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Abstract. The aim of this study is to show an application of model robustness measures for soil-
structure interaction (henceforth written as SSI) models. Model robustness defines a measure
for the ability of a model to provide useful model answers for input parameters which typically
have a wide range in geotechnical engineering. The calculation of SSI is a major problem in
geotechnical engineering. Several different models exist for the estimation of SSI. These can
be separated into analytical, semi-analytical and numerical methods. This paper focuses on
the numerical models of SSI specific macro-element type models and more advanced finite el-
ement method models using contact description as continuum or interface elements. A brief
description of the models used is given in the paper. Following this description, the applied
SSI problem is introduced. The observed event is a static loaded shallow foundation with an
inclined load. The different partial models to consider the SSI effects are assessed using dif-
ferent robustness measures during numerical application. The paper shows the investigation
of the capability to use these measures for the assessment of the model quality of SSI partial
models. A variance based robustness and a mathematical robustness approaches are applied.
These different robustness measures are used in a framework which allows also the investiga-
tion of computational time consuming models. Finally the result shows that the concept of using
robustness approaches combined with other model—quality indicators (e.g. model sensitivity or
model reliability) can lead to unique model—quality assessment for SSI models.



1 INTRODUCTION

Soil-Structure Interaction can be defined as a certain kind of structure which is embedded
within the soil. Hereby, the interaction between both materials reaction to each other is impor-
tant. Typical topics for SSI analysis are deep foundations, shallow foundations and excavations,
geosynthecial reinforcements to name a few [[1]. SSI effects are important topics which have to
be considered in a wide range of geotechnical and structural engineering applications. SSI can
be modeled using one or more of a high amount of approaches which have been published in the
past. The different available models can be split into analytical, semi-analytical and numerical
models considering SSI effects in diverse ways.

The major problem in dealing with SSI effects is the great amount of model and the rising
question of what the best suitable model is, in regards to model-robustness, model-uncertainty
and/or model-complexity. These different model attributes are important to quantify to select
the most suitable model [2]. [[1]] states that it is important to consider the best suitable model to
allow predictions and back calculations. [3]] points out that less attention is paid to validate the
models and investigate their capability for reliable simulation results. [4] shows a benchmark
test where it is obvious that the model choice and modeling techniques have a major influence
on the results which consider SSI effects.

Recent approaches are presented to assess the modelquality in geotechnical engineering [3] to
validate the use of the constitutive soil models. In general, it can be pointed out that there is great
need to continue this work, in particular for different SSI models. These different SSI models
are so-called ill-posed problems, because for the identification of the most suitable model it is
important to consider changes in the structure as well as in the soil. This paper focuses on the
use of numerical finite element models and so called macro—element approaches. These models
are introduced briefly.

The purpose of this paper is to clarify the use of such different SSI models, taking into ac-
count the model-robustness. Therefore a variance—based model robustness and a mathematical
robustness approaches are used. These two slightly different ways for the model robustness
are applied to a shallow foundation with a transient inclined static loading. Thus a scheme is
proposed to evalute the model robustness especially for boundary value problems which have
a large computational time. For this statistical analysis, different methods presented which
can be used to evaluate the most influencing parameter to the model response are presented.
Following this preliminary study, a meta—model is generated for the further evaluation of the
model-robustness. During the consideration of this meta—model the mathematical model ro-
bustness is evaluated.

2 SOIL-STRUCTURE INTERACTION MODELING

In this section the different SSI modelling techniques are briefly introduced. The main focus
is on the Finite—Element Method, but the SSI modeling using a macro—element approach is also
captured.



2.1 Modelling SSI with macro-element approach

A macro element approach is a simplified approach which combines the soil half—space,

interface between the soil and the structure, and the foundation into on single model which
can be solved using a parabolic function. A general description of different kinds of macro—
elements to calculate SSI effects are given in [6].
A number of parallel studies have been conducted on the subject of macro—element modeling for
a static loaded strip footing by e.g. [7, 8, 9]. Using an incremental plasticity model consisting
of constitutive description to account for the interaction between the forces of structure and
the plastic displacement, it is possible to use an elasto-plastic strain hardening macroelement
which can predict the behaviour of SSI [7]. Some examples are shown by [10, [11]. These
macro—element use a yield function Eq. (I)) given by [7]

F(Qupe) = h? +m? — €1 — fractp)”” =0 (1)

Where h = H/ (uV,,), m = M/ (1), & = V/V,, pe is a loading history parameter, H
the horizontal load, M the generated moment, V' the vertical force, V,, the maximum vertical
load capacity of the macroelement, ;. the slope of failure envelope in the H-V plane, ¢ Slope
of the failure envelope in the M-V plane, B width of the foundation and f is a constitutive
parameter which controls the shape of the failure envelope. The plastic potential can be written
as developed by [7]:

9(Q) = Nh? + *m? — € [1 — fracgp,]”’ = 0 )

Where = 11/, and x = /1),. Both of these parameters must be determined experimentally.
If f(Q,p.) = g(Q) the flow rule is associated. Both functions can be used with an incremental
plasticity scheme to calculate the displacement in respect to the load. For the interested reader,
refer to [10, 7] for a detailed description.

2.2 Modelling with Finite Elemente Methode SSI

Generally, if a structure is loaded, relative movements with regards to the soil can occur.
Therefore, the use of conventional finite elements can create compatibility problems prohibiting
relative movements into soil structure interaction modeling. Due to discretization as shown in
Figure |1al the nodal compatibility in the finite elements method is constrained, such that the
soil and the structure move together. To prevent this occurrence, so-called interface or joints
elements could be used. Particular advancement also is that it is possible to use a different
material formulation for this interaction zone (e.g. maximum wall friction angle). Another
important point is that with such elements it is possible to allow separation or sliding.
Undergoing research to use finite element analysis to investigate SSI has been considered since
the early 70s. There are different proposed methods and models used. The different groups are
tackled here in the following:

1. node to node contact
2. using conventional continuum finite elements (e.g. [12,13])

3. zero thickness / thin layered interface elements (e.g. [14. 18} 16]])
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Figure[I|shows the different types of SSI modelling. These three methods are used in a finite
element analysis. In the following a brief description follows the methodology and the consti-
tutive models.
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Figure 1: |(a) node to node contact(b)|use of continuum element as interface (c) use of interface
element according to [17]]

All of these different techniques can be used under conditions where their utilization is jus-
tified.

Node to node contact

Modeling the SSI using only node to node contact is a rough method with which to model the
phenomenas which appear these transition zones. Clearly there is a big disadvantage in using
such kinds of SSI models due to the fact that the nodes for the soil and structure must fulfill
the nodal compability. This is due to the fact that if the structure is loaded, relative movements
can occur [[17]. Due the discretization shown in Fig. the nodal compatibility in the finite
elements method is constrained such that the soil and structure tend to move together.

Also, it is important to point out that the use of such a modeling technique for SSI can lead to
unrealistic high failure loads. This is due to the fact that at corner points singularity points, will
occur which reduces the accuracy of the global finite element mesh [18]].

The use of these modeling methods can not recommended but it is quite often that in practical
engineering applications using interface elements are forgotten or the effect is underestimated
by the engineer.

Using conventional finite elements

[[12] proposes the use of conventional finite elements (Fig. in cases where the slip of a
foundation structure must not be considered. [12,|13]] shows that the conventional finite element
formulation is able to predict SSI effects in efficient quality. If the finite element model should
be used to model slipping of the structure in a great range over the soil it is not suitable for this
propose [12].

Another advantage is also that it is possible to use a different material formulation for this
interaction zone (e.g. maximum wall friction angle). As with interface elements it is possible
to use the same constitutive material formulation than in the surrounding soil.



Zero-thickness interface elements

[LS] shows the first use of special interface elements in finite element analysis which can
model discontinuity like joints in rock mechanics. This pioneer work from [15] are followed
by a huge amount of different proposed interface element formulation from 6-10 node isopara-
metric interface element to different material descriptions from linear elastic material behavior
to bi-linear models of the Mohr-Coulomb friction material model to more advanced material
models like Damage models [20], Critical State Soil Mechanics [21] framework and advanced
elasto—plastic formulations [19].

The use of thin continuum interface elements (e.g. [16, 22]]) for soil-structure interaction can
lead to problems due to the fact that the thickness of the interface is unknown and the determi-
nation of the input parameters used is difficult without conducting special laboratory tests [19]].
Special interface formulation are developed which ensure of singular points at the corner of SSI
modelling [18]].

The interface models used are in respect to the finite element formulation in the commercial
software used. 6 or 15 noded triangular elements are used in this publication. The associated
interface elements are 6 or 10 noded joint elements. Both types of elements for the continuum
and interface are shown in Fig. 2| The rate of interface traction ¢ and the displacement disconti-
nuity Aw is a combination of linear elasticity and perfect plasticity therefore the elasto—plastic
relationship can express the following equation:

t = DEAu® = DS (Au — AuP) 3)

Eq. (3) relates the objective rate of traction ¢ to the relative displacement over the full length
of the interface surface Au®. The following D-Matrix can be generated for isotropic linear
elastic behavior (4):

e |ks O
Dc - |:0 kn:| (4)
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Figure 2:|(a)| Yield function andinterface element assmbly according to [18]

where the interface stiffness is related to the mean element length [, G the shear modulus of
the soil and v Possions ratio.



ks = 1 (G/1) kn = pG/ (1= 2v) (5)

In the present study only a simple Mohr-Coulomb yield function is considered. This yield
function is combined with a non-associated plastic potential. Fig. [2a] shows a repesentation of
the yield function in a ¢,—t,, space. The yield function and plastic potential can be described
with:

f(t) =ts+t, tan ., — c. g(t) =ts +t, tan 1), (6)

Where . is the friction angle and c. the adhesion in the interface zone. For the plastic
potential ¢, is the dilation angle which controls the plastic dilation. As described in [23] the
use of a non-associated flow rule . > 1. prevents a unrelastic high plastic dilation. For some
special cases this can result in an overestimation of the contact pressure and consequently of
the shear strength. Using the plastic potential the plastic slip can be derived using the following
equation:

AuP = a) (dg/0t) (7

where « is a coefficent defined as:

a=0 if f<O0or[df/0f]" DA(u) <0 (8)
a=1 if f=0with[df/0t]" DA(u) >0 )

using this switch on and off coefficient o the multiplier A can be solved with the help of
the consistency equation f = 0. To solve these constitiutive equations a Newton-Cotes algo-
rithm is applied. Considering this integration scheme, a lumped interface stiffness matrix can
be archieved.
The advantages of using this interface elements is that it is not necessary to care about the in-
terface thickness and the special needed material parameters which are uncertain and difficult
to obtain by using conventional laboratory tests.

3 MODEL - ROBUSTNESS

Model-robustness is defined as the capability of a model to given consistent output over
the full range for which it is generated of possible input parameters. Two different types of
robustness measures are used. Both of these robustness approaches are based on global model-
robustness.

3.1 Variance-based robustness measure

The variance based robustness measure is also called Taguchis robustness and is defined as
an adapted ”‘signal-to-noise™” ratio discussed in [24] and can be expressed in Eq. (T0):



1
T =—10log (—2) (10)
9y

Where the standard derivation o3 is used to estimate the model-robustness. The robustness
measure by Taguchi has some drawbacks described in [24].

3.2 Mathematical robustness approach

The principal idea of the mathematical robustness approach is directly derived from the defi-
nition of model-robustness, that the model will generate an input which is completely conneted
to the output. As an example the change in input will be related to the change of output. There-
fore the input—output relationship of the SSI models will be investigated.

There can be three different model robustness classes defined. Robust, partial robust and non-
robust models as shown in Fig. [3]
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Figure 3: Input—Output relation for robust, partial-robust and non-robust model

Plotting Ay — = diagram shows different possible cases. If the plot shows a straight horizontal
line the input-output relation is linear and it is a quite robust model. Shows the input—output
relation some fluctuations, it is partial robust. The third case is that if the model shows a
complete irregular behavior for the output it can be called non-robust. If Ay = 0 the parameter
does not influence on the output. This means the parameter has no influence on the model
response.

To calculate this, the model input will be split in 7 numbers of intervals. Using n intervals for all
important input variables used. These are used to compute all possible combinations as model
response. The number of combinations will be quite high, as the following Eq. [TT] shows:

nC; = n"? (11)

where nC; is the amount of different possible combinations and np are the number of pa-
rameters. For all these combinations the global response of the model is computed. Therefore
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one parameter is frozen and all other combinations are computed.
E(Y|X;) (12)

From these ouptut the mean (11y) s calculated for all combinations. Using these mean values
the Ay for every single parameter interval is calculated by:

These Ay are plotted against the parameter input x to estimate the robustness of a model
graphically.
4 METHODOLOGY FOR THE ASSESSMENT OF MODEL - ROBUSTNESS

The first step in the determination of the robustness measures are the concept as show in Fig.
The different step as shown in Fig. 4{ are explained in the next paragraphs.

If R*< 0.90
-
Variance-based robustness
measure
3.1
Screening Meta- R>090 |
4.3. e Model D —— p
4.4 Mathematical robustness
measure
3.2
NG

Figure 4: Methodology for the assement of the model-robustness

4.1 Application to an inclined loaded shallow foundation

The application for the comparison of these different robustness approaches described above

is a shallow foundation which is loaded with an inclined load. Figure [5] shows the boundary
conditions.
This boundary value problem is assumed for all the 4 different partial models. For the three
different finite element models, the contact description is different according to section [2.2]
Model 1 (M1) uses a simple node—node contact, Model 2 (M2) uses an interface element and
Model 3 (M3) uses the continuum approach. The macro—element model is the fourth type of
model which is used. To exclude mesh dependencies and errors due to other modeling issues,
some comparison with different meshes are conducted in order to ensure that such effects could
not happen. Please note that these investigations are not shown here.

The gray scaled areas in Fig. [5|are the meshed parts of the model. For the discretization, 15-
noded triangular elements with a fourth order interpolation for displacements are used. These
elements have 12 Gauss points (stress points) for each element (also shown in Fig. 2?).

The model has a plane strain boundary condition with the width of 9.00 m and height of 4.00 m.
Fig. [5]uses the same element formulation for the beam embedded in the soil. For the material
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Figure 5: Applied boundary value problem

model of the foundation a simple linear-elastic ”Hookes law” model is chosen. This requires 2
material parameter. The Young’s Modulus ¢ and the Possion’s ratio v¢

The constitutive material model for the soil is the Mohr—Coulomb model which is a classical
model used in geotechnical engineering. It is a linear—elastic perfectly plastic model with a
fixed yield surface in principal stress space. For a more detailed description see for example
[6]. The model uses five different parameters to describe the constitutive behavior of soils and
rocks in a wide range. The different parameters are  the friction angle, v dilatancy angle, c
cohesion, F; Youngs modulus and v, Possions ratio. For a more detailed description, [6] is
referenced.

Considering this boundary value problem, the SSI models are applied. Consequently, this
means that three finite element analysis and one macro-element calculation is conducted. The
macroelement approach is also applied for the shown boundary in Fig. [5| Due to its modelre-
duction it is not explicitly drawn here, for a pictorial representation is refered to [8]] .

For comparsion of the different models a fixed load level of 75 kN is applied and all results are
shown in respect to the displacement by this load level.

4.2 Parameters used in the different SSI models

The parameters which are used are listed in the following Tab. The sampling of the
parameter is performed as uniformed distributed sampling as described by [25]. The meta
model sampling is also uniformly distributed. These uniform distribution is chosen to hold each
variable for the model input independent of each other.

4.3 Preliminary Study for Elementary Effects

The different models were first screened with the help of a screening technique proposed by
[25]. The idea of this is to search the elementary effects of the entire design space. Therefore, a
randomized sampling plan is generated where so-called Elementary Effects (EE) can be calcu-
lated using Equation (13]). With the help of these EE the input parameters can be ranked in order
of their importance. These EEs can not give a statement of the importance quantifiably. The
basic assumption from [25] is that the objective function from the underlying computational
model is deterministic.



Table 1: Parameter input for the analysis

Parameter [unit] Baseline Minimum Maximum

Youngs modulus (foundation) £y [MN/m?] 30000 20000 100000
Possions ratio (foundation) vy [-] 0.45 0.3 0.495
Friction cofficient ;. [-] 0.8 0.3 1
Load inclination angle 0 [] 22.5 0.1 45

S Foundation Inieraction Load

To estimate EEs the mean and standard deviation is calculated. These indicators shows the
importance to the global response and the non-linearity / interaction. In computational regard
this scheme is quite efficient because with the help of one simulation run two sensitivity values
can be examined.

y(z1,m0, @i ,m + A ) — (y (%))
A

Where A = ¢/(p—1), £ € Nand x € D such that the components x; < 1 — A and
xe D= [0,1]2 for scaling issues, £ amount of input variables, p number of discrete values
along each dimension. The basic idea of a parameter in regarding to [23] is that a parameter
with a large measure of central tendency indicates a major influence to the objective function.
Further, [25]] considers that a significant measure of spread indicates that the variable is involved
in non-linear effects and/or interacts with other parameters.

With estimation of the sample mean and the sample standard deviation, for a set of d;(x) values
overspanned to the design space. Of major importance for this purpose is to generate a sam-
pling plan that each evaluation of the objective function f participates in the estimation of two
elementary effects. Therefore the sampling has to give us a defined number r elementary effects
for each variable. A more detailed discussion is given by [23].

The sampling can generate with the help of Eq. (14).

B* = (1k+1’1X* + (A/Q) [(QB — 1k+1,k> ])ﬂ< + 1k+1,k]) P* (14)

di (X) =

(13)

Here, B is the basic sampling matrix, P* is the random permutation matrix and D* randomly
generated matrix with +1 or —1 on the diagonal. For the calculation of r EEs for each variable,
the screening plan is built from 7 random orientations using Eq. (13)):

By
B;

X = (15)

B*

r
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The advantage of the method presented is to generate a more efficient and accurate response
surface with a less of computational time. The result of these screening is shown as a bar plot
in Fig. [6] Therefore, the parameters scaled to show the influence of the different parameters
correlated under each other. These scaling is done with the following Eq. [16}

EEsecte = _HY __, _C (16)

max(i) | max(o?)

EEscaIe

Macro—-Element

E_f
M1 R_inter
delta

Figure 6: Scaled Elementary Effects

4.4 Meta-Modeling

Due to the computational time consuming finite element models, this models are replaced
by different meta—models. For these, only those from the screening important model input
parameters are considered. For the investigation of the robustness criterion it was important
that the model input are considered as uncorrelated input, to generate also uncorrelated meta—
models. To control and build the response surfaces a multi—linear regression was used. The
object function of the observed model will be idealized by the following equation. For the
regression linear, quadratic and mixed terms Eq. [[7)are used:

Y = Bo + B1X1 + BoXo 4 - + BpiXpr + 511X121 + 522X222 + -

(17
+5PkPkX123kPk + B12 X4 Xo + - + Bpi—1pk Xpe—1Xpr + €

Here, Y is the regression equation for the approximation of the model response, [ the re-
gression coefficient, X; the i-th parameter set. The regression coefficents /3 are calculated using

Eq. (18):
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= (X"X) 1X"Y (18)

For the control of correctness of the used response surface the coefficient of determination
R? is calculated using Eq.
SS
RP=1- ( E) (19)

SSr

If the coefficient of determination is smaller than 0.90 the number of samplings must be
higher to reach a higher accuracy of the meta—models.
The different coefficient of determination are shown in Fig. [7a] For the generation of the meta—
model, 500 samples are used. The macro—element is not replaced by a meta—model. The plane
in the bar plot shows the value of the coefficient of determination. All meta-models can be used
with a number of 500 samples.

50

Macro-Element

M3

() (b)
Figure 7: |(a)| R? for meta—models |(b)| Results for the Taguchi robustness

4.5 Robustness approaches

At the end of the concept show in Fig. [ both robustness approaches are investigated, to
investigate the model-robustness.
Results: Variance-based robustness measure

Fig. visualizes the results for the variance based robustness measure. Based on the
Taguchi robustness measure it can stated that the most robust model is the model M3 followed
by M2.

Results: Mathematical based robustness approach

Currently for the mathematical robustness, there are no clear mathematical formulation to
express the robustness of a model in scalar in existence. However, generally the concept for the

12



evaluation of the model-robustness presented above can identify the model-robustness for each
model parameter independently (see Fig. [§).

In Fig. [8a) the results for all four different models are shown for the load inclination angle. In

general can be stated that all models have parts where they are robust. In Fig. shows the
results for the friction angle ¢.
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Figure 8: mathematical robustness inclination angle ¢ mathematical robustness for the
friction angle ¢

S CONCLUSION

Both of these robustness approaches can be applied to soil-structure coupling models. In the
case of the Taguchi robustness measure, the different models shows really different results. The
mathematical robustness approach have to be completed. This approach has to be refined as a
mathematical formulation. This will helps to compare models in the sense of model-robustness
and model—quality. Furthermore, some effort has to be done on the question of which model

delivers a reference model robustness and what happens if the models tends to be show a non-
linear behavior.

This paper shows the applicability of using two different model robustness assement approachs

for the model robustness. This paper concludes with an outlook on the development of a
straight-forward mathematical formulation of model-robustness.
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