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Abstract. We establish the basis of a discrete function theory starting with a Fischer decom-
position for difference Dirac operators. Discrete versions of homogeneous polynomials, Euler
and Gamma operators are obtained. As a consequence we obtain a Fischer decomposition for
the discrete Laplacian.
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1 INTRODUCTION

Clifford analysis is a powerful tool to solve all kinds of problems related with vector field
analysis.
A comprehensive description of Clifford function theory was given by F. Brackx, R. Delanghe
and F. Sommen in [1] and later by R. Delanghe, F. Sommen and V. Souc̆ek in [2].

In [5, 6], K. Gürlebeck and W. Sprößig proposed strategies to solve boundary value problems
based on the study of existence, uniqueness, representation, and regularity of solutions with the
help of an operator calculus. In the same books, the authors introduce also the basic ideas to
develop a discrete counterpart to the continuous treatment of boundary value problems with the
introduction of a discrete operator calculus in order to find a well-adapted numerical approach.
An explicit discrete version of the Borel-Pompeiu formula was presented for dimension n = 3.

This was further developed in [7, 8], where K. Gürlebeck and A. Hommel developed finite
difference potential methods in lattice domains based on the concept of discrete fundamental
solutions for the difference Dirac operator which generalizes the work developed by Ryabenkij
in [10]. A numerical application of this theory was presented recently by N. Faustino, K.
Gürlebeck, A. Hommel, and U. Kähler in [3] for the incompressible stationary Navier-Stokes
equations. In this paper, the authors proposed a scheme which solves efficiently problems in un-
bounded domains and show the convergence of the numerical scheme for functions with Hölder
regularity which is a better gain compared with the convergence results for classical difference
schemes.

Moreover, while all these papers claim to be based on discrete function theoretical ap-
proaches, from the concepts of the theory of monogenic functions only the Borel-Pompeiu
formula and with it Cauchys integral formula were obtained. There is no “real” development of
a discrete monogenic function theory up to now.

This paper is supposed to be a step in this direction. To this end discrete versions of a Fischer
decomposition, Euler and Gamma operators are obtained. For the sake of simplicity we consider
in the first part only Dirac operators which contain only forward or backward finite differences.
Of course, these Dirac operators do not factorize the classic discrete Laplacian. Therefore,
we will consider in the last chapter a different definition of a difference Dirac operator in the
quaternionic case (c.f. [7]) which do factorizes the discrete Laplacian.

Let us emphasize in the end a major obstacle in the discrete case. While in the continuous
case the are only one partial derivative for each coordinate xj we have two finite differences
in the discrete case. Therefore, we will have not only one Euler or Gamma operator as in the
continuous case, but several. Each one will turn out to be connected to one particular Dirac
operator.

2 PRELIMINARIES

Let e1, . . . , en be an orthonormal basis of Rn. The Clifford algebra C`0,n is the free algebra
over Rn generated modulo the relation

x2 = −|x|2e0,

where e0 is the identity of C`0,n. For the algebra C`0,n we have the anti-commutation relation-
ship

eiej + ejei = −2δije0,
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where δij is the Kronecker symbol. In the following we will identify the Euclidean space Rn

with
∧1 C`0,n, the space of all vectors of C`0,n. This means that each element x of Rn may be

represented by

x =
n∑

i=1

xiei.

From an analysis viewpoint one extremely crucial property of the algebra C`0,n is that each
non-zero vector x ∈ Rn has a multiplicative inverse given by −x

|x|2 . Up to a sign this inverse
corresponds to the Kelvin inverse of a vector in Euclidean space. Moreover, given a general
Clifford number a =

∑
A eAaA, A ⊂ {1, . . . , n} we denote by Sc a = a∅ the scalar part and by

Vec a = e1a1 + . . . + enan the vector part.
We now introduce the Dirac operator D =

∑n
i=1 ei

∂
∂xi

. This operator is a hypercomplex
analogue to the complex Cauchy-Riemann operator. In particular we have that D2 = −∆,
where ∆ is the Laplacian over Rn. For a domain Ω ⊂ Rn, a function f : Ω 7→ C`0,n is said
to be left-monogenic if it satisfies the equation Df = 0 . A similar definition can be given for
right-monogenic functions. Basic properties of the Dirac operator and left-monogenic functions
can be found in [1], [2], [6], and [5].

Now, we need some more facts for our discrete setting. To discretize point-wise the partial
derivatives ∂

∂xi
in the equidistant lattice with mesh width h > 0, Rn

h = {mh = (m1h, . . . , mnh) :

m ∈ Zn}, we introduce forward/backward differences ∂±i
h :

∂±i
h u(mh) = ∓u(mh)− u(mh± hei)

h
(1)

These forward/backward differences ∂±i
h satisfy the following product rule

(∂±i
h fg)(mh) = f(mh)(∂±i

h g)(mh) + (∂±i
h f)(mh)g(mh± hei), (2)

(∂±i
h fg)(mh) = f(mh± hei)(∂

±i
h g)(mh) + (∂±i

h f)(mh)g(mh). (3)

The forward/backward discretizations of the Dirac operator are given by

D±
h =

n∑
i=1

ei∂
±i
h . (4)

In the following we will also use the following multi-index abbreviations:

(mh)(α) := (m1h)α1(m2h)α2 . . . (mnh)αn ;

α! := α1!α2! . . . αn!;

|α| := α1 + α2 + . . . αn

∂±ei
h := ∂±i

h ;

∂±αiei
h :=

(
∂±ei

h

)αi

,

for α = (α1, α2, . . . , αn) =
∑n

i=1 eiαi.

3 FISCHER DECOMPOSITION

The basic idea of a Fischer decomposition is to decompose any homogeneous polynomial
into monogenic homogeneous polynomials of lower degrees. In the classic case such a decom-
position is based on the fact that the powers xs are homogeneous and that ∂xs

i

∂xi
= sxs−1

i . A first
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idea would be to consider instead of xs simply the powers (mh)s, but while these powers are
still homogeneous the last condition is not true in the discrete case, unfortunately. Therefore,
we will start by introducing discrete homogeneous powers which will play the equivalent role
of xs in the discrete case.

3.1 Multi-index factorial powers

Starting from the one-dimensional factorial powers

(mih)
(0)
∓ := 1, (mih)

(s)
∓ :=

s−1∏
k=0

(mih∓ kh), s ∈ N (5)

we introduce the multi-index factorial powers of degree |α| by

(mh)
(α)
∓ =

n∏
i=1

(mih)
(αi)
∓ .

The one-dimensional factorial powers (mih)
(s)
∓ have the following properties

P1. (mih)
(s+1)
∓ = (mih∓ sh)(mih)

(s)
∓ ;

P2. ∂±j
h (mih)

(s)
∓ = s(mih)

(s−1)
∓ δi,j;

P3. ∂∓j
h (mih)

(s)
∓ = s(mih∓ h)

(s−1)
∓ δi,j;

P4. (mih)
(s)
∓ → xs

i = (mih)s for h → 0,

where δi,j denotes the standard Kronecker symbol.
As a direct consequence of these properties, we obtain the following lemmas:

Lemma 3.1 The multi-index factorial powers of degree |α|, (mh)
(α)
∓ , satisfy

n∑
i=1

(mih)∂±i
h (mh∓ hei)

(α)
∓ = |α|(mh)

(α)
∓

Lemma 3.2 The multi-index factorial powers of degree |α|, (mh)
(α)
∓ , satisfy

∂±β
h (mh)

(α)
∓ = α!δα,β.

Lemma 3.3 The multi-index factorial powers of degree |α| approximate the classical multi-
index powers of degree |α|, that is

(mh)
(α)
∓ → x(α) = (mh)(α) for h → 0.

For all what follows, let Π±
d denote the space of all Clifford-valued polynomials of degree

d, P±
d , generated by the powers (mh)

(α)
∓ of degree |α| = d, and Π± be the countable union of

all Clifford-valued polynomials of degree d ≥ 0. Furthermore, let M±
d = Π±

d ∩ ker D±
h be the

space of discrete monogenic polynomials of degree d. Based on Lemma 3.1, 3.2 and 3.3, we
will show that it is possible to obtain discrete versions for the Fisher decomposition as well as
define discrete versions of the Euler and Gamma operators.
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3.2 The main theorem

For two Clifford-valued polynomials of degree d, P±
d and Q±

d ∈ Π±
d given by

P±
d (mh) =

∑
|α|=d

(mh)
(α)
∓ a±α

Q±
d (mh) =

∑
|α|=d

(mh)
(α)
∓ b±α

we define the Fischer inner product by

[P±
d , Q±

d ]h :=
∑
|α|=d

α!Sc (a±α b±α ). (6)

Denoting P±
d (D±

h ) the difference operator obtained from P±
d by replacing mih by ∂±i

h (c.f. [2]),
we have by Lemma 3.2 the identity

[P±
d , Q±

d ]h := Sc (P±
d (D±

h )Q±
d )(0) P±

d , Q±
d ∈ Π±

d . (7)

Moreover, due to D±
h = −D±

h the Fischer inner product has the important property:

[(mh)P±
d , Q±

d ]h = −[P±
d , D±

h Q±
d ]h. (8)

This property combined with the inclusion property

D±
h Π±

d := {D±
h P±

d : P±
d ∈ Π±

d } ⊂ Π±
d−1. (9)

allows us to prove the following theorem:

Theorem 3.1 We have
Π±

d = M±
d + (mh)Π±

d−1.

Moreover, the subspaces M±
d and (mh)Π±

d−1 are orthogonal with respect to the Fischer inner
product.

From this theorem we obtain the Fischer decomposition with respect to our difference Dirac
operators D±

h .

Theorem 3.2 Fischer decomposition Let P±
d ∈ Π±

d then

P±
d (mh) =

d−1∑
s=0

(mh)sM±
d−s(mh). (10)

where each M±
j denotes the homogeneous discrete monogenic polynomials of degree j with

respect to the Dirac operators D±
h .
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3.3 Difference Euler and Gamma operators

Based on Lemma 3.1 we will introduce discrete versions of the Euler and Gamma operators
presented in [2].

First of all, we introduce the second order difference operator A±
h by

A±
h = ∓h

n∑
i=1

(mih)∂±i
h ∂∓i

h . (11)

Definition 3.1 For a lattice function fh : Rn
h → C`0,n, we introduce the difference Euler oper-

ator E±
h by

(E±
h fh)(mh) =

n∑
i=1

(mih)(∂±i
h fh)(mh∓ hei)

and the difference Gamma operator Γ±h by

(Γ±h fh)(mh) = −
∑
j<k

ejek(L
±
jkfh)(mh)− (A±

h fh)(mh),

where L±
jk := (mjh)∂±k

h − (mkh)∂±j
h .

It looks surprising that we have in the definition of the Gamma operator a term which con-
tains second order differences, but we would like to remark that for h → 0 this term vanishes
and we will get the usual continuous Gamma operator. As a matter of fact this term arises due
to the fact that in the discrete case translations are involved in the definition of finite differences/
finite difference operators.

Using the definition of the difference Euler operator and Lemma 3.1, we obtain for polyno-
mials homogeneous of degree d, P±

d ∈ Π±
d E±

h P±
d = dP±

d , and, moreover, we can show that a
function fh homogeneous of degree d satisfy E±

h fh = dfh. This fact provides a good motivation
for calling E±

h Euler operator, i.e. an operator who measures the degree of homogeneity of a
homogeneous function.

It follows from the definition of the Euler and Gamma operator that

(mh)D±
h fh = −

n∑
i=1

(mih)∂±i
h fh +

∑
j<k

ejekL
±
jkfh (12)

= −(E±
h + Γ±h )fh (13)

Moreover, for discrete monogenic polynomials of degree d, M±
d ∈ M±

d , we have Γ±h M±
d =

−dM±
d .

For all what follows, we introduce the difference operators

B±
h = ±h

n∑
i=1

∂±i
h , (14)

R±
h,r = rI + E±

h − A±
h , (15)

V ±
h,r = R±

h,r +
1

2
B±

h . (16)

where I is the identity operator and r a real number.
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From the identity(
(mh)D±

h + D±
h (mh)

)
fh = −2(E±

h − A±
h )fh − nfh

= −2R±
h,n/2fh

we get (
D±

h (mh)
)
fh = (−2R±

h,n/2 + E±
h + Γ±h )fh, (17)

by applying identity (13).
Applying the product rule for finite differences (2) and using the identity−2mih = ei(mh)+

(mh)ei, i = 1, . . . , n, we get the following propositions

Proposition 3.1 For a lattice function fh : Rn
h → C`0,n, we have

D±
h E±

h fh = D±
h fh + E±

h D±
h fh.

Proposition 3.2 For a lattice function fh : Rn
h → C`0,n, we have

D±
h ((mh)fh) = −2V ±

h,n/2fh − (mh)D±
h fh (18)

The details of the proofs can be found in [4].
From proposition 3.2 and from the commutation properties D±

h A±
h = A±

h D±
h and D±

h B±
h =

B±
h D±

h follow the operator relations

D±
h R±

h,r = R±
h,r+1D

±
h , (19)

D±
h V ±

h,r = V ±
h,r+1D

±
h . (20)

Combining proposition 3.2 with the operator relation (20), we obtain by recursion [4], the
formula

(D±
h )s((mh)sM±

d ) = (−2)sV ±
h,n/2+s−2V

±
h,n/2+s−3 . . . V ±

h,n/2M
±
d . (21)

where M±
d ∈ M±

d . From this follows also (mh)sM±
d ∈ ker(D±

h )s+1. Formula (21) gives us
a motivation to find explicit formulae for the polynomials M±

d . To this end we need an explicit
formula for the inverse of the iterated composite operator V ±

h,n/2+s−2V
±
h,n/2+s−3 . . . V ±

h,n/2. This
means that we have to find an explicit formula for the inverse of the operator V ±

h,r. Unfortunately,
we are only able to get an explicit formula for the operator R±

h,r. ([4]).

Theorem 3.3 For a lattice function fh : Rn
h → C`0,n and for r > 0, the difference operator

J±h,r defined by

(J±h,rfh)(mh) =
∑

th∈[0,1]±
h

hd±h
(
(th∓ h)

(r−1)
∓ fh((th)(mh))

)
satisfies

J±h,rR
±
h,r = I = R±

h,rJ
±
h,r.

Hereby we denote [0, 1]+h = [0, 1)h, [0, 1]−h = (0, 1]h, and

(d±h g)(th) := ∓g(th)− g(th± h)

h
.

The main idea of the proof is based on the identity

fh(mh) =
∑

th∈[0,1]±
h

hd±h
(
(th∓ h)

(r)
∓ fh((th)(mh))

)
.

and on the application of the discrete version of the chain rule.
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4 A DISCRETE HARMONIC FISCHER DECOMPOSITION

According to the classical theory of the finite differences, the usual approximation of the
Laplacian is given by

(∆hu)(mh) =
n∑

i=1

u(mh + hei) + u(mh− hei)− 2u(mh)

h2

=
n∑

i=1

(∂∓i
h ∂±i

h u)(mh). (22)

The first problem that arises now is that not all of our partial difference operators do commute
in the certain sense (c.f. [5, 6]) and, moreover, we have no factorization of the discrete Laplacian
∆h by means of our difference Dirac operators considered above, that is D∓

h D±
h 6= −e0∆h.

Let us restrict ourselves in this section to the case of quaternion-valued functions defined on
lattices in R3.
Let us remark that the quaternionic variable mh is identified with the 4× 4 matrix

mh =


0 −m1h −m2h −m3h

m1h 0 −m3h m2h
m2h m3h 0 m1h
m3h −m2h m1h 0

 .

In [7] for a lattice function fh : R3
h → H given by

fh =
3∑

i=0

f i
hei = f 0

he0 + Vec fh

a finite difference approximation of our Dirac operator was defined in the form

D−+
h fh =


0 −∂−1

h −∂−2
h −∂−3

h

∂−1
h 0 −∂3

h ∂2
h

∂−2
h ∂3

h 0 −∂1
h

∂−3
h −∂2

h ∂1
h 0




f 0
h

f 1
h

f 2
h

f 3
h


=

(
−div−h Vec fh

grad−h f 0
h + curl+h Vec fh

)
(23)

D+−
h fh =


0 −∂1

h −∂2
h −∂3

h

∂1
h 0 −∂−3

h ∂−2
h

∂2
h ∂−3

h 0 −∂−1
h

∂3
h −∂−2

h ∂−1
h 0




f 0
h

f 1
h

f 2
h

f 3
h


=

(
−div+

h Vec fh

grad+
h f 0

h + curl−h Vec fh

)
(24)

with div±h Vec fh =
∑3

i=1 ∂±i
h f i

h, grad±h f 0
h =

∑3
i=1(∂

±i
h f 0

h)ei and

curl±h Vec fh =

∣∣∣∣∣∣∣
e1 e2 e3

∂±1
h ∂±2

h ∂±3
h

f 1
h f 2

h f 3
h

∣∣∣∣∣∣∣ .
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In the latter form one can easily see the similarity with the usual Dirac operator

Df =

(
−divVec f

gradSc f + curlVec f

)
.

and we obtain the following factorization of the discrete Laplacian

D+−
h D−+

h fh =

(
−∆hf

0
h

−∆hVec fh

)
= D−+

h D+−
h fh. (25)

Now, we are able to obtain a Fischer decomposition for the discrete Dirac operators D−+
h

and D+−
h .

Proving the inclusion properties D+−
h Π+

d ⊂ Π+
d−1, D−+

h Π−
d ⊂ Π−

d−1 and replacing D+−
h by

D+
h and D−+

h by D−
h in the inner product (7), we obtain the Fischer decompositions:

Theorem 4.1 Fischer decomposition for D−+
h and D+−

h

Let P−
d ∈ Π−

d (respectively, P+
d ∈ Π+

d ) then

P−
d =

d−1∑
s=0

(mh)sM−+
d−s, (26)

P+
d =

d−1∑
s=0

(mh)sM+−
d−s. (27)

where each M−+
j ( respectively, M+−

j ) denotes a homogeneous discrete monogenic polynomial
of degree j, that is, M−+

j ∈ Π−
j ∩ ker D−+

h (respectively, M+−
j ∈ Π+

j ∩ ker D+−
h ).

From the factorization property (25), we have

[(mh)2P±
d , Q±

d ]h = −[P±
d , ∆hQ

±
d ]h,

which allows us to obtain the Fischer decomposition for the discrete Laplacian:

Theorem 4.2 Fischer decomposition for ∆h

Let P±
d ∈ Π±

d then
P±

d =
∑
2s≤d

|mh|2sH±
d−2s,

where each H±
j denotes a homogeneous discrete harmonic polynomial of degree j, that is,

H±
j ∈ Π±

d ∩ ker ∆h.

As a consequence of the theorem 4.1, we obtain Fischer decompositions which relate the
discrete harmonic and the discrete monogenic polynomials.

Corollary 4.1 Fischer decomposition Let H±
d ∈ Π±

d ∩ ker ∆h then

H−
d = M−+

d + (mh)M−+
d−1, (28)

H+
d = M+−

d + (mh)M+−
d−1. (29)

where each M−+
j ( respectively, M+−

j ) denotes a homogeneous discrete monogenic polynomial
of degree j, that is, M−+

j ∈ Π−
j ∩ ker D−+

h (respectively, M+−
j ∈ Π+

j ∩ ker D+−
h ).
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Using the same ideas as in the subsection 3.3, we can define the Euler and Gamma operators
E+−

h , Γ+−
h (respectively, E−+

h , Γ−+
h ) for the modified Dirac operators D+−

h (respectively, D−+
h )

which satisfy the identity (mh)D−+
h = −E−+

h −Γ−+
h (respectively, (mh)D+−

h = −E+−
h −Γ+−

h )
[4]. Moreover, the polynomials P±

k ∈ Π±
k satisfy E−+

h P−
k = kP−

k , (respectively, E+−
h P+

k =
kP+

k ) and when P−
k ∈ ker D−+

h (respectively, P+
k ∈ ker D+−

h ), we obtain Γ−+
h P−

k = −kP−
k ,

(respectively, Γ+−
h P+

k = −kP+
k ).

Like in the proposition 3.2 we can prove the operator property D−+
h E−+

h = I + E−+
h D−+

h

(respectively, D+−
h E+−

h = I + E+−
h D+−

h ). In the same way we get analogous relations to the
ones presented in subsection 3.3.
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