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Abstract. Bridge vibration due to traffic loading has been subject of extensive research in the
last decades. Such studies are concerned with deriving solutions for the bridge-vehicle interac-
tion (BVI) and analyzing the dynamic responses considering randomness of the coupled model’s
(BVI) input parameters and randomness of road unevenness. This study goes further to examine
the effects of such randomness of input parameters and processes on the variance of dynamic
responses in quantitative measures. The input parameters examined in the sensitivity analy-
sis are, stiffness and damping of vehicle’s suspension system, axle spacing, and stiffness and
damping of bridge. This study also examines the effects of the initial excitation of a vehicle on
the influences of the considered input parameters. Variance based sensitivity analysis is often
applied to deterministic models. However, the models for the dynamic problem is a stochastic
one due to the simulations of the random processes. Thus, a setting using a joint meta-model;
one for the mean response and other for the dispersion of the response is developed. The joint
model is developed within the framework of Generalized Linear Models (GLM). An enhance-
ment of the GLM procedure is suggested and tested; this enhancement incorporates Moving
Least Squares (MLS) approximation algorithms in the fitting of the mean component of the joint
model. The sensitivity analysis is then performed on the joint-model developed for the dynamic
responses caused by BVI.
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1 INTRODUCTION

Structural systems can be represented by various mathematical models implemented and
solved using complex computer codes, which may be referred to as numerical models. Devel-
oped numerical models are often employed to identify influential input parameters that affect
responses of interest. This identification is carried out by methods of sensitivity and uncertainty
analyses. Such studies can be used for model validation, model calibration, and decision making
processes. Variance sensitivity analysis is one of the efficient methods to study global sensitiv-
ities where main and higher order effects of input parameter can be quantitatively measured.
Furthermore, sampling-based techniques for estimating the variance-based sensitivity indices
are frequently used for complex engineering problems for their ease in implementation. How-
ever, their main drawback is the demand of high computational time. Therefore, meta-models
are used as an alternative for the complex computer codes, and the sensitivity analysis is per-
formed efficiently on fitted meta-models [1]. Such a procedure applies to deterministic models
that produces always the same output for the same set of input. Unfortunately, this is not the
case in all engineering applications where random processes or unknown input parameters may
be over-looked.

Stochastic computer codes are the ones were simulations of random processes are included
in every run of the analysis, thus, the output values depend on the realizations of these ran-
dom processes. Applying variance-based sensitivity analysis for such models is a challenge
and has attracted the attention of researchers in the recent years. Tarantola et al. [2] suggested
a solution to consider the effects of random processes by introducing a scalar input parameter
(ξ ∼ U(0, 1)) controlling the simulation of random processes and including them in the com-
puter model, this require performing the sensitivity analysis directly on the numerical model,
which means high computational time. More recently, [3] introduced building a joint model
for the output of stochastic computer codes. The joint model is then used for the sensitivity
analysis. The procedure for joint modeling followed by [3] is within the framework of general-
ized linear models. Later the same authors suggested non-parametric models, e.g. generalized
additive models and joint Gaussian process modeling, as they proved to be more efficient in
estimating the sensitivity indices [4]. A similar idea is to be used and tested for the engineering
problem at hand.

The engineering problem of interest is bridge-vehicle interaction. There has been an in-
creasing attention to develop procedures for solving the bridge-vehicle interaction, which is
encouraged by the advent computational power of digital computers and the increasing number
and weights of vehicles traveling on bridges. Therefore, researchers and modelers had been
concerned with deriving solutions of the dynamic problem of bridge-vehicle interaction. F.
Yang et al. [5] and [6] reviewed the different methods with their corresponding mathematical
and computational descriptions. Moreover, probabilistic studies had also been employed to
assess the effects of random input parameters and road unevenness on the dynamic response.
Hwang and Nowak [7] presented a procedure to calculate statistical parameters for the dynamic
loading of bridges. These parameters were based on surveys and tests and included vehicle
mass, suspension system, tires and road roughness, which were simulated by stochastic pro-
cesses. Kirkegaard and Nielsen [8, 9] studied the randomness of vehicle input parameters and
the randomness of road unevenness in two separate studies. One conducted for vehicle input
parameters and the other for the effects of random road profiles on the dynamic response of
highway bridges. Moreover, solutions for the statistical characteristics of a bridge’s response
to the passage of a vehicle over a random rough surface have been of interest in a number of
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research works, such as [11, 12, 13]. More recently, [14] considered both the randomness of
the vehicle input parameters and road unevenness, and calculated the statistical characteristics
of the bridge response by using the random variable functional moment method.

This study aims to extend probabilistic studies and use them for purposes of sensitivity and
uncertainty analyses. One of the main challenges of such an analyses is considering the effect of
road unevenness on the variance of the bridge displacements. Further, the effect of the initial ex-
citations on the influence of vehicle and bridge dynamics on variances of bridge displacements
is also examined.

The first section of the paper deals with the general description of the enhanced generalized
linear models and their use to determine the sensitivity indices followed by presenting the main
solution algorithm of the bridge-vehicle interaction. An academic example is illustrated to vali-
date the presented approach followed by the application on the influences of vehicle dynamics,
bridge dynamics and initial excitations on the variance of a bridge’s response.

2 ENHANCED GENERALIZED LINEAR MODELS

The numerical models of interest are the ones that are stochastic in nature, e.g. having
functional inputs which cannot be captured by scalar ones. For such a problem and where no
replications is preferred for computational time reduction, it is useful to model both the output’s
mean and variance jointly, which leads to the use of generalized linear models. Generalized
linear models generalizes linear regression by allowing the linear model to relate to the response
variable using a link function and by allowing the variance at each observation point to be a
function of its prediction at the same position. Each generalization model has three components;
response variable distribution, linear predictor, link function. A full description of the such
models and their extension can be found in [15, 16]. In short the followings describe the mean
and dispersion components of the joint model.

E(Yi) = µi, ηi = g(µi) = Σjxijβj; (1)
var(Yi) = φiv(µi),

(2)

where (Yi)i = 1, . . . , n are random variables with mean µi; xij are samples of covariate vectors
Xj; β are the regression coefficients; ηi is the linear predictor of the mean; g(.) is the link
function; φi is the dispersion parameter, and v(.) is the variance function. The dispersion is
assumed to vary and dependent on the predicted mean values, hence a model is built for φi:

E(di) = φi, ξi = h(φi) = Σjuijγj; (3)
var(di) = τvd(φi),

(4)

where (di)i = 1, . . . , n are estimates of dispersion, error of prediction is used; uij are samples of
covariate vectors Uj; γ are the regression coefficients; ξi is the linear predictor of the dispersion;
h(.) is the link function; τ is a constant, and vd(.) is the variance function for dispersion. The
choice of the linear predictor has a strong effects on the joint model and its quality. In the case
where the distribution for the responses of the mean model is chosen to be normal, an identity
link function follows the choice of this distribution and (1) becomes E(y) = µ, which is the
general formulation of simple linear regression.
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This paper is concerned with enhancing the procedure of generalized linear models by using
local approximation algorithms for the predictor of the mean. Not only a weighting function
dependent on the variance distribution is introduced to estimate the regression coefficients β
but also a weighting function dependent on the position of the approximation point relative to
the observation (support) points is used. Moving least squares (MLS) is proposed to be the
predictor in GLM procedure.

Furthermore, the base of the variance model is the squared residuals ε2i = (yi−Xiβ)2 for the
i = 1, 2, . . . , n, where n is number of observations. For the mean component of joint model,
the meta-models coefficients β are evaluated as

β = (X ′V −1X)−1X ′V −1y, (5)

where V ar(ε) = Vn×n with σ2
i = eùiγ . It can be noticed that the maximum likelihood (MLE)

estimator of β involves γ through V matrix and the MLE of γ clearly involves β since the data
in the variance involves β. As a result an iterative procedure is carried out.

The enhanced GLM procedure using MLS is as follows:

1. Ordinary linear regression models is used to obtain β0 for the mean model yi = X ′iβ0 + εi

2. β0 is used to compute n residuals, εi = yi −X ′iβ0

3. The residuals ε2i are used as data to fit the variance model with regressors u and a log link
function, the regression coefficients γ are determined

4. The variance weighting matrix V is formulated to be used in updating β0 to β1 for the
iteration step

5. The moving least squares (MLS) is concurrently applied on the approximation point

6. Step 2 is repeated with the updated data, and analysis is continued till convergence

The Gaussian weighting function is used for MLS algorithm, which is an exponential function
described as

wG(s) = e−s
2/α2

, (6)

with α as a shape factor and s = ‖x− xi‖ /D, where s is the normalized distance between the
approximation point and the supporting point considered andD is the influence radius. Further-
more, for the above procedure cross validation is used to find the residuals, which eliminates
the over-fitting of noise in the fitting

3 SENSITIVITY INDICES

Sensitivity analysis is the study of how uncertainties or variances in the output of a model
is apportioned to uncertainties or variances of the inputs. Variance based methods have been
chosen due to their independence from the investigated model, and the influence of groups or
sets of input parameters may be examined. Moreover, such an analysis provides the impor-
tance ranking of the input parameters as well as quantifying their contribution to the output
variance [17]. The main idea of variance-based methods is to estimate the amount of variance
that would disappear if the true value of the input parameterXi is known. This can be described
by the conditional variance of Y fixing Xi at its true value V (Y |Xi), and is obtained by varying
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over all parameters, except Xi. Since the true value of Xi in complex engineering problems
is unknown, the average of the conditional variance for all possible values of Xi is used, i.e.
E(V (Y |Xi)). Having the unconditional variance of the output V (Y ) and the expectation of the
conditional variance E(V (Y |Xi)), the following relation holds, which is known as the law of
total variance:

V (Y ) = V (E(Y |Xi)) + E(V (Y |Xi)), (7)

From equation (7) the variance of the conditional expectation V (E(Y |Xi)) is determined. This
term is often referred to as the main effect, as it estimates the main effect contribution of the Xi

to the variance of the output. Normalizing the main effect by the unconditional variance V (Y )
results in:

Si =
V (E(Y |Xi))

V (Y )
(8)

The ratio Si is known as a first order sensitivity index [18], which is also known as the im-
portance measure [19]. The value of Si is less than 1, further the sum of all first order indices
corresponding to multiple input parameters is an indicator of the additivity of the model. The
model is considered additive when the sum equals to one (no interactions between the input
parameters), and non-additive when the sum is less than one. Hence, the difference 1 −

∑
Si

is an indicator for the presence of interactions between the input parameters. For example, the
interaction between two parameters Xi and Xj on the output Y in terms of conditional variance
is expressed as:

Vij = V (E(Y |Xi, Xj))− V (E(Y |Xi))− V (E(Y |Xj)), (9)

where V (E(Y |Xi, Xj)) describes the joint effect of the pair (Xi, Xj) on Y . This is known as
a second order effect. Higher order effects can be computed in a like manner. The total effect
index ST i is used to represent the total contribution of the input parameter Xi to the output, i.e.
the first order effects, in addition to all higher order effects.

The above formulations applies to deterministic computer codes, where the same set of data
produces the same output repeatedly. However, such a statement cannot be said when consid-
ering functional inputs, e.g. random processes, for the numerical models at hand, which are
called stochastic models as mentioned before.

The work of [4] suggested the family of generalized linear models (GLM) and generalized
additive models (GAM) to model the mean and dispersion of model’s output and use the joint
model to estimate the sensitivity indices. This general approach is adopted in this study using
GLM with moving least squares MLS as the fitting algorithm of the mean component of join
model, having the identity as the link function.

The procedure starts with assuming the existence of an uncontrollable input parameter Xε in
addition to the scaler inputs X = (X1, X2, . . . , Xk). Thus, the output of the numerical models
can be written as Y = f(X, Xε). The joint meta-models using enhanced GLM are used to
formulate the relation for the mean (fm) and dispersion (fds) with respect to the scaler inputs
(X), which can be written as [4]:

fm(X) = E(Y |X) (10)
fds(X) = V (Y |X) (11)

The total variance of Y is defined by (7), hence, the sensitivity indices for the scalar inputs
can be estimated on the mean component of the joint model using classical sampling meth-
ods having Si = Vi(fm)/V (Y ). At the same time the dispersion component of the joint
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model fds is developed. E(V (Y |X)) presents the expected value of the variance caused by
Xε and its interaction with X, thus, the total effect sensitivity index of Xε is estimated as
STε = E(V (Y |X))/V (Y ).

4 MODELING OF BVI

The engineering problem of interest is the vibration of bridges caused by a moving heavy
vehicle. A general description of the vehicle and the bridge models as well as the used solution
algorithms are explained.

4.1 Vehicle model

The equations of motion for the vehicle can be written in the following general form:

MvÜv + CvU̇v + KvUv = Pv, (12)

where Mv is the mass matrix of the vehicle, Cv is the damping matrix of the vehicle, Kv is
the stiffness matrix of the vehicle, Pv is the dynamic force vector of the vehicle, and Uv is
the generalized coordinate vector describing the dynamics of the vehicle model (degrees of
freedom).

The chosen vehicle model is an eight-degree-of-freedom model representing a typical con-
figuration of a common heavy truck traveling on road networks [20]. The vehicle consists of
a two-axle tractor and a three-axle semi-trailer linked by a hinge. It is assumed that the three
axles of the semi-trailer share the rear static load equally since load-sharing mechanisms are
common in multi-axle heavy vehicle suspensions [21]. The generalized coordinates used to
describe the vehicle dynamics are tractor vertical displacement yT , tractor pitch angle θT , semi-
trailer vertical displacement yS , semi-trailer pitch angle θS , tractor front unsprung mass vertical
displacement y1, tractor rear unsprung mass vertical displacement y2, and semi-trailer unsprung
masses vertical displacements y3, y4, and y5, as shown below:

Uv =
{
yT θS θS y1 y2 y3 y4 y5

}T (13)

The mass, damping and stiffness matrices can be found in [20].

m  , lS S

θS

θT

m  , lT T

yS a2

b4
b33

b32
b31

b5

b2 b1

yT
a1

c33
k33

kt33

y5

c32
k32

kt32

y4

c31
k31

kt31

y3

c2
k2

kt2

y2

c1
k1

kt1

y1

Figure 1: Schematic for the five-axle vehicle model

The interaction force F int
i can be expressed as:

F int
i = kti [yi(t)− yb(xi, t)− ri(t)] , i = 1, 2, 3, 4, 5 (14)

where yb(xi, t) and ri(t) are the displacements of the bridge and road unevenness respectively,
at the contact point corresponding to the ith axle at instant t.
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The vibration of such a heavy vehicle has two distinctive frequency ranges; the first range is
1.5 Hz to 4 Hz, representing the sprung mass bounce involving some pitching, and the second
range is 8 Hz to 15 Hz, representing the unsprung mass bounce involving suspension pitch
modes [21].

4.2 Bridge model

The equations of motion of the bridge considering time varying forces can be expressed in
the following matrix notation:

MbÜb + CbU̇b + KbUb = Pb , (15)

with Mb, Cb, Kb are the mass, damping and stiffness matrices of the bridge, Üb, U̇b, Ub are the
accelerations, velocities and displacements of the bridge, and Pb is the vector of forces acting
on each bridge node at time t, which has two components, as shown below:

Pb = Fg + Fint , (16)

where Fg is the force acting on the bridge due to the weight of the vehicle, which is independent
of the interaction, and Fint is the time-variant force acting on the bridge, which depends on the
interaction between the bridge and the vehicle. The damping of the bridge is assumed to be
viscous, which means that it is proportional to the nodal velocities.

4.3 Bridge-vehicle interaction

The equations of motion for the vehicle and the bridge are written as (12) and (15), re-
spectively. Assuming perfect contact, the solution of these equations is governed by satisfying
the compatibility equation and imposing the equality of displacement at the contact point, as
expressed below:

yw(xi, t) = yb(xi, t) + ri(t) , (17)

where yw(xi, t) is the displacement of the tire of the vehicle at ith contact point at instant t. In
addition, the force equilibrium conditions at the contact point i must be satisfied, which can be
shown as:

P i
b = F g

i + F int
i , (18)

where F g
i is the static weight of the ith axle and F int

i is the interaction force at the ith axle. The
ith contact point usually does not coincide with the a DOF of the bridge model. Therefore, the
forces F g

i and F int
i are converted to equivalent nodal forces associated with the bridge’s DOF.

The solution algorithm described in [10] is used in the analysis. It is a non-iterative solution
conditioning over a sufficiently small time step. With such a time step, the force acting on the
vehicle at the current time step is estimated from the previous step. The choice of the time
step should be small enough to capture the highest desired frequency of the bridge, the vehicle
passage, and the excitation from road unevenness. Moreover a factor of 1

10
is introduced into

the ∆t selected to secure reasonable integration accuracy.
In general, many DOFs are involved in the FE model of the bridge system, but only the first

modes of vibration make the significant contribution to the dynamic response. Therefore, the
modal superposition method has been used to solve the equations of motion of the bridge, which
reduces the computational effort considerably, which is regarded as advantageous [22].
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4.4 Road unevenness

Road unevenness is often treated as a realization of a stationary Gaussian homogeneous
random process described by its power spectral density function in space domain Sf0f0(κ) with
κ as the wavenumber [23].

However, the dynamic analysis is performed in time domain, and a description of the road
unevenness in time domain is needed. Therefore, the temporal power spectral density function
Sf0f0(ω) is to be computed. Assuming a constant speed for the vehicle v, Sf0f0(ω) and Sf0f0(κ)
can be related using the following:

Sf0f0 (ω = vκ) =
1

v
Sf0f0(κ) (19)

When performing the analysis in time domain, one can deduce that the excitation of the
vehicle due to road unevenness can be described as non-stationary when the vehicle speed is
time dependent [25]. Even when the speed is constant and the vehicle excitation is stationary,
the dynamic responses of the bridge are non-stationary due to the movement of the vehicle [11].
This observation is of importance in deriving the stochastic characteristics when the dynamic
problem is solved in frequency domain.

The model for generating realizations of road unevenness is a series of cosine terms with
random phase angles, and described in (20).

f(t) =

Nd−1∑
k=0

[Ckcos(ωkt+ Φk)] , (20)

ωk = ωl + k∆ω ,

k = 0, 1, 2, . . . , Nd − 1 ,

where Φks are independent random phase angles uniformly distributed in the range [0, 2π] and
Cks are random variables following Rayleigh distribution with a mean value of βk

√
π
2

and a
variance of β2

k(2− π
2
) taking βk as

√
SFF (ωk)∆ω. SFF is the one sided power spectral density

function (PSD) used to describe the road unevenness. Further, the realized road surfaces reflect
the prescribed probabilistic characteristics of the random process accurately as the number Nd

gets larger.
It is noticed from (20) that the PSD is discretized into temporal frequency bands of a width of

∆ω, and the corresponding discretized frequencies are used in the realization of the stochastic
process. However, the entire frequency domain of the PSD cannot be used in the realization for
mathematical and physical reasons [26]. For the realizations of road surfaces, cut-off frequen-
cies are needed. The discretizing frequency band is defined as

∆ω = (ωu − ωl)/Nd , (21)

with ωu and ωl (rad/s) as the upper and the lower cut-off frequencies. The long wavelength
irregularities correspond to low frequency components in the time domain and short wavelength
irregularities correspond to high frequency components [27].
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5 NUMERICAL EXAMPLES

5.1 Ishigami test function

The described joint modeling combined with sensitivity analysis have been applied to Ishigami
function [24]:

Y (X1, X2, X3) = sin(X1) + a sin(X2)2 + bX4
3 sin(X1), (22)

where a = 7, b = 0.1, and Xi ∼ U [−π; π] for i = 1, 2, 3. The sensitivity indices for this
function are well documented in [1]. A similar setting that of [4] is used in this example. The
input parameters X1 and X2 are considered as the known input parameters, whereas X3 is an
uncontrollable or unknown input parameter which is not considered in the joint modeling of the
function’s output.

For Joint modeling support samples are obtained by running a Monte Carlo simulation. One
thousand samples of (X1, X2, X3) are simulated to obtain the support observations. Latin hy-
percube is used for efficiency in sampling. A joint model using the enhanced GLM procedure
is applied, the properties of the fit for the mean and dispersion of the joint models are given
in Table 1. As mentioned before, cross validation has been used in the determinations of the
predictions errors which are used in GLM procedure. Fig. 2 depicts the better fit when GLM
procedure is used in building the meta model.

Table 1: Properties of the fitted joint model for Ishigami function

Formula

Joint GLM enhanced with MLS fm = f(X1, X
2
2 , X

3
1 , X

4
2 )

radiusMLS = 0.77, αMLS = 0.4

fd = f(X2
1 , X

3
2 )
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X1

f
(
x
)

(a) using MLS

−4.0 −2.0 0.0 2.0 4.0
−10

−5

0

5

10

15

X1

f
(
x
)

(b) using GLM procedure with MLS

Figure 2: Comparison between fitting the data with and without GLM procedure: • observations (supports)
4 approximated

The sensitivity indices are calculated using the developed joint model, thousands of samples
are run on the joint model to ensure convergence in the estimation of the sensitivity indices. A
comparison between the exact indices [1], estimated by [4], and the procedure suggested here
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are shown in Table 2. The results by [4] were estimated using generalized additive models
that employs spline smoothing algorithms based on 100 repetitions of the joint models fitting
process. Whereas, the suggested enhanced GLM with MLS has been performed using 10 repe-
titions of the joint models fitting process.

Table 2: Exact and estimated sensitivity indices

SI Exact [1] Joint GAM [4] Joint GLMMLS

S1 0.314 0.310 0.32
S2 0.442 0.452 0.41

ST3 0.244 0.236 0.22

It can be noticed from Table 2 that an agreement in the estimated indices exists, which
proves the efficiency of the application of the proposed joint models and their use in estimating
the sensitivity indices.

5.2 Effects of bridge-vehicle interaction

The engineering problem at hand is the effects of bridge and vehicle dynamics on the bridge
displacements considering the excitations of the vehicle due to road unevenness, which can be
described as an uncontrollable parameter rendering the dynamic model to stochastic.

The vehicle model presented by [20] is used. The characteristics of the vehicle are found
in [29]. The bridge model is a single span simply supported beam model for the Pirton Lane
Highway bridge in Gloucester (United Kingdom) [21]. The bridge has a length L = 40m, an
estimated mass per unit length of m = 12000 kg/m and a bending stiffness of EI = 1.26 ×
105 MNm2. The bridge’s first natural frequency is f1 = 3.20 Hz with a modal damping ratio
ζ1 = 0.02.

Road unevenness is considered in the dynamic analysis, its realization follows (20) where
ωl = 1.74 rad/s and ωu = 75.54 rad/s with ∆ω = 0.104 rad/s. The dynamic model’s output is
the displacements at mid-span that are normalized by the corresponding static displacements,
which is known as the Dynamic Incremental Factor (DIF).

A sensitivity analysis is carried out to identify the influence of the input parameters of the
vehicle dynamics; stiffness (kt) and damping (ct) of suspension system and spacing of fifth
axle (S), and the bridge dynamics; flexural stiffness (EI) and damping ratio (ζ). Further, the
excitation of the vehicle by the road profile of the approach leading to the bridge is examined
and its effects on the variance of the dynamic response is studied.

In order to build the joint model, 1000 random vectors of input parameters are generated and
the dynamic model is run for each sample to obtain the support observations. The uncontrollable
input parameter Xε represents the random processes of road unevenness. For the scaler input
parameters (X), the first order indices are determined from the mean component of joint model,
whereas, for Xε the total effect index is estimated. The results are presented for two speeds,
these are critical speeds derived for the examined bridge and vehicle models, which had been
documented in a previous work by the author [30]. The critical speeds for the vehicle are
57km/h and 84km/h; these speeds cause the highest dynamic effects on the bridge.

Two scenarios are examined; one considers the vehicle traveling over the bridge with initial
excitation (WI), and another ignores the initial excitation (WoI). The corresponding sensitivity
indices are presented in Table 3. It can be noticed that the initial excitation has a limit influence
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on the identified input parameters from the vehicle and bridge dynamics affecting the variance
of the bridge’s displacement. Whereas, studying the effect of the speed on the sensitivity indices
in Table 4 one can see that higher speeds shadow the influence of vehicle dynamics and power
the influence of road unevenness on the variance of the bridge’s displacement. In other words,
the higher the speed, the higher is the amplification in the dynamic response, however, the
scatter of the output is also higher. Such an observation is of significance in the modeling of
the dynamic problem as more attention must be given when higher speeds are considered in the
analysis as higher variations in the response are expected.

Table 3: Estimated sensitivity indices estimated for the displacements due to a vehicle traveling at 57km/h

1st order 1st order
WoI WI

ks 0.14 0.16
cs 0.03 0.02
S 0.00 0.02
EI 0.09 0.09
ζ 0.01 0.03

STε 0.72 0.68

Table 4: Estimated sensitivity indices estimated for the displacements considering the initial excitations by the
approach

1st order 1st order
vcr=57km/h vcr=84km/h

ks 0.16 0.05
cs 0.02 0.03
S 0.02 0.01
EI 0.09 0.05
ζ 0.03 0.10

STε 0.68 0.80

6 CONCLUSIONS

The study is concerned with performing sensitivity analysis for responses retrieved from
stochastic models of bridge-vehicle interaction. The main presented and tested methods are
based on building a joint model using GLM procedure and enhancing the fitting by suggesting
MLS approximation algorithms within the framework of GLM. Hence, a meta-model is built for
the mean and the dispersion jointly. The described method is applied on an academic example
and proved efficient. Later it has been used for the engineering problem of interest. It can
be said that considering the initial excitation of the vehicle by road unevenness of the bridge’s
approach has a limited effect on the identified parameters from the vehicle and bridge dynamics
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affecting the variances of the bridge’s displacement. However, the speed has a prominent effect
as higher speeds leads to higher amplifications in the bridge’s displacements accompanied with
higher variances caused mainly by the uncontrollable parameter of road unevenness, which has
been qualitatively measured.
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