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Abstract. In engineering science the modeling and numerical analysis of complex systems
and relations plays an important role. In order to realize such an investigation, for example a
stochastic analysis, in a reasonable computational time, approximation procedure have been
developed. A very famous approach is the response surface method, where the relation between
input and output quantities is represented for example by global polynomials or local interpola-
tion schemes as Moving Least Squares (MLS). In recent years artificial neural networks (ANN)
have been applied as well for such purposes.

Recently an adaptive response surface approach for reliability analyses was proposed, which
is very efficient concerning the number of expensive limit state function evaluations. Due to the
applied simplex interpolation the procedure is limited to small dimensions. In this paper this
approach is extended for larger dimensions using combined ANN and MLS response surfaces
for evaluating the adaptation criterion.
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1 INTRODUCTION

In engineering science the modeling and numerical analysis of complex systems and rela-
tions plays an important role. In order to realize such an investigation, for example a stochastic
analysis, in a reasonable computational time, approximation procedure have been developed. A
very popular approach is the response surface method, where the relation between input and out-
put quantities is represented for example by global polynomials or local interpolation schemes
as Moving Least Squares introduced by [1]. In recent years artificial neural networks (ANN)
have been applied as well for such purposes.

Artificial neural networks have been designed to model the processes in the human brain
numerically. These mathematical models are used today mainly for classification problems
such as pattern recognition. In the recent years a large number of different neural network
types have been developed, e.g. the multi-layer perceptron, the radial basis function network,
networks with self-organizing maps and recurrent networks.

Neural networks (ANN) have been applied in several studies for stochastic analyses, e.g. in
[2], [3], [4], [5], [6], [7] and [8]. In these studies the structural uncertainties in material, ge-
ometry and loading have been modeled by a set of random variables. A reliability analysis has
been performed either approximating the structural response quantities with neural networks
and generating ANN based samples or by reproducing the limit state function by an ANN
approximation and decide for the sampling sets upon failure without additional limit state func-
tion evaluations. The main advantage of ANN approximation compared to classical RSM using
quadratic polynomials is the applicability to higher dimensional problems, since classical RSM
is limited to problems of lower dimension due to the more than linearly increasing number of
coefficients.

Recently an adaptive response surface approach for reliability analyses was proposed in [9].
This method is very efficient concerning the number of expensive limit state function evalua-
tions, but due to the applied simplex interpolation the procedure is limited to small dimensions.
In this paper the original approach in [9] is extended for larger dimensions using combined ANN
and MLS response surfaces for evaluating the adaptation criterion. Since only one set of limit
state points is used the extended approach needs a much smaller number of limit state points
to obtain similar results as with standard procedures, such as response surfaces on directional
samples.

2 RELIABILITY ANALYSIS AND RESPONSE SURFACE METHOD

By assuming a random vector

X = [X1, X2, . . . , Xn] (1)

of n mutually independent, standard normal random variables Xi and a limit state function g(x)
the probability of failure P (F ) reads

P (F ) =

∫
g(x)≤0

ϕn(x)dx (2)

where ϕn(.) denotes the n-dimensional normal probability density. The limit state function
divides the random variable space into a safe domain S = {x : g(x) > 0} and a failure domain
F = {x : g(x) ≤ 0}.
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The computational challenge in determining the integral of Eq. (2) lies in evaluating the
limit state function g(x), which for non-linear systems usually requires an incremental/iterative
numerical approach. The basic idea in utilizing the response surface method is to replace the
true limit state function g(x) by an approximation η(x), the so called response surface, whose
function values can be computed more easily.

In this context, it is essential to realize that the limit state function g(x) serves the sole pur-
pose of defining the bounds of integration in Eq. (2). As such, it is quite important that the
function η(x) approximates this boundary sufficiently well, in particular in the region which
contributes most to the failure probability P (F ). In [10] it has been pointed out that for relia-
bility analysis it is most important to obtain support points for the response surface very close
to or exactly at the limit state g(x) = 0. For this purpose the random vector X in Eq. (2) is
replaced by a random direction unit vector

A = [A1, A2, . . . , An] (3)

and a random radius R which leads to

X = AR. (4)

Then the integral from Eq. (2) reads

P (F ) =

∫
r(a)=1

[1− χ2
n(r∗2(a))]fA(a)ds(a) (5)

with
g(ar∗(a)) = 0 (6)

whereby fA(.) is the probability density of the random directional unit vector A, χ2
n(.) is the

χ2 distribution function with n degrees of freedom and ds(a) denotes integration over the unit
hyper-sphere r(a) = 1. For evaluating Eq. (5) only the distances r∗(a) of the limit state surface
from the origin in the direction of a have to be known.

The points required for the response surface approximation of the limit state g(x) = 0 can
be determined using Monte Carlo simulation based on directional sampling [11]. In Fig. 1 the
limit state with discrete points is shown in principle. In this study the inverse radius [r∗(a)]−1

is approximated with a response surface depending on the direction according to [5]. This
leads to approximation values exact or close to zero for unbounded or unimportant regions,
respectively. Fig. 2 shows the approximated function of the inverse radius for the unbounded
two-dimensional limit state given in Fig. 1.

3 MOVING LEAST SQUARES APPROXIMATION (MLS)

An arbitrary function u is interpolated at a point x by a polynomial as

uh(x) =
[
1 x y x2 xy y2 ...

]  a1

:
an

 = pT (x)a (7)

where p(x) is the base vector and a contains the coefficients of the polynomial. These coef-
ficients are constant in the interpolation domain and can be determined directly if the number
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Figure 2: Representation of the inverse radius [r∗(a)]−1

of supporting points m used for the interpolation is equivalent to the number of coefficients n.
Then the coefficients are simply given as

a = PT−1

ũ (8)

where ũ contains the function values at the supporting points

ũ =
[

ũ1 ... ũm

]T (9)

and P consists of the values of the polynomial basis calculated at the supporting points

P =


P1(x1) P1(x2) . . . P1(xm)
P2(x1) P2(x2) . . . P2(xm)

...
... . . . ...

Pn(x1) Pn(x2) . . . Pn(xm)

 . (10)

Within the “Moving Least Squares” (MLS) interpolation method [1] the number of support-
ing points m exceeds the number of coefficients n, which leads to an overdetermined system of
equations. This kind of optimization problem can be solved by using a least squares approach

Pũ = PPTa(x) (11)

with changing (“moving”) coefficients a(x). In order to introduce a local character a distance
depending weighting function w = w(s) is defined, where s is the normalized distance between
the interpolation point and the considered supporting point

si =
‖x− xi‖

D
(12)

and D is the influence radius, which is defined as a numerical parameter. Using the introduced
weighting function, Eq. (11) is expanded to

B(x)ũ = A(x)a(x), (13)
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where A(x) and B(x) are given as

A(x) = PW(x)PT ,

B(x) = PW(x),
(14)

and the diagonal matrix W(x) can be determined as

W(x) =


w(x− x1) 0 . . . 0

0 w(x− x2) . . . 0
...

... . . . ...
0 0 . . . w(x− xm)

 . (15)

The interpolated value of the function u at x can be obtained by introducing the MLS shape
functions

uh(x) = ΦΦΦMLS(x)ũ, ΦΦΦMLS(x) = pT (x)A(x)−1B(x). (16)

The classical MLS interpolation does not pass through the support point values due to the
applied least squares approach. This implies that the interpolation condition is not fulfilled,

ΦMLS
i (xj) 6= δij. (17)

A large number of different weighting functions for the Moving Least Squares interpolation
can be found in the literature. In [12] a good overview is given. Due to the applied least square
approach explained above, the obtained interpolation functions by using classical weighting
types have a strong dependence on the size of the influence radius D, which leads to significant
problems for irregular sets of support points. Because of these problems, in [13] the authors
presented a new weighting function which enables the fulfillment of the MLS interpolation
condition with very high accuracy without any additional numerical effort

ΦMLS
i (xj) ≈ δij. (18)

This can only be reached if Eq. (19) holds,

wi (xj) ≈ δij. (19)

This so-called regularized weighting function reads for one support point i at an interpolation
point x

wR(si) =
w̃R(si)

m∑
j=1

w̃R(sj)

(20)

with
w̃R(s) =

(
s2 + ε

)−2
; ε � 1. (21)

The regularization parameter ε has to be chosen small enough to fulfill Eq. (19) with high
accuracy, but large enough to obtain a regular, differentiable function at s = 0 within the
machine precision. In [13] it is recommended to use the value

ε = 10−5. (22)
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4 APPROXIMATION USING ARTIFICIAL NEURAL NETWORKS

The most widely used network type for approximation problems is the multi-layer perceptron
which is also called feed-forward back-propagation network. This network type is used in this
study and is shown in Fig. 3. The network consists of an input layer, several hidden layers and

Figure 3: Neural network with feed-forward architecture and one hidden layer

an output layer and all nodes which are called neurons of one layer are connected with each
neuron of the previous layer. At the neuron level a bias is added to the weighted sum of the
inputs and the neuron transfer function is applied, which can be of linear and nonlinear type.
The output of a single neuron reads

aj
i = f j

i (x) = f

(
m∑

k=1

wj
k,ia

j−1
k + bj

i

)
(23)

where m is the number of input impulses, i is the number of the current neuron in the layer j.
wj

k,i is the synaptic weight factor for the connection of the neuron i, j with the neuron k, j − 1.
For the approximation of functions generally a combination of layers with sigmoid transfer
functions f(x) = 1/(1 + e−x) and a linear output layer with f(x) = x are used.

The training of a neural network has an important influence on the approximation quality.
This training for a feed-forward multi-layered network is called back propagation where the
network operation is executed reversely for the training sets and the calculated input values
are compared to the given values. Depending on a given learning rate the calculated error is
corrected and the same procedure is repeated until the training values are reproduced optimally
by the network. If no convergence is achieved, generally the training is terminated after a given
number of training loops called epochs. Different learning algorithm have been developed for
this purpose which are described in [14]. In this work the Scaled Conjugate Gradient Algorithm
proposed by [15] is used since it has a fast and stable convergence.

The design of the network architecture has an another important influence on the approxi-
mation. Depending on the number of available training samples the number of neurons in the
hidden layers has to be chosen in that way, that the so-called over-fitting is avoided. This phe-
nomenon occurs, if the number of hidden nodes is to large for the number of training samples.
Then the network can converge easier and fits well for the training data but it can not generalize
well for other data. In [14] it is mentioned that the number of training samples m should be
larger than the number of adjustable parameters

(n + 2)M + 1 < m (24)
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where n is the number of input values and M is the number of hidden neurons for a network
with single hidden layer.

5 ADAPTIVE RESPONSE SURFACE APPROACH

In this section an adaptive response surface approach is presented which is based on the
method proposed by [9]. In [9] two independent response surfaces each having a separate set
of supports are used, whereby each response surface interpolates the conditional probabilities
of failure using simplices. As error estimate used for the adaptation the maximum difference
between both response surfaces concerning the conditional probabilities of failure was applied

e1,2 = max(ei)1,2 = max [(yi)1,2|(p∗i )2 − (p∗i )1|] ; i = 1 . . . NS, (25)

where (yi)1,2 denotes a weighting of the current simplex, defined as the volume of the hyper-
sphere segment spanned by the simplex and the origin and NS is the number of simplices. The
conditional probabilities of failure are computed in the direction of the centroid of the simplices
as follows

p∗i = [1− χ2
n(r∗2(ai))]. (26)

In the original approach the first response surface is adapted, where the maximum error e1 was
found and afterwards the second response surface is modified at e2. This procedure is repeated
until a certain accuracy is obtained.

Due to the limitation of the simplex interpolation for small dimensional problems, in this
paper the adaptive approach proposed by [9] is extended for the application of neural networks
and Moving Least Squares. For this extension several ways are discussed here. The first one is
to use two response surfaces with two independent sets of supports points according to [9]. Then
the maximum difference between both response surfaces can be obtained by using directional
sampling. This results in a possible configuration as shown in Fig. 4 and may lead to wasted
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Figure 4: Adaptation using two independent ANN ap-
proximations with independent sets of supports
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Figure 5: Adaptation using ANN and MLS approxima-
tion with only one set of supports

support points, if one response surface is to be adapted but already has a support point close to
the location of the maximum difference and the other response surface does not have support
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points in this region. Especially if a larger number of support points already exists a lot of
points from both sets are almost identical. In this paper this problem is solved by using one
set of points with two different approximation methods, namely neural networks and Moving
Least Squares. This is shown for a certain state in Fig. 5. Investigations in the framework of this
study have shown, that this procedure is more efficient concerning a smaller number of support
points.

If problems are investigated with only one effective region contributing to the failure proba-
bility, the adaptation criterion using the maximum difference of the conditional probabilities of
failure

ep = max|(p∗i )2 − (p∗i )1|; i = 1 . . . NDS, (27)

where i is the evaluated directional sample out of a set of NDS realizations, always leads to a
convergence of the method to the exact solution. For the analysis of systems having more than
one effective region, this criterion may lead to a convergence to the wrong solution. This caused
by the fact that one or more of these effective regions may not be detected by the algorithm, since
their conditional failure probability obtained from the initial response surfaces is too small due
to missing supports points in this region. This problem will be clarified in the second example.
In this study the problem is solved using a given number of steps adapting the response surfaces
at the maximum difference between the approximated radii

er = max|(r∗i )2 − (r∗i )1|; i = 1 . . . NDS. (28)

6 NUMERICAL EXAMPLES

6.1 Simple frame structure

This is a simple analytical example representing the failure of a one-bay one-storey frame.
The failure is assumed to be described by first-order rigid-plastic hinge theory. Due to the pres-
ence of horizontal and vertical loads (cf. Fig. 6) there are three relevant collapse mechanisms.
The loads are assumed to be two Gaussian random variables. Using directional sampling with

Figure 6: Simple frame with collapse mechanisms

1000 samples, the failure probability is determined as P̂ref (F ) = 1.208 · 10−4. This value is
used as a reference for comparison to the results based on the response surface approaches. In
Fig. 7 the initial and the adapted response surfaces are shown for a single run of the algorithm.
As adaptation criterion the maximum difference of the conditional probabilities of failure in
Eq. 27 is used. The number of hidden neurons M is chosen automatically from the number of
support points m rewriting Eq. 24 as follows

M =
m− 1

n + 2
=

m− 1

4
, (29)
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whereby for rational values M only the next smaller integer value is taken and a minium value of
one neuron is defined. The failure probability is determined using 1000 directional samples on
the response surfaces and the maximum difference is obtained from these samples. The figure
indicates, that the adaptation in the effective region works quite well. In Fig. 8 the convergence
of the failure probability estimate is shown. For the presented single run the estimated value
converges very fast compared to the ANN and MLS response surfaces on directional samples.
The average error of 50 runs shows a similar behavior, but the ANN results show several peaks
in the curves. These peaks are the result of an artificial oscillation of the network approximation
in the unimportant region, which can be seen in Fig. 7. For only a few cases this oscillation
goes close to the mean value and estimates an additional effective region. This is mainly caused
by the simple dimensioning of the network using the maximum number of possible neurons
and only one training phase for each network configuration. Nevertheless, the results of ANN
and MLS approximation are very similar by using the adaptive and the directional samples as
support points and the adaptive approach is very efficient compared to the response surfaces on
directional samples and to plain directional sampling.

6.2 Complex limit state function

In this example a complex nonlinear limit state function given in [16] is investigated. This
two-dimensional function is defined by a set of two linear and two quadratic functions:

g1(x) = 0.1(x1 − x2)
2 − (x1 + x2)/

√
2 + β1

g2(x) = 0.1(x1 − x2)
2 + (x1 + x2)/

√
2 + β2

g3(x) = x1 − x2 +
√

2β3

g4(x) = −x1 + x2 +
√

2β4

(30)

whereby X1 and X2 are independent Gaussian random variables with zero mean and unit stan-
dard error. The reliability indices are given in [16] as β1 = β2 = 4.0 and β3 = β4 = 4.5. This
limit state function has four effective regions, which contribute to the failure probability. The
reference value for the probability of failure is obtained as P̂ref (F ) = 4.541 · 10−5 by using
again 1000 directional samples.

Due to the complex shape of the limit state function a minimum number of five neurons is
chosen for the ANN approximation in order to obtain a response surface passing through the
support point values. This means that for less than 21 support points the network is over-fitted,
which leads to strong oscillations between the points.

In Fig. 9a an adapted state using the probability criterion is shown. It can be observed, that
only two effective regions have been detected by the algorithm. An adaptation using the radius
criterion from Eq. 28 which is shown in Fig. 9b can represent the complex shape much better,
but due to the regular distributed number of points this procedure would converge very slowly
to the exact failure probability. For this reason a combined criterion is used, whereby the first
ten steps are adapted with the radius criterion to detect the effective regions and the following
steps use the probability criterion to get a fast convergence of the failure probability. In Fig. 9c
an adapted state for this case is shown.

In Fig. 10 the convergence of a single run and of the average error of 50 simulations are
shown. As in the previous example some peaks in the ANN curve can be observed, which are
more significant for less than 21 support points due to the over-fitting, but the convergence be-
havior of the adapted simulation is again much better than using response surfaces on directional
samples.
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Figure 7: a) Initial state with 3 support points and b) adapted state with 33 supports points for the approximation
of the limit state function of a simple frame structure
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7 CONCLUSIONS

In this paper an efficient adaptive response surface approach is presented. This method uses
one set of limit state points with two different approximation methods, Moving Least Squares
and neural networks. As adaptation criterion a combination by using the maximum difference
in the conditional probabilities of failure and the maximum difference in the approximated
radii is applied successfully. Compared to response surfaces on directional samples or to plain
directional sampling the failure probability can be estimated with a much smaller number of
limit state points.

In the numerical results it is shown that the automatic dimensioning of the neural network
using the maximum number of neurons where no over-fitting occurs works well, but still shows
some problems, which can be seen in oscillations in regions with less number of support points.
This problem could be solved in future e.g. if only the smallest number of neurons is used,
for which the network training could be realized with a given error tolerance. Further im-
provements are necessary to pass through the support point values for a small number of points
without allowing over-fitting. In addition the authors will analyze in future studies the applica-
bility of Radial Basis Function networks for the presented purpose instead of the Multi-Layer
Perceptrons.
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