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Abstract. In recent years special hypercomplex Appell polynomials have been introduced by
several authors and their main properties have been studied by different methods and with
different objectives. Like in the classical theory of Appell polynomials, their generating func-
tion is a hypercomplex exponential function. The observation that this generalized exponential
function has, for example, a close relationship with Bessel functions confirmed the practical
significance of such an approach to special classes of hypercomplex differentiable functions. Its
usefulness for combinatorial studies has also been investigated. Moreover, an extension of those
ideas led to the construction of complete sets of hypercomplex Appell polynomial sequences.
Here we show how this opens the way for a more systematic study of the relation between some
classes of Special Functions and Elementary Functions in Hypercomplex Function Theory.
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[17] M. Petkovšek, H. S. Wilf, and D. Zeilberger,A=B, A. K.Peters, Wellesley, 1996.

[18] H. Wilf, generatingfunctionology, Academic Press, San Diego,, 1994, 2 edn.

3


	INTRODUCTION
	SPECIAL POLYNOMIALS AND GENERATING FUNCTIONS
	SPECIAL FUNCTIONS VERSUS ELEMENTARY FUNCTIONS
	APPLICATIONS: BINOMIAL IDENTITIES
	Acknowledgements

