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Abstract. Electromagnetic wave propagation is currently present in the vast majority of
situations which occur in everyday life, whether in mobile communications, HDTV, satellite
tracking, broadcasting, etc. Because of this the study of increasingly complex means of
propagation of electromagnetic waves has become necessary in order to optimize resources
and increase the capabilities of the devices as required by the growing demand for such
services.

Within the electromagnetic wave propagation different parameters are considered that
characterize it under various circumstances and of particular importance are the reflectance
and transmittance. There are several methods for the analysis of the reflectance and
transmittance such as the method of approximation by boundary condition, the plane-wave
expansion method (PWE), etc., but this work focuses on the WKB and SPPS methods.

The implementation of the WKB method is relatively simple but is found to be relatively
efficient only when working at high frequencies. The SPPS method (Spectral Parameter Powers
Series) based on the theory of pseudoanalytic functions, is used to solve this problem through a
new representation for solutions of Sturm-Liouville equations and has recently proven to be a
powerful tool to solve different boundary value and eigenvalue problems. Moreover, it has a
very suitable structure for numerical implementation, which in this case took place in the
Matlab software for the evaluation of both conventional and turning points profiles.

The comparison between the two methods allows us to obtain valuable information about
their performance which is useful for determining the validity and propriety of their application
for solving problems where these parameters are calculated in real-life applications.
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1 INTRODUCTION

When a wave traveling from a medium to another is considered, some parameters such as
reflectance and transmittance can be identified. They are defined as the ratio of the amplitude
of the reflected wave and the transmitted wave with respect to the incident wave amplitude
respectively.

The study of these parameters is necessary in many areas of science for increasingly
complex media. For example, most modern optical systems could not function without
inhomogeneous optical coatings. The telecommunications industry uses various types of layers
such as antireflective layers, polarizers and dichroic layers in personal displays, optical filters,
inhomogeneous planar waveguides [1], inhomogeneous photonic crystals [2], devices for
splitting and combining optical communication channels, and so on. Also the knowledge of the
reflectance and transmittance has important applications in ionospheric communications and in
the analysis of radiation of antennas [3]. Other areas of study include applications such as
environmental studies, precision agriculture, ecology, etc. [4].

There are numerous methods for the analysis of the reflectance and transmittance having
different degrees of precision, complexity and efficiency. Some examples of them are the WKB
method [5], the method of approximation by boundary condition, the plain wave expansion
method PWE [6], the transfer matrix method TMM [7], the variational method [8], the
perturbation method [9], differential TMM, etc. (see, e.g., [10, 11, 12, 13, 14]). A recently
developed method is the SPPS method (Spectral Parameter Powers Series method [15, 16, 17]).

This work focuses on the WKB [5] and SPPS [18] methods because the WKB method is
well known and has been extensively studied, in addition it is relatively easy to implement and
efficient especially when working at high frequencies. The SPPS method, which in this
particular case is associated with the solutions of a Sturm-Liouville problem, has proven a
powerful tool for solving various types of boundary and eigenvalue problems [19, 20, 21] and
has a structure which is very suitable for its numerical implementation.

The particular problem discussed in this paper is calculating the reflectance and
transmittance of an electromagnetic wave with perpendicular polarization that propagates
through an inhomogeneous layered medium with normal incidence. Inhomogeneous media are
those for which one or more of their material parameters depend on space and are defined here
by means of a refractive index profile, which in this case depends on a single space coordinate.
In addition to traditional profiles, profiles with turning points are considered.

We proceeded with the programming of both methods and with the evaluation of different
profiles. We used some profiles with known exact solutions (linear, exponential and hyperbolic
profiles) as test problems to verify the correct operation of the methods. Then the study of
turning points profiles was carried out with both methods.

The organization of this paper is as follows. In Section 2 we introduce the problem to be
solved and propose the elements for calculating the reflectance and transmittance. In Section 3
the WKB method is developed and the considerations under which it can be adapted for the
analysis of a turning points profile are described. Section 4 introduces the SPPS method and it
is shown how the solutions of a Sturm-Liouville equation can be used to construct the solution
to our problem. In Section 5 the results of the computations are presented and the performance
of the methods is analyzed.



2 WAVE PROPAGATION IN INHOMOGENOUS LAYERED MEDIA

In general the characteristics of wave propagation and dispersion in a non homogeneous
medium cannot be described in a simple manner. However, there are special cases where
asymptotic methods may apply as, for example, when working with high or low frequency
fields [5]. The low frequency approach is applicable whenever the size of a dielectric body is
much smaller than a wavelength. The high-frequency approach is useful when the refractive
index variation is negligibly small over the distance of one wavelength.

The inhomogeneous media under consideration will have the layered structure shown in Figure
1.

where T is the transmission coefficient and k3 = kons. In this case and for non-absorbent media
the following energy conservation relation holds
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Figure 1. Inhomogeneous layered medium.

The refractive index » has constant values »n; and n3 in the regions I and III respectively and
is an arbitrary continuous function in the region II. If we suppose an incident wave in region [
represented by the scalar function u which stands for a transverse component of the electric
field of an s-polarized electromagnetic wave, the following Helmholtz equation is satisfied

u’ () + [q(x) — BJu(x) = 0 (1
where q(x) = kin?(x), ko is the free-space circular wavenumber and 3 = k sin6, 0 being the
angle of incidence (for the sake of simplicity normal incidence is considered, so in what
follows 6 = 0°, and B vanishes). If the incident wave is supposed to have the form e~tk1*,
where k| = konj, then together with the reflected wave the whole solution for x <0 is

u(x) = e~k1* 4 Retkrx, x <0
where the constant R is the reflection coefficient whose absolute value is less than 1. The
solution corresponding to the transmitted wave in region III has the form
u(x) = Te tksx, x>d

ng|T|? _

IR|? + 1. (2)

ng

The general solution of (1) for 0 <x <d is proposed to have the form
U = ciuq + U,
and consists of two linearly independent solutions u; and u; in the interval 0 <x < d such that
u(0) =1, u;(0) =0 3)



u,(0) = 0, u;(0) =1 4

and with ¢; and ¢, being arbitrary constants. So, from the continuity and initial conditions the
expressions for R and 7 were found to be [18]

_ —kikzuy(d) — ui(d) — iksuy (d) + ikiuy(d)

K= 0@ — kil ()] + (Thotr () + kyiy(@)] )
2k @u () — w@up(@)]e i
= Tl @ — krkatta (D] F il () + kply (D] ©)

These are the formulas for the reflectance and transmittance in an inhomogeneous layered
medium.

3 WKB METHOD

3.1 WKB method for profiles without turning points

Initially we work with (1) considering normal incidence

[£+ q2 (0] u) = 0 ()
dx? q )
The following solution is proposed

u(x) = e?® (8)

where @ (x) is given by the following expression

o(x) = f #x)dx.

It is worth mentioning that ¢(x) will be found later. Now, replacing (8) in (7) we get

d2
L) 2 X)) =
5z € +q°(x)e 0. 9)
Equation (9) can be expressed as a Riccati equation
P + ¢ () + q°(0) = 0. (10)
Knowing that q(x) = kyn(x), (10) becomes
P+ () + ko’n?(x) = 0. (11)

Now, ¢#(z) can be written as an inverse power series of k
— $,(x) | $5(x)
#0) = [, (ko + 6, (0) + 22+ 2D 4|

Taking into account the power series of ¢2 (%), (11) becomes

[#o () + 1% (O]kS + [, () + 24, ()¢, ()] ko + [¢,(x) + ¢/ (X) + 24, () $, ()] + - =0

where when considering high frequencies, the large value of k, allows us to neglect the terms
in which it appears in the denominator.

Equating the coefficients of each power of k, to zero, we obtain an infinite number of
equations, but we only took the first three

go(x)+n*(x) =0 (12)



By (x) + 24, (x) 4, (x) = 0 (13)

#,(0) + 4;(0) + 24, () ¢, (x) = 0. (14)
From (12) we can get the value of ¢ (x)
g, (x) = tin(x). (15)

du
dx

In order to find ¢, (x), using < (Inu) = 4% equation (14) turns out to be
1 dx u

/ -1
_ _¢_0_ _ldln;bo __dlng, /2
¢ = 24, 2 dx  dx (16)
Now, from (8) for
g, ¢
0 ~ ko + ¢y + 5+
0 ko
we get
¢ ¢
u(x) ~ & I R g

Neglecting all the terms which have k, in the denominator and replacing the values of (15) and
(16) we get

_ 1 . +ifken(x)dx
u(x) = e . 17
Developing the previous expression we can state it in terms of q(x)
—_1 . p—i[q(x)dx . pti [ q(x)dx 18
u(x) T [a-e +b-e |. (18)

The constants a and b can be found using the initial conditions. Then the solution consists of a
wave u, traveling in the +z direction and a wave u, traveling in the direction of —z

u (x) = @~ —-e /ot (19)
q 2

up(x) = b - —-e*ifadx, (20)
q 2

After obtaining the solutions (19) and (20) that are solutions of the quadratic equation with
inhomogeneous parameters (7), we proceed to find the value of the constants, which together
with the above equations will constitute the complete solution v which will allow us to satisfy
the initial conditions (3) and (4).

In order to do this we propose two linearly independent solutions given by

v1(x) = a;uy () + axu,(x) (21)
and
v, (x) = biuy(0) + byuy (x). (22)
The constants for the conditions (3) were found to be
1 — 1
a =1q"2(0)(1-2472(0) - ¢'(0)) (23)
and



ay = q72(0) ~3972(0) (1-2472(0) - q'(0)). (24)

For the conditions (4) we found
1

by = ———
1 2iq'/2(0)

(25)
and also
1

b, = +—r—o .
)

(26)

Solutions (21) and (22) can be used for calculating the reflectance and transmitance using
(5) and (6).

3.2 WKB method for profiles with turning points

The solutions found with the WKB method (19) and (20) in Section 3.1 for the Helmholtz
equation (7) can be used to find the reflectance and transmittance of profiles that do not have a
zero crossing singularity, i.e., when the function g2 (x) (which depends on the refractive index)
does not pass through zero. In the case of profiles having such zero crossing, the point where
they cross zero (here denoted by x;) is called the turning point. (Figure 2).
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Figure 2. Profile with turning points.

In order to study the above problem, the inhomogeneous region of the medium is in its turn
divided into three regions. Let x; delimit the region II by the left hand side and x, delimit the
region II by the right hand side. This region is a g-neighburhood of the turning point xy. In
region I and region III, the solutions found in Section 3.1, (19) and (20) are valid, but in region
I, the one where the turning points lie, a different solution should be calculated.

In order to find the solution in region II [5] one can go back to the Helmholtz equation (7)
for which g2(x) can then be expanded around x, using the Taylor series. In this case only the
first term will be used

q*(x) = —a(x — xo), (27)
where a is the slope at x,:
_d(@?)
dx
X=Xo

Then (7) becomes



[;—; —a(x — xo)] u(x) = 0. (28)

To see what happens around the turning point, one must find the solution of (28). This is
possible, using the solutions in the Region I (21) and (22) in order to calculate the solutions in
region II that we will denote by 77 (x) and 75 (x). In addition, it is necessary to connect the
solutions found for the Region I with the solutions in the Region II, for which new initial
conditions are introduced (Cauchy problem). The following continuity conditions are to be
imposed

1(x1) = v1(x1), v (%) = v1'(%) (29)

V2(x1) = v2(x1), 75 (x1) = v5(xy). (30)
It is possible to solve this system using the mathematical package Matlab, which in its turn
uses an internal process based on Maple. The command used to obtain the solutions is dsolve
and it allows the solution of a quadratic equation with initial conditions to be found. The
command used in Matlab to solve (28) for the initial conditions (29) was
dsolve('D2v = +a * (x —x0) *v','v(x1) = vix1l','Dv(x1) = dvix1’,'x").

The resulting expression after applying the simplify command is:

—_~

V1=

Bi({y) - <v1(x1) FAi () — avy () - A'(§) - (‘ 1)§>
2

a(Ai(6)  BI@) — A'G) - BiG))  (—2)

2
Ai(gr) - (V{(xﬂ *Bi({1) — avy(xq) - Bi'({y) - <_1)3>

a
- 7 (31)
a(Ai(G) - BI(G) — AVE) - BiG)) (- 2)
where
1 3 1 3
G=an (=) - o (-),
2 2

e (-3

and for the initial conditions (30) the solution is the following expression

a

Bi({3) - (vé (x1) - Ai (§1) — av,(xq) - Ai' () - (_ 1)§>

VU, = 2

a(Ai({l) “Bi'({y) — Ai'({1) - Bl‘(ﬁ)) ' (_ %)5



a
— —. (32)

a(Ai((l) “Bi'(¢) — Ai'({) - Bi(ﬁ)) ' (_ %)5

For Region III we take up the solutions found with the WKB method (19) and (20) and
proceed to find the constants that will complement the proposed final solutions

Ai(G) - (v; (1) - Bi(G) — avy(x1) - Bi' (&) - (- 1)§>

77 (x) = ay uy (x) + ayu,(x) (33)
U5 (x) = by uy (x) + byu, (x) (34)

for which with similar initial conditions to those used in Region II were imposed that lead to
the following constants

_ uz(x2) V1 (002) — T1(x2) - up' (x7)

1= 5
“ Uy (x2) - Uz (22) — ug (x2) * up' (x2) (33)
_ Ui(xz) = aqg - us(xp)
2= Uy (x2) (36)
_ Up(x) U5 (x2) — V7 (x2) " Uy (x2)
b= Uy (oz) " uz (z) — ug(32) * up' (x2) (37)
b, = U5 (x2) — by~ uq (x7) (38)

Uy (x2)

Equations (33) and (34) are the final solutions needed to find the reflectance and
transmittance for a turning points profile.

In Section 4 we will work with these profiles using the SPPS method. This will later allow
us to stablish a comparison of the performance of both methods.

4 SPPS METHOD

An application of the theory of pseudoanalytic functions corresponds to the theory of linear
ordinary differential equations of second order. One of them is the Sturm-Liouville equation,
which is of fundamental importance because of the many situations in mathematical physics
where it arises, and that has the following form

(pv') + quv = B?rv (39)

for which p, g, and v are complex-valued functions of an independent real variable x € [0, d]
and f is an arbitrary complex constant. The coefficients p, ¢ and » depend on the considered
problem and are proposed so that there is a particular solution v, (which is also a complex-
valued function of a real variable x) of the homogeneous equation

(pvo)’ +qvo = 0 (40)
such that the functions v3r and 1/(v3p) are continuous in the interval [0, d].
The general solution for (39) takes the form [18]
V= C1V1 + Cvy (41)

where ¢; and c, are arbitrary complex constants, v;and v, are defined in the following way



vy =, Z BrE™ (42)

V2 ="Vg z prx™ (43)

where X™ and X™ are defined as

XO =1, X© =1, (44)
and for n € N,
( *.
f X®=D(s)v¢(s)r(s)ds, n odd,
XM ={ 73 1 (45)
| f XD () ————ds, n even,
Vo v3(s)p(s)
(r* 1
If X(Tl—l)(s)mds, n Odd,
X () = { 0_ o(s)p (46)

Lf XD ()vg(s)r(s)ds, n even.
0

With the above recursive formulas, the solution v can be found. The solution consisting of
the equations (41)-(43) is a power series in f that is really attractive for the numerical solution
of spectral problems, initial value and boundary value problems. Both series in (42) and (43),
which are called Spectral Parameter Power Series (SPPS), converge uniformly on [0, d] and as
shown in [16] it is easy to obtain a rough but useful estimate of the rest of the series. This
estimate provides a simple tool to calculate the number of powers N which guarantees an a
priori established accuracy.

The required non vanishing particular solution v, of (42) and (43), at least in the case of a
regular equation with real-valued coefficients, always exists and and can be easily constructed
as follows [18]: take any two linearly independent solutions v 1 y v , of (40), then their zeros
do not coincide (otherwise their Wronskian is zero and are not linearly independent) and then
Vo can be chosen as vy = vy 1 + (Vg ;.

Then v, can be constructed in a manner similar to the solutions v; and v, considering a
special case of the already presented result when ¢ = 0 and f = 1, which was already known to
Weyl [22]. That is, let 1/p and r be continuous on [0, d]. The general solution of equation
(pv")" = rv in (0, d) has the form (41) where ¢; and ¢, are arbitrary constantsand v; and v, are
defined by equations (42)-(46) with vy = f = 1.

As a special case another important situation is considered. Very often in electromagnetic
theory (see for example [8]) it is necessary to solve the equation

d?v(x)
dx?

for different values of the complex constant k2. It can be seen that the above equation is
practically the same as (7). Its general solution can be represented as follows

+k2qg(x)v(x) =0 (47)

V= CV3 + C1y (48)



where

with W™ and W™ defined by
wo =1, wo =1, (49)

and forn e N,

X

W@ (s)q(s)ds, n odd,

o

(
o () = |

x (50)
Lf W=D (s)ds, n even,
0
(

ij(”‘l) (s)ds, n odd,

W™ (x) = ! " (51)
I
\

X
f w @D (s)q(s)ds, n even.
0

and for ¢| and ¢, two arbitrary complex constants. Thus, once W™ and W™ are calculated up
to a certain power N, an approximate solution of (47) is simply a polynomial on £ with its
calculated coefficients W™ and W ™. This observation is also valid for the case of solution
(41), (42) and (43) of equation (39). Furthermore this property is very useful for the numerical
solution of the corresponding spectral problems, which reduces to finding the zeros of the
polynomials with respect to & and S respectively [18].

S CALCULATIONS

5.1 Calculation for profiles without turning points

Initially, to ensure that the programs developed for the WKB and SPPS methods were
functioning correctly, we studied some well known profiles having analytic solutions based on
Bessel functions [23, 24]. Such profiles are the linear, exponential and hyperbolic profiles.

For example for the exponential profile its refractive index profile is described by

n(x) = n, - exp E In (1;—2’)] . (52)

2

The following data were used in our programs:
» Incidence angle 8; = 0°, that is, normal incidence

= Size of the non homogeneous medium d = 1 X 107 m
*  Number of points in the evaluated interval [0 d]: 1000

» Refractive index of medium in region I, n; =1

= Refractive index of medium in region III, n; = 1.5

= Refractive index of the boundary of medium 1, n, = 1.4

10



= Refractive index of the boundary of medium 3, n, = 2.1
»  Wavelengths, approximately from 2 um to 100 um
* Frequencies, approximately from 3 THz to 150 THz.

The program used to implement the SPPS method performed the calculations using 31
formal powers, approximating the functions needed to calculate the recursive integrals by
splines of order two and using 500 segments for integrating. From the parameters (p,q and r)
in (39) one can obtain a particular solution v, for (40). The same parameters are used to
calculate the formal powers (45)-(46), with which two linearly independent solutions are found

according to formulas (42) and (43) which in turn are used to find the solution (41) that will be
a solution of (39).

The obtained results are shown in the following figures.

Reflectance (Exponential profile)
20 T T T

d'i

Figure 3. Reflectance for the exponential profile.

The elapsed time for the program which implemented the WKB method was approximately
of 1.5 seconds, using a laptop computer with an Intel Core 17 2.8 GHz processor, with 8 GB of
RAM. The SPPS method for its execution needed a time of around 11 minutes.

Another comparison which was performed was estimating the absolute error of the two
methods in comparison with the exact solutions for each of the profiles. Some of the resulting
graphs are shown in Figures 5 and 6.
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Transmittance (Exponential profile)
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Figure 4. Transmittance for the exponential profile.
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Figure 5. Absolute error for the exponential profile using the SPPS method.
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Absolute error for the WKB method (Exponential profile)

Figure 6. Absolute error for the exponential profile using the WKB method.

5.2 Calculation for profiles with turning points

In order to study profiles with turning points we proceeded to enter into the program that

implements the WKB solution a profile n(x) with a zero crossing. It is shown in Figure 7.

Profile with a turning point
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Figure 7. Profile for n(x) with turning points with x,
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The percentage of the reflectance and transmittance was obtained with the modified WKB
method for a profile with turning points replacing (33) and (34) in the expressions (5) and (6)
and their values are shown in Figure 8.

The same profile with turning points was tested with the use of the SPPS method. The
results are shown in Figure 9.

Reflectance and Transmittance for the WKB method with turning point

: : - T B —— Reflectance
] 1] . ......... ...... ..... ...- .......... i Tranzmittance
: R N —— Addition

i

Figure 8. Reflectance and transmittance calculated with the modified WKB method for turning points.

Feflectance and Transmittance for the SPPS method with turning point
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Figure 9. Reflectance and transmittance calculated with the modified SPPS method for turning points.
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It is worth noting that for the SPPS method no changes at all are needed for its
implementation (which implies another advantage of it). The WKB method should be
specifically adjusted in order to work with profiles with turning points in which g%(x) is
arbitrary.

6 CONCLUSIONS

Up to date there was no comparative analysis between the SPPS method and the WKB
method, and it was presented in this paper. The numerical implementation of both methods
does not represent any difficulty.

For the first time different profiles with turning points were analyzed using the SPPS
method. Note that the SPPS method has very few limitations in terms of the profiles it can
evaluate compared with the WKB method which requires a more thorough work. As an
example, unlike the WKB method, no modifications are required in the case of the profile with
turning points for the SPPS method.

Talking about computation time, the WKB method is much faster (2 seconds) compared
with the SPPS method (11 minutes). The SPPS method’s precision was much higher because in
comparison with the exact solutions, in the worst case an accuracy of 1073 was obtained. In

contrast, we found that the WKB method in the best case could only deliver an accuracy of
107%.
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