gases has
been proposed to account for repulsive and attractive interactions in the low
density approximation [13, 14]. There, authors argued that a quantum gen-
eralization of the van der Waals equation of state is a non-trivial task, and
proposed three conditions that such a generalization should satisfy. The first
two are rather straightforward, as they require that, (i) in the limit where
both repulsive and attractive interactions are negligible, the new equation
of state should coincide with that of ideal quantum gases, and (ii) in the
limit of Boltzmann statistics, it should reproduce the classical van der Waals
equation. The third condition does not concern the equation of state as it
requires that the entropy is non-negative and tends to zero for T → 0. Based
on the above conditions, the authors in Refs. [13, 14] have proposed an in-
teresting approach to formulate the theory of the van der Waals fluid with
quantum statistics.

In the present paper, by a slight extension of the original van der Waals
argument we derive, unambiguously, general relations between the thermo-
dynamic functions and parameters of any ideal gas and those of its van
der Waals generalization. This allows for a straightforward formulation of
thermodynamics and the equation of state of the van der Waals fluids with
quantum statistics.

In the above approach, the conditions of Refs. [13, 14] are naturally
satisfied. In particular, we show that, in quantum systems with the van der
Waals interactions, the entropy does not change. Therefore, the entropy of
the van der Waals fluid tends to zero for T → 0 if, and only if, the same is
true for the corresponding ideal gas. Since, at constant volume and particle
numbers, the entropy is a non-decreasing function of temperature, this also
implies that it is non-negative.

As an application, we present thermodynamic functions for the van der
Waals fluids with quantum statistics, and show that, for fermions, our results
agree with those obtained previously in Ref. [13] by using different approach
and methods. For the van der Waals fluid of bosons, we argue that the Bose–
Einstein condensation appears and leads to two phases which are separated
in space.
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2. General analysis

Thermodynamic properties of a system are characterized by an equation
of state which relates different state variables associated with the matter.
A familiar example is the equation of state of the non-relativistic ideal gas
undergoing classical or quantum statistics

p = pid(V, T,N) . (1)

For a classical thermodynamic ideal gas, Eq. (1) reduces to a familiar form,
pid(V, T,N)V = NT , where N is the number of particles.

The knowledge of the equation of state, however, is not sufficient to find
all relevant thermodynamic functions and parameters, e.g. the equations
of state for the ideal gases of monoatomic and of diatomic molecules are
identical, but the temperature dependence of the energy of the two gases
differs.

The full thermodynamic information is contained in the free energy which
is obtained by integrating the thermodynamic identity,

∂F (V, T,N)

∂V
= −p(V, T,N) , (2)

as

Fid(V, T,N) =

V0∫
V

pid
(
V ′, T,N

)
dV ′ + fid(V0, T,N) , (3)

where V0 is an arbitrary volume parameter, and fid is a function which
cannot be determined by the equation of state.

A very well-known, and phenomenologically relevant, extension of an
ideal gas equation of state is the van der Waals generalization, which ac-
counts for the repulsive and attractive interactions in a fluid. Denoting by
a and b, the parameters which control the strength of the attractive and re-
pulsive interactions, respectively, the equation of state of the van der Waals
fluid reads [17]

p(V, T,N) =
NT

V − bN
− an2 , (4)

where n = N/V is the particle density.
The van der Waals equation of state (4) can be obtained from the ideal

gas equation of state (1) by the following replacements1

pid(V − bN, T,N) = p(V, T,N) + an2 , (5)
Vid = V − bN , (6)

1 It is assumed that there is no Bose–Einstein condensate.
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where V is the volume of the van der Waals fluid, and n(V, T,N), the cor-
responding particle density. According to substitution (6), the density in an
ideal gas, nid(Vid, T,N) is related to n(V, T,N), as

1

nid(V − bN, T,N)
=

1

n(V, T,N)
− b . (7)

The replacements in Eqs. (5) and (6), applied in the ideal gas equation
of state, pid(Vid, T,N)Vid = NT , yield indeed the standard van der Waals
equation of state (4).

In the statistical systems, knowing the equation of state is already suffi-
cient to characterize the phase transition. Indeed, supplementing it by the
conditions

∂p

∂n
= 0 ,

∂2p

∂n2
= 0 , (8)

it is possible to identify the critical point (CP), if any. In the classical van
der Waals fluid e.g., one can express the parameters, nc, Tc, pc, at the CP
by the interaction constants, a and b, as2

nc =
1

3b
, Tc =

8a

27b
, pc =

a

27b2
. (9)

From the equation of state, one can also calculate fluctuations of the particle
number, which are important characteristics of the phase transition [15, 18–
25]. These are quantified by the corresponding cumulants χk of the order of
k > 0, as

χk
V T k−1

=
∂kp

∂µk

∣∣∣∣∣
T

=

(
n
∂

∂p

)k
p

∣∣∣∣∣
T

, (10)

where to get the second equality, we have used the Gibbs–Duhem equation.
In order to find, however, all thermodynamic functions of the van der

Waals gas, one needs the free energy. Integrating the equation of state of
the van der Waals fluid as in Eq. (2), one finds

F (V, T,N) =

V0∫
V

(
pid
(
V ′ − bN, T,N

)
− aN

2

V ′2

)
dV ′ + f(V0, T,N) , (11)

where f is an integration “constant”.

2 In general, the coefficients can depend on the dimensionless parameter a
mb

, where m
is the particle mass.



Thermodynamics of van der Waals Fluids with Quantum Statistics 1947

On the other hand, Eq. (3) for the ideal gas can be rewritten as

Fid(V − bN, T,N) =

V0+bN∫
V

pid
(
V ′ − bN, T,N

)
dV ′ + fid(V0, T,N) . (12)

In the following, we assume that for sufficiently large V0, the upper limit of
the integration in Eq. (12) can be replaced by V0. A sufficient condition is
that, in the low density limit, pid(V, T,N) is proportional to 1

V . The two
preceding equations can be combined to give

F (V, T,N)− Fid(V −Nb, T,N) =

∞∫
V

[
p
(
V ′, T,N

)
− pid

(
V ′−bN, T,N

)]
dV ′

+f(∞, T,N)− fid(∞, T,N)

= −aN
2

V
+ [f(∞, T,N)− fid(∞, T,N)] .

(13)

In the spirit of the van der Waals approach, we make the assumption

f(∞, T,N) = fid(∞, T,N) . (14)

Consequently,

F (V, T,N) = Fid(V − bN, T,N)− aNn . (15)

The above equation relates the free energy of the ideal and van der Waals
gas, and thus allows to extract all relevant thermodynamic quantities in a
transparent way. In particular, differentiating relation (15) with respect to
the temperature, one gets the relation between entropies

S(V, T,N) = Sid(V − bN, T,N) . (16)

It is rather transparent that conditions (14) and (16) are equivalent. Indeed,
in the van der Waals picture, the effect of the excluded volumes around the
particles is assumed to be compensated by a suitable increase of the total
volume. If so, the number of states accessible to the gas, and consequently
its entropy, should remain unchanged. Another argument is that, since the
replacements (5) and (6) leave the temperature and the number of particles
unchanged, there is no reason to expect that f(T,∞) 6= fid(T,∞).

Following Eq. (16) and applying the thermodynamic identity, E = F +
TS, one gets the energy of the van der Waals fluid

E(V, T,N) = Eid(V − bN, T,N)− aN
2

V
. (17)
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Finally, differentiating both sides of Eq. (15) with respect to N , we obtain
the following relation between chemical potentials of the ideal and the van
der Waals gases

µ(V, T,N) = µid(V − bN, T,N) + bpid(V − bN, T,N)− 2an(V, T,N) . (18)

Let us notice that the van der Waals equation of state can be justified
from statistical physics only in the low density limit. It is an intuitive
extrapolation, though a very useful one.

3. van der Waals fluids with quantum statistics

In the previous section, we have established the relation between the free
energy, and some other state variables, of the ideal and the van der Waals
gas. Following previous discussions in Refs. [13] and [14], we focus now, on
the quantum statistics generalization of the van der Waals fluid. We assume
first, that for bosons, there is no Bose–Einstein condensate contribution.

Let us consider the ideal gases with quantum statistics. In general, the
equation of state for quantum ideal gases is given in a parametric form

N

V
=

d

2π2

∞∫
0

k2dk

eβ[ε(k)−µid] + η
, (19)

p(V, T,N) =
d

6π2

∞∫
0

k4

eβ[ε(k)−µid] + η

dk

ε(k)
, (20)

where β = 1/T , ε(k) =
√
k2 +m2 is the particle energy, and d its degeneracy

factor, while η = 1 for fermions and η = −1 for bosons.
For a study of this equation of state, the chemical potential is a derived

variable. For given values of V, T,N , the parameter µid can be calculated
from equation (19), and substituting it into Eq. (20), the corresponding
value of p(T, V,N) can be found.

For the van der Waals fluids with quantum statistics, we derive the
equations of state by making the substitutions (5) and (6) in Eqs. (19) and
(20). Consequently, we obtain the following parametric equation of state:

N

V − bN
=

d

2π2

∞∫
0

k2dk

eβ[ε(k)−µ] + η
(21)

and

p(V, T,N) =
d

6π2

∞∫
0

k4

eβ[ε(k)−µ] + η

dk

ε(k)
− aN

2

V 2
, (22)
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The parameter µid in Eq. (19) is the chemical potential of the ideal gas.
Therefore, comparing with equation (21), one finds that

µ = µid(V − bN, T,N) (23)

is not the chemical potential (18) of the quantum van der Waals fluid.
Equations (17) and (18) can be used to calculate the energy and the

chemical potential of the quantum van der Waals fluids in terms of the
thermodynamic functions and parameters of the corresponding ideal gases.
Furthermore, according to Eq. (16), the entropy of the quantum van der
Waals fluids vanishes at T = 0.

To illustrate the importance of the effects of quantum statistics on the
van der Waals equation of state and its critical properties, we consider its
application to the description of the liquid-gas phase transition in nuclear
matter [1, 2, 26–28]. Following Ref. [13], we model the nuclear matter as
a gas of nucleons. Thus, in Eqs. (21) and (22), the parameters are chosen
as: η = +1, d = 4 and m = 0.939 GeV. In addition, to fix the interaction
strength parameters, we take as inputs, at T = 0 and p = 0, the experimental
values of the particle density n0 = 0.16 fm−3, and the energy per nucleon
ε0 =

E
N = 0.922 GeV.

The issue is to find in the van der Waals fluid the density nc, temperature
Tc and pressure pc at the critical point with quantum statistics.

We first determine the parameters a and b from the input data. To
proceed, it is convenient to define the following functions:

fn =
d(−1)nn!

6π2

∞∫
0

dk k4

ε(k)

eβn(ε(k)−µ)(
eβ(ε(k)−µ) + η

)n+1 , (24)

gn =
d(−1)nn!

2π2

∞∫
0

dk k2eβn(ε(k)−µ)(
eβ(ε(k)−µ) + η

)n+1 , (25)

εid =
d

2π2

∞∫
0

ε(k)k2dk

eβ(ε(k)−µ) + η
. (26)

Then, Eqs. (21), (22) and (17), applied at T = 0 and p = 0, yield:

n0
1− bn0

= g0(0, µ) , (27)

p = f0(0, µ)− an20 = 0 , (28)
ε0 = εid(0, µ)

(
n−10 − b

)
− an0 . (29)
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Thus, the value of µ is obtained from

n0(εid(0, µ)− g0(0, µ)ε0) = f0(0, µ)g0(0, µ) . (30)

Its solution, µ = 0.9994 GeV, substituted into the first two equations, yields

a = 0.3291 GeV fm3 , b = 3.416 fm3 , (31)

in agreement with the results of Ref. [13].
In order to find the parameters at the CP, we need, in addition to the

equation of state (21) and (22), also relations (8). For the present case, they
can be written in the following form

f1(T, µ)(1 + bg0(T, µ))
3 − 2ag0(T, µ)g1(T, µ) = 0 , (32)

f2(T, µ)

f1(T, µ)
− g2(T, µ)

g1(T, µ)
+
g1(T, µ)

g0(T, µ)

2bg0(T, µ)− 1

1 + bg0(T, µ)
= 0 . (33)

Solving this pair of equations for T and µ, yields

Tc = 19, 72 MeV , µc = 0.9484 GeV . (34)

Substituting these values of the critical temperature and the parameter µc
into the equation of state, we get

nc = 0.072 fm−3 , pc = 0.526 MeV fm−3, (35)

as the critical density and pressure at the CP of the nuclear matter modeled
as the van der Waals fluid with quantum statistic.

The results in Eqs. (34) and (35) agree with those obtained in Ref. [13],
showing that our formulation of the van der Waals model with quantum
statistics is quantitatively consistent with previous findings.

It is worth noting that in the van der Waals model with Boltzmann
statistics, and at the same values of a and b, the critical temperature at
the CP is by almost ten degrees higher. Thus, in the application of this
model to the liquid-gas phase transition in nuclear physics, the quantum
statistic effects are important, and make the location of the CP closer to
that extracted in the experiments.

4. Bose–Einstein condensation in the van der Waals
quantum fluids

The van der Waals model is not sufficiently detailed to describe quanti-
tatively the Bose–Einstein condensation, a qualitative description, however,
can be given.
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Let us consider first the ideal gas of bosons. As it is seen from Eq. (19),
the particle density, at any given temperature, increases with the chemical
potential up to µcid = m, and beyond that value the integral becomes di-
vergent. Consequently, when more particles are introduced into the system,
they form a condensate, i.e. a fluid of particles distributed uniformly over
the volume V , where each particle is in its ground state, i.e. has momentum
zero.

Let us denote by nc the density of particles from the condensate, and by
na the density of active particles with the momentum distribution given by
the integrand in Eq. (19). Thus,

n = na + nc (36)

is the total density of particles in the system.
The particles from the condensate do not strike the walls and, there-

fore, do not contribute to the pressure. Consequently, after na reaches its
maximum value, the pressure does not depend on the particle density n.
Therefore, the gas satisfies the thermodynamic stability condition(

∂p

∂n

)
T

≥ 0 . (37)

For the van der Waals gas with a condensate, the substitution in Eq. (6)
remains valid, whereas Eq. (5) becomes

pid(V − bN, T,N) = p(V, T,N) + anna . (38)

This is because only the active particles hit the walls, while all the particles
contribute to the force pulling back a particle about to hit the wall. In the
region considered, the pressure pid does not depend on the total particle
density. Consequently, the pressure p, decreases with increasing n. This
contradicts the stability condition (37).

In order to see how the system collapses, let us consider a vessel, con-
taining the fluid with the condensate, divided into two parts A and B by
a mobile wall impermeable to particles. We start with the fluid with both
na and nc being constant. Suppose now, that the wall has moved by fluc-
tuations, so that volume A increases a little at the expense of volume B.
Consequently, in A, the number of places for active particles has increased
and the amount of condensate has decreased. The density of active parti-
cles does not change, but the density n gets reduced because the volume
has increased. As a result, the pressure of the fluid on the walls in A in-
creases. A similar argument shows that the pressure in B decreases. Thus,
A goes on growing and B shrinking. The particles of the van der Waals
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fluid, however, have finite volumes. Therefore, when the particle density in
B becomes of the order of 1/b, an additional contribution to the pressure in
B appears, and the process gets stopped. Another wall can be introduced
into the increased volume A, and the process may be repeated. Let us keep
the notation A for the expanding part of the volume. After enough repeti-
tion, the region A will contain only active particles. This is an implication
of the fact that for the van der Waals fluid, as opposed to the ideal gas,
a homogenous phase consisting of both active and condensate particles is
unstable. Thus, in the van der Waals fluid with Bose–Einstain’s condensate,
one expects the appearance of the two separated phases.

The above discussion is not enough to conclude whether the two, well-
separated phases will be formed in the system, or one of the phases will
be dispersed in the form of small droplets, in the other. The need for the
separation, however, follows directly from the relation between the pressure
and the total particle density.

5. Conclusions

The objective of these studies was to establish the generalization of the
van der Waals fluid to account for the quantum statistics. The main result
is the transparent and unambiguous derivation of the relation between the
free energy of any ideal gas and the corresponding van der Waals fluid.

In order to establish such generalization, it is not enough to use the
equations of state, but some additional assumptions are needed. The reason
is rather straightforward, since the free energy, expressed as a function of
thermal variables, defines all relevant thermodynamic functions of the sys-
tem, but the equation of state does not. The additional assumption needed
was that in the large volume limit the free energy of the ideal and van der
Waals gas coincide.

The theory based on the relation between the free energy of the ideal
gas and van der Waals fluid provides complete description of the equation of
state and thermodynamics of quantum systems. For practical applications,
it also implies transparent relations between entropies, energies and chemical
potentials of quantum ideal gases and the van der Waals fluids.

The simplicity of our approach is illustrated by discussing the van der
Waals gas with Fermi statistics and its application to a phenomenological
description of liquid-gas critical point in the nuclear matter. The Bose–
Einstein condensation in the van der Waals gas was argued to imply the
structure of two phases separated in space. This is because, in the presence
of the condensate, the stability condition, which requires non-decreasing
pressure with density at constant temperature, and which is fulfilled in the
ideal Bose gas, is not satisfied by the van der Waals quantum system.
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The quantum effective theory of fluids proposed here was shown to
satisfy all necessary conditions introduced in Ref. [13] to generalize the
van der Waals thermodynamic system to quantum statistics. However, these
conditions are not enough to formulate it.
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