
18th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 07–09 July 2009

INVESTIGATION OF MODELING ERRORS OF DIFFERENT RANDOM
FIELD BASED WIND LOAD FORMULATIONS

E. Bombasaro∗ and Ch. Bucher

∗Research Training Group 1462
Bauhaus-Universität Weimar, 99423 Weimar, Germany

E-mail: emanuel.bombasaro@uni-weimar.de

Keywords: velocity power spectra, model complexity, model quality, convergence

Abstract. In this paper the influence of changes in the mean wind velocity, the wind profile
power-law coefficient, the drag coefficient of the terrain and the structural stiffness are inves-
tigated on different complex structural models. This paper gives a short introduction to wind
profile models and to the approach by Davenport A. G. to compute the structural reaction of
wind induced vibrations. Firstly with help of a simple example (a skyscraper) this approach is
shown. Using this simple example gives the reader the possibility to study the variance differ-
ences when changing one of the above mentioned parameters on this very easy example and see
the influence of different complex structural models on the result. Furthermore an approach for
estimation of the needed discretization level is given. With the help of this knowledge the struc-
tural model design methodology can be base on deeper understanding of the different behavior
of the single models.
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1 INTRODUCTION

Studying the behavior of structures under wind loads a vary set of parameters are relevant
in applying the load to the structure. This parameters are mostly experimentally determinate
and are so not strictly exact. Using this parameters in computing the wind force acting on a
building may cause structural damages or even total failure of the structure if not cared much
about the the size and sensitivity of the different coefficients. But when setting up a model
to design a building it’s dimension and it’s complexity is of major importance regarding the
computational effort and of course if the model takes into account all phenomena and when
changing parameters the model reaction behavior is the same for all different models. In the
first part the model behavior for parameter changes is studied, in the second part the model
quality itself is analyzed and an approach for estimation of the needed discretization level is
given.

2 WIND LOAD

2.1 WIND VELOCITY PROFILES

For the wind load formulation a spectral approach suggested by Davenport [1] is used. The
approach it self is nor changed or different possible spectra are use because the main goal of
this study is to see if changes in the discretization of the random field have influence on to the
result.

Davenport gives in the paper Gust Loading Factors [3] an approach how wind impacts can
be applied to structures using velocity spectrums. Starting from the assumption the mean wind
pressure is of the form, see in [3]

p̄(Z) =
1

2
ρ V̄ 2

I CP (Z) (1)

in which p̄(Z) = mean pressure at point Z above the ground, V̄I = mean wind velocity at
the level of the top of the structure, ρ = air density (1.26 kg/m3, varies with the altitude
above sea level, in this paper this influence is neglected, which it is generally) and CP (Z) =
pressure coefficient of point Z. Suitable profiles for the mean wind velocity can be described
as logarithmic or power-law profiles. The power-law used by Davenport in [3] is

V̄z = V̄10

( z
10

)α
(2)

with α = 0.16 for country side and α = 0.40 in the city center. This power-law will be used in
this paper to describe the wind altitude velocity profile.

2.2 WIND SPECTRUM

The computation of the dynamic reaction of buildings under wind load in the frequency
domain is suggested by Davenport [2]. Normally the goal of this method is to evaluate the size
of a specific or a vary set of structural reaction values and the exceeding probability of the value
for dynamic sensitive structures. The probability distribution used in the spectral method is
already fixed with the standard Gaussian probability distribution. Initial step of the method is
the analytical velocity power spectra suggested by Davenport in [1]

SV (ω) =
4κV̄10

ω

x2

(1 + x2)4/3
(3)
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in which
x = L

ω

V̄10

(4)

and κ is a drag coefficient of the terrain an has an approximate value of 0.005 in open country
and 0.05 in a city complex, V̄10 is the mean wind velocity at reference hight 10 m above the
ground and L a length scale of approximately 1200 m. This spectra was found by Davenport
by studying a high number of measurements of high wind velocities. The invariant of equation
(3) to the evaluation above the ground has to be given a special remark.

3 EVALUATION

In [4] and a more detailed explanation in [5] is given to the approach to compute wind
induced structural reaction with the help of spectral load formulation. The used schema for the
spectral wind induced reaction can be found in [4]. With the help of the power spectra velocity
function SV (ω) an the aero admittance functionHa(ω) the aero force spectrum can be expressed

SP (ω) = Hai
(ω) · SV (ω) (5)

In [4] for tall cylindric structures the aero admittance function is given

Hai
(ω) = ρ2C2

DiD
2
i l

2
i V̄

2
i (6)

in which ρ is the air density (1.26 kg/m3, varies with the altitude above sea level, see note
above) and CDi is the pressure coefficient, Di the dimension of the section, li length of the
considered beam element and V̄i is the mean wind velocity. All values are function of the
ground distance zi.

Additionally the function Hai
(ω) can be multiplied with the square of the function χFi

(ω).

χFi
(ω) =

1

1 + 20ωDi

4πV̄i

1

1 + 8ωDi

4πV̄i

(7)

This function takes into account the fluctuation of the wind force caused by instationary fluid
flux. This function was not taken into account in the following examples.

To consider the wind load properly also the effect that the wind load in two different points
i and j of the structure are not the same, neither in frequency nor in velocity, this means that a
shift in the phase of the stochastic process related to the two points exist. The spectral relation
for the same frequency ω and same velocity V̄i between the two points can be represented with
a cross spectral function SVi,j

(ω). This cross spectral function exist of a real part (co spectra)
and an imaginary part which can be neglected respect the real part, see [4]. The cross spectra

SVi,j
(ω) = RVi,j

(ω)
√
SVi

(ω)SVj
(ω) (8)

with RVi,j
(ω) as cross correlation coefficient, in [1] RVi,j

(ω) is given

RVi,j
(ω) = e

−k
|zi−zj |ω

V̄10 (9)

in which k is an experimentally determinate value and is suggested to be 7.7, see [1]. Further-
more the cross correlation coefficient can be assumed to be the same vertically and horizontally.
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It follows logically that the cross spectral function of the wind load results to

SPi,j
(ω) = Hai,j

(ω) · SVi,j
(ω) (10)

and the aero admittance function changes to

Hai,j
(ω) = ρ2CDiDiliV̄i CDjDjljV̄j (11)

Because not all structures can be modeled as a single degree of freedom system this approach
has to be expand for multi degree of freedom systems [4]. For this purpose the equation of
motion has to be expressed in matrix form, size of matrix is the number of degree of freedom
of the structure. To solve the differential equation the modal analysis is advantageous which
is based on the separation of the single equations. With the help of the impulse force in the
frequency domain the square of the absolute structural reaction function for every n−th natural
vibration mode can be expressed, see [5]

|Hn(ω)|2 =
1

K2
n − [1 + (4ξ2

n − 2)(ω/ωn)2 + (ω/ωn)4]
. (12)

In equation (12) ξn is the generalized damping coefficient for each mode.
The structure reaction spectral function Syr(ω)for a certain point r is obtained out of the

relation
SYr(ω) =

∑
n

φ2
rn|Hn(ω)|2SPn(ω) (13)

φn is the n − th normalized natural vibration mode vector and SPn(ω) is the generalized cross
correlation spectral function for the wind load, in case of continues calculus the sums goes over
to integrals.

SPn(ω) =
∑
i

∑
j

φinφjnSPi,j
(ω) (14)

Integrating SYr(ω) gives the variation of the wind induced deflection of the structure

σ2
SYr

=

∫ ∞
0

SYr(ω)dω. (15)

With this approach the base for solving the problem is given.

4 EXAMPLE

To show the principle of this approach a skyscraper is considered to be exposed due to wind
force acting on the broader side of the buildings facade. The structural model is in the first
tentative a simple cantilever beam with constant mass and stiffness distribution, see Fig. (1). In
the second tentative the structural model is a voluminous finite element model, as before with
constant mass an stiffness distribution, see Table 2 for the used dimension of the building and
the factors for the wind load approach.

4



H

V10

m,EI

z

Table 1: Uniform cantilever beam

Table 2: Parameters

wind properties
V10 10.0 m/s wind velocity
L 1200 m gust length
ρ 1.26 kg/m3 air density
κ 0.05 − drag coefficient
α 0.30 − power coefficient
k 7.7 − correlation value

structure properties
H 150.0 m high
B/D 30.0/20.0 m dimension
E 5e+7 N/m2 young’s modulus
m 351000 kg/m mass per length
CD 1.5 − pressure coefcient
ξ 0.01 − damping coefcient

4.1 DYNAMIC REACTION

For this analyzation two different models are used. One is a simple cantilever beam model
and a volumes finite element model both with constant mass and stiffness disruption. The beam
model was solved analytically, see below, the finite element model was solved with the finite
element software package SLang developed at the Bauhaus Universität Weimar, Germany. For
the spectral wind analysis three different discretization meshes are used, one with 2 ∗ 8, 4 ∗ 16
and 8 ∗ 32 number of elements broad ∗ high.

Locking at the different models it get obvious that both has a different dynamic behavior
out of it’s model capacity. The beam model is not feasible to show torsion modes, which is
easily represent with the finite element model. This phenomena is to be noticed very carefully,
in this example we will see that it has no big impact, actually no impact at all because the first
bending and the second torsion eigen mode can be considered separate and the torsion mode
is not activated by the wind load spectrum. Another problem of the beam model is that only
points on the building axis can be considered, with the finite element model any chosen point
can be considered.
NB: Both models represent theatrically correct the behavior under wind load, but the similarity
to the reality is very different in this case for both models.

4.1.1 Beam Model

The analytic results for the natural vibration mode and natural frequencies can be found in
[5]. We find the frequency equation by solving the the equation system

1 + cos βH cosh βH = 0 (16)

and following the natural frequencies

ωn =
β2
n

H2

√
EI

m
(17)
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an the natural vibration modes are

φn(x) = C1[cosh βnx− cos βnx−
cosh βnH + cos βnH

sinh βnH + sin βnH
(sinh βnx+ sin βnx)]. (18)

Only the first four natural vibration modes are used. This is already a assumption which is base
on Fig. 1 which shows that the influence of the higher oder vibrations modes are negligible
small relative to the first vibration mode. Sought at Eq. 3 we know that the influence of higher
vibration modes decrease.

4.1.2 Mode Influence

The plots in Fig. 1 shows the values computed following Eq. (19)

ε =
σ2
SYr ,n

− σ2
SYr ,n−1

σ2
SYr ,n−1

(19)
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Figure 1: Influence of considered vibration mode amount

which describes the relative change of σ2
SYr ,n−1 to σ2

SYr ,n
as an absolute value. We see that

most of all the first vibration mode is of importance, the higher vibration modes has only an
effect if they are activated due to resonance phenomena.

Furthermore Fig. 1 shows that the influence for the beam and the here considered finite
element models, is not quite good for the second mode and actually the second beam model
mode is a bending mode and so has to be compared with the third mode of the finite element
model which is a similar bending mode too. The fact that for the different discretization models
the mode influence is the same shows the model to be consistent.
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4.2 STRUCTURAL RESPONSE FUNCTION

Following the evaluation schema we obtain as result the structure reaction spectra SYr(ω),
see Fig.2, for the different structural and discretization models. As reference point we used the
right top point of the building, see note above regarding the beam structural model.
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Figure 2: structure reaction spectra SYr
(ω)

The statical deflection and mean µ, the standard deviation σSYr
and the exceeding probability

of the top displacement of the structure is given in Tab. 3. The target value for the computation
of the exceeding probability p is µmax = 0.75m.

Table 3: Results

Model Beam 2 ∗ 8 4 ∗ 16 8 ∗ 32
deflection µ [m] 0.5049 0.57363 0.57363 0.57363
standard deviation σSYr

[m] 4.8899 1.4160 1.2594 1.2117
exceeding probability p [−] 0.4796 0.4504 0.4443 0.4421

In addition we see that increasing the model complexity, a finer discretization mesh, the
structure reaction spectra SYr(ω) converges to a certain common value. The function itself
gets more closer to the pure wind spectra and the singularities caused by the structural reaction
function get more sharper represented. Another advantage gets obvious from Fig. 2 is that the
result merges from above due to the exact result. This means that the value obtained by a less
complex model is larger then the value of a more complex one.

4.3 VARYING PARAMETERS

To study the influence of the parameters, the wind behavior coefficients V10, α, κ and the
structure parameter E are varied in an certain range. All the other parameter and coefficients
are fixed at the value given in Tab. 2. This helps to see if the model complexity influence the
model reaction and if models with different complexity behave different.
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4.3.1 Wind Velocity

Beginning with the mean wind velocity V10 in the high 10 m above the ground, we vary V10

from 0 m/s up to 20 m/s. In Fig. 3 we see the relation between σSYr ,V10/σSYr ,0
− 1 as function

of V10.
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Figure 3: Relation between σSYr ,V10/σSYr ,0
− 1 as function of V10

Looking at the model complexity we see the for the range 0m/s up to 15m/s the changes of
σSYr ,V10 are the same for all different discretization models. Increasing the velocity even more
the different model start to diverge. This shows that for high velocities more accurate models
has to be used.
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Figure 4: Relation between σSYr ,α
/σSYr ,0

− 1 as function of α
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4.3.2 Wind Law Power Factor

As second parameter we vary α from 0.16 to 0.40. Taking a careful look at Fig. 4 we see
that the influence of model complexity is more or less negligible.

4.3.3 Wind Drag Coefficient

κ is varied from 0.005 to 0.05 and we see that their are no changes due to changes in the
model complexity into the suggested range for κ.
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Figure 5: Relation between σSYr ,κ
/σSYr ,0

− 1 as function of κ

4.3.4 Structural Stiffness

To see how the structure’s stiffness influences the structural reaction we vary E from 1e +
6 Nm2 to 1e + 8 Nm2 for the beam model. Logically by changing the structure’s stiffness
we change the natural frequency of the structure and so the structure reaction spectra SYr(ω)
varies significantly. In Fig. 6 we see the relation between σSYr ,EI

/σSYr ,0
as function of young’s

modulus E.
What we see is that as long as the natural frequencies of the structure are out of range of the
powerful gusts the differences in the stiffness has not so a big influence, but when moving
towards the range of natural frequencies in the powerful regions of the wind velocity spectrum
changes in the stiffness are getting dominant. Actually the variation σSYr ,EI

degreases as stiffer
the structure gets caused by the less strong activation power, see equation (14) and Fig. 2. But
still the variation is very sensitive to changes in the structural stiffness EI .
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as function of E

5 MODEL QUALITY, CONVERGENCE

Of corse one of the major interest is when using a discrete model how many discretization
point has to be used. Here an approach for the beam model is show. The blue line in Fig.
7 shows the wind induced deflection σSYr

here σN for any given discretization level N . This
information is more or less easily computed for small numbers of N . The green line in Fig.
7 shows the relative error σN−1 − σN , which degreases to zero very rapidly and converges to
wards the x-axis.
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Figure 7: Convergence behavior of the beam model
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Now what would be great is if for a certain N we could give a preferable small interval
for the value of σN . This is achieved by trying to approximate the error value, the real value
would be σN − σ∞. As long we do not now σ∞ which of course is the exact value, we need
an estimated lower bound value. What here is done is to evaluate approximately the value of
the error σN − σ∞ by using a line going through the points σN−1 and σN . Then every positive
value for N = 1 . . .m of the line (m is the point where the line crosses the x-axis) is computed
and summed up, this estimated error value shows to be always bigger than the real error value.
So for every point N and knowing the value at point N − 1 we can give an upper σN and lower
σN,est value, which are plotted as a magenta colored line in Fig. 7.

Having this information we know can easily decide if the chosen N is big enough or not
looking at the resulted interval. The value of σN,est ≤ σ∞ and so should not be used for further
calculations.

The jumps in the relative error are due to numerical integration error, they are for N > 400
negligible small. But still the estimated value σN,est fulfills all conditions and gives a very
narrow interval which means that increasing N would have no sense any more.

6 CONCLUSIONS

What we see is that all studied different discretized models has more or less the same prop-
erties, but the simplest model, the beam model, is totally different and in this special case is not
appropriate to represent the real behavior of the skyscraper.

What is very useful is that we see that for different mean wind velocities V10 different dis-
cretization levels are important to use if an approbate mapping of the reality is required. Of
course we see that some parameters combined with the different models has no effect on the
result. This knowledge is very important when starting to think about the model methodology.

The convergent studies in the last part of the paper gives a simple but very useful approach
of estimating a lower bound value for the obtained result, so to be abel to verify the quality of
the result and in case to increas the discretization level.
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