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Abstract. The overall objective of this paper is to describe so-called direct and indirect 
discrete-continual boundary element methods of structural analysis (DDCBEM and 
IDCBEM). Analytical formulations of the problem in terms of each methods are given. Using 
fundamental operational relations of direct and indirect approaches after construction of 
corresponding fundamental matrix-function in a special form convenient for problems of 
structural mechanics and its application in both cases we obtain resolving set of differential 
equations with operational coefficients. The discrete-continual design model for structures 
with constant physical and geometrical parameters in one direction is offered on the basis of 
so-called discrete-continual boundary elements. Basic pseudodifferential operators are 
approximated discretely by Fourier series. Fourier transformations and Wavelet analysis can 
be applied as well. Computational algorithms of DDCBEM, IDCBEM and corresponding 
software are proposed and described. 
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1 INTRODUCTION 

The distinctive paper is devoted to basic description of so-called direct discrete-continual 
boundary element method (DDCBEM) and indirect discrete-continual boundary element 
method (IDCBEM) of structural analysis. Their field of application comprises structures with 
invariability of physical and geometrical parameters in some dimensions. We should mention 
here in particular such objects as beams, thin-walled bars, strip foundations, plates, shells, 
deep beams, high-rise buildings, extensional buildings, pipelines, rails, dams and others. 
DDCBEM and IDCBEM come under group of semianalytical methods [3-6,12-13]. 
Semianalytical formulations are contemporary mathematical models which are becoming 
realizable at pre-sent due to substantial speed-up of computer productivity. DDCBEM and 
IDCBEM are based on pseudodifferential boundary equations. Corresponding operators are 
approximated dis-cretely by Fourier series. Wavelet analysis can be applied as well. Key 
features of DDCBEM and IDCBEM include double reduction of dimension. Only cross-
sectional boundary is under discretization, namely we consider one-dimensional problem. 
Other advantages of DDCBEM and IDCBEM are allowance of advanced analysis in vital 
areas, simple data processing, effective computational schemes and computer-oriented 
algorithms. We consider the second boundary value problem for three-dimensional 
elastostatics as a specific example of using DDCBEM and IDCBEM (Figure 1). 

 
Figure 1. Sample of considering structure 

2 ANALYTICAL FORMULATION OF THE PROBLEM IN TERMS OF DDCBEM 
AND IDCBEM 

2.1. Conventional formulation of the problem. 
Conventional formulation of the second boundary value problem for elastostatics has the 

form [14-15] 

Ω∈−=σ∂= ∑
=

x  ,FLu i

N

1j
ijj ,   Ω∂∈−=σν= ∑

=

x   ,fu i

N

1j
ijjl ,   N ... 1,i = ,       (2.1) 

where Ω  is the domain occupied by structure; N  is the dimensionality; L is the operator 
defining conditions in the domain; l  is the operator defining conditions at the domain 
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boundary  Ω∂ , T
N1 ]   ...   [ νν=ν  is its unit normal direction vector with 0N =ν ; ijσ  are 

stress components; x  is the coordinate vector; u  is the displacement vector; F  is the body 
force vector; f  is the boundary traction vector. 

Hereinafter we will study three-dimensional problems for definiteness.  

2.2. Operators defining conditions in the domain and at the domain boundary. 

Let 3x  be coordinate axis with invariability of physical and geometrical parameters of 
structure (basic direction). The reader will have no difficulty in showing for three-
dimensional problem that 
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2.3. Operators defining conditions in the domain and at the domain boundary. 

2.3.1. Fundamental operational relation of direct approach. 

Fundamental operational relation of direct approach has the form [6,11] 

)u(uuLuL ΞΞ δ−δ+θ=θ *ll ,                                           (2.7) 

where )x(θ  is the characteristic function of domain Ω ; Ξδ  is the delta function of domain 
boundary Ω∂  [6]. 

2.3.2. Construction of differential equation set of the first order with operational 
coefficients. 

Combining (2.2)-(2.6) and (2.1) we get: 

).u()u(uLuLuL *
03

*
1031

2
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In this case 

fF Ξδ+θ=F ;   uuv 3∂=′= ;   vv 3∂=′ .                                  (2.9) 

After uniting of (2.8) and (2.9) and corresponding formula translation we obtain the following 
differential equation set of the first order with respect to 3x  
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UFULU *
GGG Ξδ++=′ l ,                                               (2.10) 

where            TTTTTT ]v u[]v u[U =θθ= ;   UU 3∂=′ ;   uu θ= ;   vv θ= ;                     (2.11) 
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It is readily seen that all coefficients in (2.10) are pseudodifferential operators and E  is 
identity operator of the corresponding order. 

2.3.3. Fundamental matrix-function of differential equations set. 
Consider the auxiliary equation set 

ULU G=′ .                                                        (2.13) 

Let iλ  be eigenvalue of operator GL  and im  be multiplicity of  iλ . It can be proved that 
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In exactly the same way for 2λ  we could have written 
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Thus, Jordan decomposition of GL  is defined by formulas: 
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We use the following notation: 
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Fundamental matrix-function of (2.16) is the solution of the following set of differential 
equations: 

E)x()x(L)x( 33G3 δ=ε−ε′ ,                                        (2.29) 
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Here 1,20,21,10,1 P~,P~,P~,P~  are 3x -independent pseudodifferential operators with respect to 
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Here k,j,iP  is numerical matrix coefficient. 

2.3.4. Resolving set of operational boundary equations. 
After convolution of fundamental matrix-function (2.30) with both sides of (2.10) the 

result is 
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2.3.5. Reduction of the problem. Reduced resolving set of operational boundary 
equations.  

Major disadvantages of (2.38) are double number of unknowns and high (second) order of 
pseudodifferential operators with respect to 21 x,x . However it can be checked that they 
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operate on components 321 u ,u ,u  only. In this connection it is preferable to exclude 321 u ,u ,u  
as part of reduction procedure. Reduction is based on the following formulas of integration 
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and well-known properties of convolution 
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Here )x,x,x(K 321  is an arbitrary operator from (2.34)-(2.37). 

In accordance with such algorithm after numerous transformations we get couple of 
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2.4. Operational formulation of the problem in terms of IDCBEM. 

2.4.1. Fundamental operational relation of indirect approach. 
Fundamental operational relation of indirect approach has the form [6,11] 
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After uniting of (2.64) and 

uuv 3∂=′= ;   vv 3∂=′                                            (2.65) 

with corresponding formula translation we obtain the following differential equation set of the 
first order with respect to 3x  

GGG qFULU Ξδ++=′ ;                                            (2.66) 
TTT ] v   u [U = ;   UU 3∂=′ ;                                        (2.67) 

 ⎥⎦
⎤

⎢⎣
⎡= −−

1
1

20
1

2
G L     LLL

 E          0   
L ;  ⎥⎦

⎤
⎢⎣
⎡−= − FL

   0   F 1
2

G ;    ⎥⎦
⎤

⎢⎣
⎡−= −  q L

  0   q 1
2

G ;   qLq~ 1
2
−−= .      (2.68) 

2.4.3. Construction of differential equation set of the first order with operational 
coefficients. 

Fundamental matrix-function of auxiliary differential equation set (2.13) has been already 
constructed in paragraph 2.3.3 and finally has the form (2.30). After its convolution with both 
sides of (2.66) and transformations the result is 

).q~(*]P|x|PxP)x(signP|)[x|||exp(    

F*]P|x|PxP)x(signP|)[x|||exp(U

3

r
1,23

r
0,23

r
1,13

r
0,132

r
G3

r
1,23

r
0,23

r
1,13

r
0,132

Ξδ+++∇−+

++++∇−=
           (2.69) 

Note that r
1,2

r
0,2

r
1,1

r
0,1 P,P,P,P  are reduced pseudodifferential operators corresponding to 21 x,x , 

namely [2] 
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;P||P||P||                                                       
P||P||P||P

r
6,0,1

1
22

r
5,0,1

1
21

r
4,0,1

3
2

2
2

r
3,0,1

3
221

r
2,0,1

3
2

2
1

r
1,0,1

1
2

r
0,1

−−−

−−−

∇∂+∇∂+∇∂+
+∇∂∂+∇∂+∇=

  (2.70) 

;P||P||       
P||P||P||P||P

r
6,0,2

1
2

2
2

r
5,0,2

1
221

r
4,0,2

1
2

2
1

r
3,0,22

r
2,0,2

1
22

r
1,0,2

1
21

r
0,2

−−

−−−

∇∂+∇∂∂+
+∇∂+∇+∇∂+∇∂=

            (2.71) 

;PPP||P||P||PP r
6,1,22

r
5,1,21

r
4,1,2

2
2

2
2

r
3,1,2

2
221

r
2,1,2

2
2

2
1

r
1,1,2

r
1,2 ∂+∂+∇∂+∇∂∂+∇∂+= −−−        (2.72) 

r
1,1,1

r
1,1 PP = ;   FLF 1

2
r

G
−−= .                                         (2.73) 

It can easily be checked that boundary conditions may be expressed as: 

fUG =l ;                                                       (2.74) 
T

10G ]   [ lll = ;   2,G21,G1G lll ν+ν= ;                               (2.75) 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
∂∂

γ∂γ∂+γ
µ−=

0    0     1         0          0      
0     0     0     0                 
     0     0     0     2)(

1

12

21

G,1l ;   
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

∂
γ∂+γ∂γ

∂∂
µ−=

 0     1     0              0        0  
     0    0     0   2)(  

 0     0     0     0                 

2

21

12

G,2l . (2.76) 

Combining (2.74) and (2.69), we obtain 

0.x   ,F*]Q|x|QxQ)x(signQ|)[x|||exp(f

)q~(*]Q|x|QxQ)x(signQ|)[x|||exp(
2

1i

r
G3

r
i,1,23

r
i,0,23

r
i,1,13

r
i,0,132i

3

r
i,1,23

r
i,0,23

2

1i

r
i,1,13

r
i,0,132i

+Ξ→+++∇−ν−=

=δ+++∇−ν

∑

∑

=

Ξ
= (2.77) 

Each of r
k,j,iQ  can be visualized as a sum of operators of the form s

2
q
2

p
1 || −∇∂∂  ( Ζ∈s,q,p ) 

with numerical matrix coefficients. 

1,2k  1; 0,j  1,2;i  ,PQ r
j,ik,G

r
k,j,i ==== l ;                                      (2.78) 

;Q||Q||        
Q||Q||Q||Q||Q

r
6,1,0,1

3
2

3
2

r
5,1,0,1

3
2

2
21

r
4,1,0,1

3
22

2
1

r
3,1,0,1

3
2

3
1

r
2,1,0,1

1
22

r
1,1,0,1

1
21

r
1,0,1

−−

−−−−

∇∂+∇∂∂+
+∇∂∂+∇∂+∇∂+∇∂=

   (2.79) 

;Q||Q||        
Q||Q||Q||Q||Q

r
6,2,0,1

3
2

3
2

r
5,2,0,1

3
2

2
21

r
4,2,0,1

3
22

2
1

r
3,2,0,1

3
2

3
1

r
2,2,0,1

1
22

r
1,2,0,1

1
21

r
2,0,1

−−

−−−−

∇∂+∇∂∂+
+∇∂∂+∇∂+∇∂+∇∂=

  (2.80) 

r
1,1,1,1

r
1,1,1 QQ = ;   r

1,1,2,1
r

1,2,1 QQ = ;   r
2,1,0,2

1
221

r
1,1,0,2

1
2

2
1

r
1,0,2 Q||Q||Q −− ∇∂∂+∇∂= ;           (2.81) 

r
2,2,0,2

1
2

2
2

r
1,2,0,2

1
221

r
2,0,2 Q||Q||Q −− ∇∂+∇∂∂= ;                                (2.82) 

;Q||         
Q||Q||Q||QQQ

r
6,1,1,2

2
2

3
2

r
5,1,1,2

2
2

2
21

r
4,1,1,2

2
22

2
1

r
3,1,1,2

2
2

3
1

r
2,1,1,22

r
1,1,1,21

r
1,1,2

−

−−−

∇∂+
+∇∂∂+∇∂∂+∇∂+∂+∂=

       (2.83) 

.Q||         
Q||Q||Q||QQQ

r
6,2,1,2

2
2

3
2

r
5,2,1,2

2
2

2
21

r
4,2,1,2

2
22

2
1

r
3,2,1,2

2
2

3
1

r
2,2,1,22

r
1,2,1,21

r
2,1,2

−

−−−

∇∂+
+∇∂∂+∇∂∂+∇∂+∂+∂=

       (2.84) 

2.5. Alternative representations of basic pseudodifferential operators of DDCBEM 
and IDCBEM. 

Basic pseudodifferential operators of DDCBEM and IDCBEM presented above can also be 
formulated with the use convolutions [8-9].  

Let )x,x(f 21  be arbitrary function and 
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2
2

2
1 xxr += .                                                       (2.85) 

Summary is the following 

)x,x(f
r
1

2
1)x,x(f|| 21x,x3212

21

∗
π

−=∇ ;   )x,x(f
r
1

2
1)x,x(f|| 21x,x21

1
2

21

∗
π

=∇ − ;       (2.86) 

)x,x(frln)2/1()x,x(f 21x,x21
2

2
21

∗π−=∇− ;   )x,x(fr)2/1()x,x(f|| 21x,x21
3

2
21

∗π−=∇ − ;  (2.87) 

;0x   ),x,x(f
xr

1
2
1)x,x(f|)x|||exp(|| 321x,x2

3
22132

1
2

21

≠∗
+π

=∇−∇ −             (2.88) 

;0x  ),x,x(f)xr|xln(|
2
1)x,x(f|)x|||exp(|| 321x,x

2
3

2
32132

2
2

21

≠∗++
π

−=∇−∇ −     (2.89) 

;0x   ),x,x(f]xr                                                                              

)xr|xln(||x[|
2
1)x,x(f|)x|||exp(||

321x,x

2
3

2

2
3

2
332132

3
2

21

≠∗+−

−++
π

−=∇−∇ −

    (2.90) 

;0x   ),x,x(f
)xr(
|x|

2
1)x,x(f|)x|||exp( 321x,x2/32

3
2

3
2132

21

≠∗
+π

=∇−           (2.91) 

;0x   ),x,x(f
)xr(

1
)xr(

x3
2
1)x,x(f|)x|||exp(|| 321x,x2/32

3
22/52

3
2

2
3

21322
21

≠∗⎥
⎦

⎤
⎢
⎣

⎡
+

−
+π

=∇−∇  (2.92) 

.0x   ),x,x(f
)xr(

x3
)xr(
|x|5

2
3)x,x(f|)x|||exp(|| 321x,x2/52

3
2

3
2/72

3
2

3
3

2132
2

2
21

≠∗⎥
⎦

⎤
⎢
⎣

⎡
+

−
+π

=∇−∇    (2.93) 

2.6. The one approach to regularization of kernels of basic pseudodifferential 
operators in problems of structural mechanics. 

In general, the problem of the solution of the integral and integral-differential equations 
with kernels of a kind 0k ,|x| ,x kk >−−  arises by consideration of various technical problems. 
The specified kernels not always can be calculated in sense Cauchy. Kernels of type |x|ln  
and 1x−  though are integrated in any sense, in some points they accept infinite values that leads 
to solution with infinity which make harder enough formulas of numerical integration. The 
listed functions should be more correctly understand in the generalized sense, i.e. in the form 
of their regularizations. Many of existing formulas for regularization (canonical, not canonical, 
etc.) are ambiguous from the point of view of numerical realization, appearing useful, mainly, 
for theoretical researches. Obviously one can see regularization ))x(f(Vp  from function f (x) 
as a derivative of the corresponding order from some continuous function, for example, 

)!1k/()]1|x|(lnx[)1()x/1(Vp )1k(1kk −−−= +− ;   )2()]1|x|(ln|x[||)x|/1(Vp −= .    (2.94) 

Thus, after regularization this generalized function can be represented as a finite-difference 
sequence of the derivatives with the corresponding order with parameter h from some 
continuous function, i.e. 

)x(FDlim))x(f(Vp s

0h→
= ,                                           (2.95) 

where )x(f)x(F )s(−=  is the continuously define antiderivative of the function f(x) order “s”, 
sD  is the differential finite-difference operator order “s” with a step equal “h”. Values 
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))x(f(Vp  estimated in a point remotely located from the coordinates origins, should almost 
match with corresponding value of the function )x(f , so one can use )x(f  itself. Alternative 
approach to the regularization singular kernels is their approximation by Fourier series. 

2.7. Methods of additional regularization of kernels of pseudodifferential operators in 
terms of DDCBEM and IDCBEM. 

Regularization of kernels of pseudodifferential operators implies decrease of their orders. 
This procedure is especially effective for correctness of computation, better approximation of 
unknowns and simplification of corresponding discrete model. We can suggest at least two 
approaches to this problem. 

First one is based on well-known properties of convolution (2.59) and intends single or 
multiple «throwing over» of derivative from the kernel of pseudodifferential operator to 
unknown vector function. We are of the opinion, for instance, that it is useful to apply such 
procedure twice in case of IDCBEM. 

Alternative approach involves single or multiple integration of boundary operational 
equations and application of the following property of convolution. 

1,2,3i ),x,x,x(u*)dx)x,x,x(K(dx)]x,x,x(u*)x,x,x(K[ 321i333213321i3321 == ∫∫ .  (2.96) 

Let us say that double integration in case of IDCBEM is advantageous as well. 
In both cases we use formulas of integration: 

|;x||||)x|||exp(||dx|)x|||exp( 3
1

232
2

2332
−− ∇+∇−∇=∇−∫∫                 (2.97) 

|);x|||exp()x(sign||)x(sign||dx|)x|||exp()x(sign 323
2

23
2

2323 ∇−∇+∇−=∇− −−∫∫    (2.98) 

|);x|||exp()x(sign||2                                            
|)x|||exp(x||)x(sign||dx|)x|||exp(x

32
3

2

323
2

23
3

23323

∇−∇+

+∇−∇+∇−=∇−
−

−−∫∫         (2.99) 

.|x||||)x|||exp(||2                                                                   
|)x|||exp(|x|||dx|)x|||exp(|x|

3
2

232
3

2

323
2

23323
−−

−

∇+∇−∇+

+∇−∇=∇−∫∫        (2.100) 

2.8. Allowance for supports restrained by elastic members in terms of DDCBEM and 
IDCBEM. 

If the considering structure has supports restrained by elastic members on the border, they 
can be taken into account in the stage of initial formulation 

Ω∈−=σ∂= ∑
=

x  ,FLu i

3

1j
ijj ;   Ω∂∈+−=σν= ∑

=

x   ,uCfu i

3

1j
ijjl ;   3 2, 1,i = ,    (2.101)  

where C  is the corresponding matrix function of elastic responses, 

}c ,c ,c{diag)x(CC 321==                                        (2.102) 

and 321 c ,c ,c  are elastic responses in 321 Ox ,Ox ,Ox  directions. 
Subsequent procedure is completely analogues to described above. 
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3 NUMERICAL IMPLEMENTATION OF DDCBEM AND IDCBEM 

3.1. Discrete-continual design model of the border. 
Special discrete-continual model [1-2] of the border Ξ  is introduced for three-dimensional 

problems. It presupposes mesh approximation of the cross-section border while in the basic 
direction ( 3Ox ) problem remains continual. Thus, border Ξ  is divided into so-called discrete-
continual boundary elements iΞ  (Figure 2) 

U
belN

1i
i 

=

Ξ=Ξ ;   ]}L ,L [x ;Г)x,(x :)x,x,x{( 333i21321i  −∈∈=Ξ .                 (3.1) 

 
Figure 2. Discrete-continual design model and discrete-continual boundary elements. 

3.2. Discrete-continual boundary element (DCBE) and its characteristics. 

Consider arbitrary DCBE iΞ  and its arbitrary cross-section iГ . We have (Figure 2) 

}xxx ;xxx :)x,x,(x{Г 12,i22,i11,i11,i321i ++ ≤≤≤≤= .                             (3.2) 

Basic geometrical parameters of DCBE’s cross-section iГ  are defined by formulas 

2
i,2

2
i,1i hhh += ;   i,11i,1i,1 xxh −= + ;   i,21i,2i,2 xxh −= + ;                      (3.3) 

),,( 3i,2i,1i ννν=ν ;   ii,2i,1 h/h−=ν ;   ii,1i,2 h/h=ν ;   03 =ν .                 (3.4) 

3.3. Element coordinate system. 
Local coordinate system is introduced in arbitrary cross-section of DCBE ( 1] ,0[t∈ , 

Figure 2). Renumbering of nodes in cross-section of element is performed ( 21i  ; 1 i ⇒+⇒ ). 

3.4. Selection of extended domain and orthonormal Fourier basis. 
In accordance with distinctive approach the given domain Ω  is embordered by extended 

one ω  in the form of a cube, 

}. x  ;x  ;x   :)x,x,x( { 333222111321 llllll <<−<<−<<−=ω                   (3.5) 

We use the following set of functions as the orthonormal Fourier basis in )(L3 ω  ( =321 k ,k ,k  
... 2, 1, ,0 ±±= ): 
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)x()x()x()x( 3k2k1kk 321
ϕϕϕ=ϕ ;   )xexp(

2
1)x( ik

i
ik ii

λ=ϕ
l

;  
i

i
k

k
i l

i π
=λ .     (3.6) 

In practice we take into account finite quantity of terms of series: 1,2,3i ,NkN iii =≤≤− . 

3.5. Use of Lanczos factors. 

Lanczos factors kσ  can be used for convergence acceleration of Fourier series. Let )x(f  
be arbitrary function. Corresponding formula of approximation has the form 

∑
−=

ϕσ≈
N

Nk
kkk )x(f)x(f ;   ∏

=

σ=σ
3

1i
kk i

;   10 =σ ;                              (3.7) 

0k   ,
N
kexp

N
kexp

k
1

2
N

i
i

i

i

i

i

i
ik ≠⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ π
−

π
=σ ii

l
i ;                             (3.8) 

3.6. Numerical implementation of IDCBEM. 

3.6.1. Approximation of nodal unknown functions. 

Basic nodal unknown functions are components of vector function T
3213 ]q ,q ,q[)x(q =  

denoted by T
i3,i2,i1,i ]q ,q ,q[q = , 2,..., 1,i =  belN . For the sake of being definite, suppose its 

piecewise constant approximation along Г  and this implies that iq  is assumed to be constant 
within iГ . 

3.6.2. Approximation of basic pseudodifferential operators. 

Let )x,x(ff 21=  be arbitrary function. Pseudodifferential operators 1 0,j 2; 1,i ,Pr
j,i ==  

are approximated by Fourier series: 

∑ ∑
−= −=

ϕϕ≈
1

11

2

22

212121

N

Nk

N

Nk
2k1kkk

r
k,k,j,i21

r
j,i )x()x(fP)x,x(fP ;                            (3.9) 

r
kk,0

r
kk,1

r
kk,1

r
kk,0

r
kk0,1 2121212121

T~TT~TP += ;     r
kk,1

r
kk,1

r
kk,0

r
kk,0

r
kk1,1 2121212121

T~TT~TP += ;          (3.10) 
r

kk,0
r

kk,1
r

kk,1
r

kk,0
r

kk,0,2 2121212121
T~HTT~HTP += ;   r

kk,1
r

kk,1
r

kk,0
r

kk,0
r

kk,1,2 2121212121
T~HTT~HTP += ;    (3.11) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

λγ
λλ
λλ
λ

λ−
λ

λ=

0             0    
0          0      
 0          0      

0          0           
       0             0   
          0             0   

T

21

212

211

21

1

2

2121

kk4

kkk

kkk

kk

k

k

kk
r

kk,0 ;  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
γ

λλγλλγ

λ
−=

0              0                    0        
             0                    0        

 0     /    /
1T~ 4

2
kkk3

2
kkk3

kk

r
kk,0

212211

21

21
; (3.12) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

λ
λλλ
λλ−λ

γ
λ
λ

−=

0            0       
                0  
             0  

0                   0  
0            0        
0            0        

T

2
kk

kkkk

kkkk

5

k

k

r
kk,1

21

2112

2121

2

1

21
;  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λλγ−λλγ
λλγλλγ

λ
=

0    /   / 
 0     /     /

 0             0                     0        1T~
2

kkk1
2

kkk1

kkk2kkk2
kk

r
kk,1

211211

212211

21

21
; (3.13) 
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)( 2
k

2
kkk 2121

λ+λ−=λ .                                           (3.14) 

We stress that all formulas presented in paragraph 3.6.2 are correct except case 
0kk 21 == , which requires exclusive consideration. Corresponding component of solution 

we are calling “beam” component. Paragraph 3.6.3 is defined to the problem of its definition. 

Pseudodifferential operators 2; 1,i ,Qr
m,j,i =  2 ,1m  1; 0,j ==  in their turn are approximated 

in accordance with formulas 

∑ ∑
−= −=

ϕϕ≈
1

11

2

22

212121

N

Nk

N

Nk
2k1kkk

r
k,k,m,j,i21

r
m,j,i )x()x(fQ)x,x(fQ ;   r

kk,j,ikk,m,G
r

kk,m,j,i 212121
PQ l= ;      (3.15) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γλγ
λγλγ

γλγλγ
=

0       0                0          0   
0       0        0        0        

       0        0        0        

7k7

k7k7

6k6k5

kk,G,1

1

12

21

21
l ;                           (3.16) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

γλγ
γλγλγ

λγλγ
=

 0             0           0           0  
       0       0        0          

 0       0       0        0          

7k7

6k5k6

k7k7

kk,G,2

2

21

12

21
l ;                           (3.17) 

)2(5 +γµ−=γ ;   µγ−=γ 6 ;   µ−=γ7 .                                 (3.18) 

3.6.3. Definition of “beam” component. 
In the earlier paragraph we let a question concerning so-called “beam” component stand 

over. Let’s get back to this point ( 0kk 21 == ).  

First of all it must be mentioned that for many problems this component of solution is of 
paramount importance. It characterizes displacements of the whole cross-section. 

Let’s expand unknown vector function U  into Fourier series with respect to 21 x,x : 

.)x()x()x(U)x,x,x(U
1

11

2

22

2121

N

Nk

N

Nk
2k1k3kk321 ∑ ∑

−= −=

ϕϕ=                          (3.19) 

If we combine this with (2.66), we get 

),x()x(}]q[                                                                                 

FUL{)x()x(U

2k1kkkG

N

Nk

N

Nk
kk,Gkkkk,G

N

Nk

N

Nk
2k1kkk

2121

1

11

2

22

212121

1

11

2

22

2121

ϕϕδ+

++=ϕϕ′

Ξ

−= −=−= −=
∑ ∑∑ ∑      (3.20) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
= −−  L     LL L

 E                    0         
L

21212121
21

kk,1
1

kk2,kk,0
1

kk2,
kk,G ;   

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

+γ
µ=

2       0         0
0         1         0
0         0         1

L
21kk,2 ;        (3.21) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λλ
λ
λ

+γµ−=
0           

        0        0 
        0        0 

)1(L

21

2

1

21

kk

k

k

kk,1 ;   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

µλ+µλ
λ+γ+µλλλ+γ

λλ+γµλ+λ+γ
µ−=

2
k

2
k

2
k

2
kkk

kk
2
k

2
k

kk0,

21

2121

2121

21

             0                          0           
 0      2)(    1)(   
 0          1)(   2)(

L ; (3.22) 
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;)x()x()x(F)x,x,x(F
1

11

2

22

2121

N

Nk

N

Nk
2k1k3kk,G321G ∑ ∑

−= −=

ϕϕ=                      (3.23) 

.)x()x()x(]q[)x,x,x](q[
1

11

2

22

2121

N

Nk

N

Nk
2k1k3kkG321G ∑ ∑

−= −=
ΞΞ ϕϕδ=δ                (3.24) 

Multiplying both sides of (3.20) by basis functions )x()x( 2k1k 21
ϕϕ , 111 N ..., ,Nk −= , =2k    

22 N ..., ,N−=  we obtain differential equation set with respect to 3x  

221111kkGkk,Gkkkk,Gkk N ..., ,Nk   ;N ..., ,Nk   ,]q[FULU
2121212121

−=−=δ++=′ Ξ      (3.25) 

and in particular 

00G00,G0000,G00 ]q[FULU Ξδ++=′ .                                   (3.26) 

)x(UU 30000 =  is basic unknown vector function. It remains to note that matrix ,00GL  has form 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0     0     0     0     0     0 
0     0     0     0     0     0 
 0     0     0     0     0     0 

1     0     0     0     0     0 
0     1     0     0     0     0 
0     0     1     0     0     0 

L ,00G .                                  (3.27) 

Matrix ,00GL  has single eigenvalue 0=λ  with multiplicity 6m = . Three eigenvectors and 
three root vectors corresponding to λ  are the following 

Te
1 ] 0     0     0     1     1     1 [t = ;   Te

2 ] 0     0     0     1     1     0 [t = ;                 (3.28) 
Te

3 ] 0     0     0     0     1     0 [t = ;   Tr
1 ] 1     1     1     0     0     0 [t = ;                 (3.29) 

Tr
2 ] 1     1     0     0     0     0 [t = ;   Tr

3 ] 0     1     0     0     0     0 [t =                  (3.30) 

and r
it  is root vector corresponding to eigenvector e

it . 

Thus, Jordan decomposition of ,00GL  is defined by formulas: 

00000000,G T~JTL = ;                                                  (3.31) 

] t    t    t    t    t    t [T r
3

e
3

r
2

e
2

r
1

e
100 = ;                                      (3.32) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−== −

1     1       0       0      0      0  
 0      0       0      1     1      0  
 1       0     1      0      0      0  
 0      0       0       1      0      1
 0      0       1       0      0      0  
 0      0       0       0      0      1  

TT~ 1
0000 ;     

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

c

c

c

00

J       0       0 
0      J       0 
0       0      J 

J ;  ⎥⎦
⎤

⎢⎣
⎡=  0     0 

 1     0 Jc .   (3.33) 

Fundamental matrix function )x( 300ε  of differential equation set 

0000,G00 ULU =′                                                   (3.34) 

is defined by formulas 
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00,2300,13300 P|x|P)x(sign)x( +=ε ;                                   (3.35) 

E5.0T~T5.0P 00,1 ⋅=⋅= ;   00,G00,2 L5.0T~H~T5.0P ⋅=⋅= ;   

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

 0     0     0     0     0     0 
 1     0     0     0     0     0 
 0     0     0     0     0     0 
 0     0     1     0     0     0 
 0     0     0     0     0     0 
 0     0     0     0     1     0 

H~ . (3.36) 

After convolution of (3.35) with both sides of (3.26) and transformations the result is 

.]q~[*]P|x|P)x(sign[F*]P|x|P)x(sign[U 003

r
00,23

r
00,13

r
00,G3

r
00,23

r
00,1300 Ξδ+++=        (3.37) 

Here we have 

;)x()x()x(]q~[)x,x,x](q~[
1

11

2

22

2121

N

Nk

N

Nk
2k1k3kk321 ∑ ∑

−= −=
ΞΞ ϕϕδ=δ                 (3.38) 

;)x()x()x(FFLF
1

11

2

22

2121

N

Nk

N

Nk
2k1k3

r
kkG,

1
2

r
G ∑ ∑

−= −=

− ϕϕ=−=                      (3.39) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1     0     0
 0     1     0

0     0     1
 0     0     0

0     0     0
0     0     0

2
1P1 ; 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

 0     0     0
 0     0     0

0     0     0
 1     0     0

0     1     0
0     0     1

2
1P2 .                               (3.40) 

If we replace )x,x,x(U 321  by (3.19) in boundary conditions (2.74) and expand vector 
function )x,x,x(f 321  into Fourier series with respect to 21 x,x  we get 

;)x()x(f)x()x(U
1

11

2

22

2121

1

11

2

22

212121

N

Nk

N

Nk
2k1kkk

N

Nk

N

Nk
2k1kkkkk,G ∑ ∑∑ ∑

−= −=−= −=

ϕϕ=ϕϕl             (3.41) 

T
kk,1kk,0kk,G ]     [

212121
lll = ;   

212121 kk,2,G2kk,1,G1kk,G lll ν+ν= ;                   (3.42) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ
λλ

γγλλ+γ
µ−=

0     0      1           0            0      
0     0      0      0                   

     0      0      0       2)(

1

12

21

21

k

kk

kk

kk,G,1l ;                         (3.43) 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

λ
γλ+γγλ

λλ
µ−=

0       1      0              0          0  
       0      0      0  2)(  

 0       0      0      0                

2

21

12

21

k

kk

kk

kk,G,2l                           (3.44) 

and in particular 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ γ
µ−=

0      0       1        0       0       0 
0      0       0       0       0       0 
       0       0       0       0       0 

00,G,1l ;   
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
γµ−=

 0       1       0      0      0      0 
       0      0      0      0      0 

0       0      0      0      0      0 
00,G,2l .  (3.45) 

Thus, we can define the following matrices 
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⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

γ

γ
==

 0     0   
0     0     0

    0     0

2
1PQ

7

6

100,G,11 l ;   
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

γ
γ==

 0        0
    0     0

0     0     0

2
1PQ

7

6100,G,22 l .            (3.46) 

Further note that 0PP 200,G,2200,G,1 == ll . 

3.6.4. Approximation of resolving operational boundary equations set. 

We set up systems of boundary equations at points 0Г)x,x~,x~(x~ 3i,2i,1i +∈= +++ , 

belN1,2,...,i = ,  

ii,1i,1i,1i,1 dh5.0xx~ ν+⋅+=+ ;   ii,2i,2i,2i,2 dh5.0xx~ ν+⋅+=+ .             (3.47) 

Magnitude of id  is directly related of various factors. On the one hand in accordance with 
conventional boundary element method we have ii h01.0d = . On the other hand we must 
avoid Gibbs phenomenon [16-20]. 

Moreover, due to operation of pseudodifferential operators delta functions and its 
derivatives may be located on a boundary. This leads to various parasitical effects at 
approximation stage. 

Without loss of generality it can be assumed that the considering structure is subjected to 
concentrated forces only: 

∑
=

−δ−δ−δ=
vfN

1p

)p(
33

)p(
22

)p(
11p )xx()xx()xx(FF ;   bel

N

1q

)q(
i,33p,ii N ..., 2, 1,i   ,)xx(ff

bf

=−δ= ∑
=

.    (3.48) 

Here q,if  is the force vector at cross-section of DCBE number i with coordinate )q(
i,3x . 

Global vector of unknowns is constructed in the form: 

T
3N313

G ] )x(q~   ...    )x(q~ [)x(q~
bel

= ;   ∑
−=

ϕ=
3

33

33

N

Nk
3k

G
k3

G )x(q~)x(q~ .            (3.49) 

The result of approximation with the use of Fourier series is the following set of belN3 -order 
systems for Fourier coefficients in (3.49): 

333
G
k

G
k

G
k N...,,Nk  ,Gq~K

333
−== ;                                      (3.50) 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)N,N(
k

)1,N(
k

)N,1(
k

)1,1(
k

G
k

belbel

3

bel

3

bel

33

3

K   K
                    

K        K  
K

K

KOK

K

;  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

)N(
k

)1(
k

G
k

bel

3

3

3

G
   
G  

G K ;                          (3.51) 

;с)x~()x~(A2cQa
2

2
K

1

1
11

2

2
22

212132133

N

  0k 
Nk

N

0k
Nk

)j(
kki,2ki,1k

)i(
kkk3

)j(
00

r
2

1
i,

)5(
k

21

3)j,i(
k ∑ ∑∑

∨≠
−=

≠
−=

++

=

ϕϕ+ν= l
ll
l

l
l

l             (3.52) 

);x~()x~(G2                                               

F]Qa[
2

2
)x(fG

i,2ki,1k

N

  0k 
Nk

N

0k
Nk

N

1p
,kkk,p

2

1
,i3

r
k00,G

r)5(
k

2

1
i,

21

3
N

1q

)q(
i,3kq,i

)i(
k

21

1

1
11

2

2
22

vf

321

33

bf

33

++

∨≠
−=

≠
−= ==

==

ϕϕν−

−ν−−ϕ=

∑ ∑ ∑∑

∑∑

l
l

l

l
l

l

l

ll
l

    (3.53) 
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2,kkki,21,kkki,1
)i(

kkk 321321321
AAA ν+ν= ;                                      (3.54) 

;2 1,i   ,QaQaQaQaA r
kk,i,1,2

)4(
kkk

r
kk,i,0,2

)3(
kkk

r
kk,i,1,1

)2(
kkk

r
kk,i,0,1

)1(
kkki,kkk 21321213212132121321321

=+++=    (3.55) 

21
)j(
kk

)j(
kkj

)j(
kk /)exp(h5.0с

212121
llηα⋅= ;   ]/xk/xk[ 2j,221j,11

)j(
kk 21

lli +π−=α ;           (3.56) 

⎩
⎨
⎧

=β
≠ββ−β

=η
;0  ,1

0  ,/]1)[exp(
)j(
kk

)j(
kk

)j(
kk

)j(
kk)j(

kk
21

212121

21
   ⎥

⎦

⎤
⎢
⎣

⎡
+π−=β

2

j,2
2

1

j,1
1

)j(
kk

h
k

h
k

21 ll
i ;          (3.57) 

p
1

2,kkk
)p(
kk

)p(
3k,kkk,p FLA)x(G

321213321

−φ−ϕ−= ll ;  )x()x( )p(
2k

)p(
1k

)p(
kk 2121

−ϕ−ϕ=φ ;           (3.58) 

)]exp()1(1[
k
2

a 3kk
k

22
3

2
3

2
kk

33kk)1(
kkk 21

3

21

21

321
l

l
ll

λ−−−
π+λ

λ
= ;                         (3.59) 

)]exp()1(1[
k
2k

a 3kk
k

22
3

2
3

2
kk

33)2(
kkk 21

3

21

321
l

l
li

λ−−−
π+λ

π
−= ;                        (3.60) 

;
k

2
1)exp()1(

k
2

k
2k

a 22
3

2
3

2
kk

3kk
3kk

k
22

3
2
3

2
kk

3kk
22

3
2
3

2
kk

333)3(
kkk

21

21

21

3

21

21

21

321
⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π+λ

λ
−λ−−

⎢
⎢
⎣

⎡
−

π+λ

λ

π+λ
π

−=
l

l
l

l
l

l
lli

   (3.61) 

;
k
k

)exp()1(
k
k

k
2

a 22
3

2
3

2
kk

22
3

2
3

2
kk

3kk3kk
k

22
3

2
3

2
kk

22
3

2
3

2
kk

22
3

2
3

2
kk

33)4(
kkk

21

21

2121

3

21

21

21

321
⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

π+λ

π−λ
+λλ−−

⎢
⎢
⎣

⎡
−

π+λ

π−λ

π+λ
=

l
l

ll
l
l

l
ll

 (3.62) 

)k/(])1(1[2)1(a 3
k

3j,i
)5(

k
3

3
π−−δ−−= li .                             (3.63)    

Now note j,iδ  is Chronicler’s symbol. 

3.6.4. Calculation of displacements, strains and stresses within domain. 
In accordance with foregoing formulas we have 

;)x()x()x(U)x,x,x(U
1

11

2

22

321

3

33

321

N

Nk

N

Nk
3k2k1k

N

Nk
kkk321 ∑ ∑ ∑

−= −= −=

ϕϕϕ=                  (3.64) 

;q~cDS2U
bel

321321

vf

321321321

N

1j
k,j

)j(
kkkkk

N

1p
kkk,pkkk3kkk ⎥

⎦

⎤
⎢
⎣

⎡
+σσσ= ∑∑

=

Ξ

=

l                      (3.65) 

 ;] v, v, v,u ,u ,u[U T
kkk,3kkk,2kkk,1kkk,3kkk,2kkk,1kkk 321321321321321321321

=                   (3.66) 

;0k  0k   ,P~aP~aP~aP~aD 21
r

kk,1,2
)4(

kkk
r

kk,0,2
)3(

kkk
r

kk,1,1
)2(

kkk
r

kk,0,1
)1(

kkkkkk 21321213212132121321321
≠∨≠+++=   (3.67) 

r
00,2

)6(
k

r
00,1

)5(
kk00 P~aP~aD

333
+= ;   p

1
2kkk

)p(
kk

)p(
3kkkk,p FLD)x(S

321213321

−φ−ϕ−= .               (3.68) 

Let ijσ  be stress components and ijε  be displacement components. It is obvious that 

3 2, 1,j   3; 2, 1,i   ),uu(
2
1   ,2 ijjiijijijij ==∂+∂=εµε+λεδ=σ ;   ∑

=

ε=ε
3

1i
ii .       (3.69) 

This yields that corresponding results can be summarized as follows: 

;3 ,2 ,1j,i   ),x()x()x()x,x,x( 3k2k1k

N

Nk

N

Nk

N

Nk
kkk,ij321ij 321

1

11

2

22

3

33

321
=ϕϕϕε=ε ∑ ∑ ∑

−= −= −=

       (3.70) 
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;3 ,2 ,1j,i   ),x()x()x()x,x,x( 3k2k1k

N

Nk

N

Nk

N

Nk
kkk,ij321ij 321

1

11

2

22

3

33

321
=ϕϕϕσ=σ ∑ ∑ ∑

−= −= −=

      (3.71) 

32111321 kkk,11kkkkk,11 uσλ=ε ;   )uu(
2
1

3212232111321 kkk,1kkkkk,2kkkkk,12 σλ+σλ=ε ;             (3.72)  

32122321 kkk,22kkkkk,22 uσλ=ε ;   )vu(
2
1

32132111321 kkk,1kkk,3kkkkk,13 +σλ=ε ;             (3.73) 

321321 kkk,3kkk,33 v=ε ;   )vu(
2
1

32132122321 kkk,2kkk,3kkkkk,23 +σλ=ε ;                 (3.74) 

3; 2, 1,j i,  ,2
321321321 kkk,ijkkkijkkk,ij =µε+λεδ=σ   

321321321321 kkk,33kkk,22kkk,11kkk ε+ε+ε=ε .  (3.75) 

3.7. Numerical implementation of DDCBEM. 
Numerical implementation of DDCBEM is executed in much the same way as IDCBEM. It 

is also based on Fourier series approximation. This problem is partially considered in [1] and 
will not be described in detail here. 

3.8. Closing remarks about methods of additional regularizations. 
Methods of additional regularization have been already considered above in paragraphs 

2.6-2.7. But in view of information from paragraph 3.6.3 it is useful to produce several new 
integration formulas here: 

|x|dx)x(sign 33 =∫ ;   )x(signxdx)x(sign 3
2
33 =∫∫ ;                        (3.76) 

)x(signx
2
1dx|x| 3

2
33 =∫ ;   3

33
3
33 |x|

6
1)x(signx

6
1dx|x| ==∫∫ .             (3.77) 

However approximation quality of functions 3
3 |x|  and )x(signx 3

2
3  by Fourier series will 

not be passable due to their behavior and behavior of their derivatives nearby points of 
periodicity ... 5, 3, 1,j   ,jx 3

)b(
j,3 ±±±== l  

For avoidance of this fact we recommend using functions  
2
333

3
3 x5.1)x(signx l⋅− ;   333

2
3 x)x(signx l−                               (3.78) 

instead of 3
3 |x|  and )x(signx 3

2
3 . Functions (3.78) give a better behavior in the specified 

sense. 

3.9. Considerations regarding methods of approximation in terms of DDCBEM and 
IDCBEM. 

We believe that Fourier series approximation with respect to 21 x,x  is quite standard while 
its use with respect to 3x  is at least controversial. Fourier transformation [26-28] is the most 
natural technique in such problems. Furthermore direct Fourier transformation is not 
complicated operation to a certain extent in this case [17]. However Fourier inversion causes 
essential difficulties.  

Another alternative approach is application of Wavelet analysis [29-41]. Taking into 
account types of pseudodifferential operators in DDCBEM and IDCBEM in our estimation 
this method is especially effective. 
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Prime advantages of Fourier series approximation include relatively simple computational 
algorithm and demonstrativeness [21-25]. 

We have also developed version of discrete-continual boundary element method 
(IDCBEM) based on combined Fourier series and polynomial approximation [7]. Peculiar 
features of the proposed combined approximation type include algorithmic simplicity and 
supreme universality. Due to possible presence of finite discontinuities in approximating 
function exclusive application of Fourier series is apparently undesirable. Finite 
discontinuities cause so-called Gibbs phenomenon and therefore polynomials are used to 
avoid this parasitic numerical effect (Figure 3).  

 
Figure 3. Types of polynomial approximations. 

4 COMPUTER REALIZATION OF DDCBEM, IDCBEM AND SOFTWARE 

4.1. Computer realization of DDCBEM. Program system DDCBEM3D. 
All methods and algorithms of DDCBEM considered in the distinctive paper have been 

realized in program system DDCBEM3D. Its main purpose is analysis of three-dimensional 
problems with the use of DDCBEM. We use Microsoft Fortran PowerStation 4.0 Professional, 
Compaq Visual Fortran 6.6B Professional and Intel Fortran Compiler 8.0 as programming 
environments. Program is designed for Microsoft Windows 95/98/NT/2000/ME/XP/2003. 

4.2. Computer realization of IDCBEM. Program system DDCBEM3D. 

All methods and algorithms of IDCBEM considered in the distinctive paper have been 
realized in program system IDCBEM3D. Its main purpose is analysis of three-dimensional 
problems with the use of IDCBEM. We use Microsoft Fortran PowerStation 4.0 Professional, 
Compaq Visual Fortran 6.6B Professional and Intel Fortran Compiler 8.0 as programming 
environments. Program is designed for Microsoft Windows 95/98/NT/2000/ME/XP/2003. 
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