
Sheridan College
SOURCE: Sheridan Scholarly Output Undergraduate Research
Creative Excellence

Faculty Publications and Scholarship School of Applied Computing

3-2007

Determining the Effectiveness of the 3D Alice
Programming Environment at the Computer
Science I Level
Edward R. Sykes
Sheridan College, ed.sykes@sheridancollege.ca

Follow this and additional works at: http://source.sheridancollege.ca/fast_appl_publ

Part of the Computer Sciences Commons

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
This Article is brought to you for free and open access by the School of Applied Computing at SOURCE: Sheridan Scholarly Output Undergraduate
Research Creative Excellence. It has been accepted for inclusion in Faculty Publications and Scholarship by an authorized administrator of SOURCE:
Sheridan Scholarly Output Undergraduate Research Creative Excellence. For more information, please contact source@sheridancollege.ca.

SOURCE Citation
Sykes, Edward R., "Determining the Effectiveness of the 3D Alice Programming Environment at the Computer Science I Level"
(2007). Faculty Publications and Scholarship. Paper 8.
http://source.sheridancollege.ca/fast_appl_publ/8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SOURCE: Sheridan Scholarly Output Undergraduate Research Creative Excellence

https://core.ac.uk/display/80110457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://source.sheridancollege.ca?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://source.sheridancollege.ca?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://source.sheridancollege.ca/fast_appl_publ?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://source.sheridancollege.ca/fast_appl?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://source.sheridancollege.ca/fast_appl_publ?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://source.sheridancollege.ca/fast_appl_publ/8?utm_source=source.sheridancollege.ca%2Ffast_appl_publ%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:source@sheridancollege.ca

DETERMINING THE EFFECTIVENESS OF THE 3D ALICE
PROGRAMMING ENVIRONMENT AT THE COMPUTER

SCIENCE I LEVEL

EDWARD R. SYKES

Sheridan Institute of Technology and Advanced Learning

ABSTRACT

Student retention in Computer Science is becoming a serious concern
among Educators in many colleges and universities. Most
institutions currently face a significant drop in enrolment in
Computer Science. A number of different tools and strategies have
emerged to address this problem (e.g., BlueJ, Karel Robot, etc.).
Although these tools help to minimize attrition, they have not made
significant improvements to this widespread problem. A newcomer
to the scene called Alice has been met with positive results by
captivating student interest through its rich 3D visual programming
environment. During the fall of 2005, Alice, a newly published
textbook, and numerous resources were used in Computer Science I
at McMaster University. This paper provides an overview of Alice,
an assessment of this new course including qualitative surveys,
informal observations, and quantitative analysis including student
performance score results. Despite numerous technical problems, it
was found that the Alice Group exceeded the performance of
Comparison Groups: F(1,93) = 30.322, p < .001 (between C1 and
Alice group); F(1,81) = 4.182, p = .044 (between C2 and Alice
Group).

INTRODUCTION

The motivation for changing the manner in which programming is taught in
educational institutions comes from the recognition that there has been and
continues to be a significant decline in the number of students entering the fields
of computer science, computer engineering, and computer programming (Dann,
Cooper, & Pausch, 2005; Kessler, 2005; Morris, 2004; Pausch & Conway, 2000;
Tucci, 2005; Vegso, 2005). In North America numerous computer departments
have reported significant drops in enrolment in their first year computer
programs and are struggling to retain even a small number of students in the
second and higher year levels (Kessler, 2005; Tucci, 2005; Vegso, 2005). In
order to address this problem and to introduce students to a more intuitive
“objects-first” approach to programming, Carnegie Mellon University (CMU)
developed a richly-interactive 3D graphical programming development
environment called Alice (Dann et al., 2005). This visual programming
environment offers:

• ease of construction of virtual worlds and situating subtasks to solve in
this world;

• a reduction in complexity of details for beginner programmers; and
• visualization of objects in a 3D environment situated in a meaningful

context (Dann et al., 2005).

The Alice programming environment provides a means through which
students build virtual worlds where objects and their behaviours are situated in a
“real” context (Dann et al., 2005). Alice offers the programmer a way to
develop realistic 3D animations and programs that support rich interaction with
the user (e.g., computer games). A brief description of the Alice environment is
described below. Alice is free and is available from http://www.alice.org.
Teaching materials are also free and may be found at:
http://www.aliceprogramming.net.

As an example of a virtual world that can be created in Alice, consider a
problem involving an interactive game in which the user drives a car for a
driving test. A scene from this virtual world may look like that presented in
Figure 1.

Figure 1. A scene from the driver’s test interactive game program.

In order to create and manipulate virtual worlds, Alice provides a Virtual

World Editor that has numerous features. Figure 2 depicts the Virtual World
Editor. In this editor, students can add 3D objects from a local or internet-based
gallery of objects (bottom section) and arrange the position, size, and orientation
of each object in the virtual world. Each object encapsulates its own data
(private data members such as width, height, and location) and has its own
member methods. Students can extend the functionality of objects by adding
functions and methods to existing 3D objects (i.e., a form of inheritance). As

http://www.aliceprogramming.net/

can be seen in Figures 1 and 2, the Driver’s Test program has many objects: a
car, several pylons, and a gate representing the finish of the driving test.

Figure 2. The virtual world editor in Alice.

Once the student has completed the construction of the virtual world, s/he is
now ready to “write” the code to support the execution of the interactive game.
The Code Editor allows for the logic of the game to be developed using a smart
editor. Figure 3 depicts Alice’s Code Editor. This editor provides the student a
means to create code by extensively using the mouse in a drag-and-drop fashion
for predefined objects. To “write” code, the student mouse-clicks an object and
drags it into the editor where a context-sensitive drop-down menu appears
(Cooper, Dann, & Pausch, 2003). This menu provides options for the student to
select from the entire object itself to primitives, subobjects, and functions.
Furthermore, the student can write his/her own user-defined functions and
methods, which become available in the drop-down menus. As a result, in
Alice, “writing code” involves very little traditional typing using the keyboard.
Authors of Alice believe this to be a significant benefit as it completely
eliminates syntax errors–a major source of frustration among novice
programmers in traditional languages such as C/C++ and Java (Cooper et al.,
2003; Dann et al., 2005; Moskal, Lurie, & Cooper, 2002).

With reference to Figure 3, the components in the Code Editor are the
actual code editor (bottom right), world events (top right), an object tree (upper
left), and the initial scene for the virtual world (top centre). The tabs in the
lower left window allow for querying of properties, methods, and functions

relating to the currently selected object. As shown in Figure 3, many user-
defined methods were created to support the logic of the driver test game, such
as, turnRight, turnLeft, moveForward, and moveBackward. Figure 4 depicts the
moveForward user-defined method for moving the car ahead when the ↑ key is
pressed by the user playing the game.

Figure 3. Code Editor in Alice.

Figure 4. moveForward user-defined method to move the car ahead in the
driving test game. This method is invoked when the arrow up key (↑) event

handler is triggered (see top right component of Figure 3).

LITERATURE REVIEW

This section presents an overview of research that has been conducted in the
area of Multimedia Learning in Games and Simulations. Games in education
may be conceptualized in two ways: playing educational games (designed and
developed by others) or designing your own game. The research literature
focusing on whether playing games leads to learning (i.e., increased
performance achievement) is mixed (Kirriemuir & McFarlane, 2004; Rieber,
2005). Few differences have been reported in studies involving games used for
classroom instruction when compared to traditional class environments
(Dempsey, Lucassen, Gilley, & Rasmussen, 1994; Gredler, 2003). However,
studies involving gaming in which students learn from designing their own
games have revealed promising results. For example, Kafai’s research focused
on student motivation and learning while building multimedia projects (Kafai,
1994). In these studies, elementary school students were given the task to
design an educational game for a younger audience (i.e., grade five students
designing games for grade three students). The quantitative findings were
increased student performance over comparison groups and the qualitative
results showed that students were more focused on class content because the
“game design” sessions provided a means for content-related discussions (Kafai,
Ching, & Marshall, 1997).

One research study conducted by Rieber, et. al., focused on a qualitative
study involving 30 children playing non-commercial games in a classroom
environment during a three week period (Rieber, 2005). The following
questions were the focus of the study: (a) would children, other then those who
designed the game, find these games fun and exciting to play; and (b) based on
the children’s own play behavior, what features of these games do children
report as exemplary? The quantitative study including follow-up interviews
with nearly half of the participants yielded interesting findings. The game
playing behaviour matched the children’s rating of the games. In other words,
the games that the children frequently played and played the longest duration
were rated most favourably. It was discovered that there are three game
characteristics that are important to children; they are: (a) the quality of the
storyline; (b) stimulating environment (i.e., visual, auditory sensory
stimulation); and (c) suitably challenging (i.e., the game keeps the attention of
the user through challenging him/her at an appropriate level of difficulty)
(Rieber, 2005). Game-design literature is consistent with these findings
(Crawford, 1984; Jonassen, 1994; Rouse, 2004).

Historically, educators have entrusted “computer specialists” with the
responsibility of creating tools for instructional purposes. Unfortunately, studies
have shown this only constrains learners (Jonassen, 1994; Kafai, 1994; Kafai et
al., 1997). In fact, the designers were the only people who significantly
benefited from the design process and the use of the tools—not the learners
(Jonassen, Wilson, Wang, & Grabinger, 1993; Perkins, 1993). Near the end of
the 1990’s and early part of this century, the pendulum swung in favour of
empowering students by taking the tools away from the instructional designers

and giving them to the learners. The consensus was if the design and
development tools were in the hands of learners then it would assist in their
knowledge construction rather than a tool for conveying and acquiring
knowledge (Horwitz, 2005; Jonassen, 1999; Kirriemuir & McFarlane, 2004).
The integral part of this philosophy was constructionism—the process of
building up the knowledge by using tools would engage learners more fully
which would result in more meaningful and transferable knowledge in the
learners (Jonassen, 1999; Jonassen et al., 1993; Papert, 1990; Pausch & Conway,
2000; Perkins, 1993; Rieber, 2005).

Numerous studies have been conducted focusing on “learners as designers”
and the results are promising: increased student motivation, raised levels of
performance, and increased higher-order thought process development (Becker,
2007; Cooper et al., 2003; Dann et al., 2005; Jonassen, 1994; Pausch & Conway,
2000; Robertson & Good, 2004). The Alice programming language is a distinct
overlap with these studies since Alice is a tool that empowers the learner to
design their own interactive games and multimedia programs while attempting
to generate interest in the field of computer science.

METHOD AND PROCEDURES

 The method employed in this research focused on determining the
effectiveness of Alice as a tool for instruction in Computer Science I courses. In
order to determine the degree and quality of learning that took place by students
using Alice, a rigorous investigation was conducted using both qualitative and
quantitative techniques. The first section of the method is related to the manner
in which Alice was evaluated from a qualitative perspective. This research
method involved instrumentation including observation, surveys, and personal
interviews. The focus of the qualitative investigation was primarily from
students’ perspectives in the Alice Group (i.e., those students who used Alice for
the term); however, input from professors was also gathered.
 The second component of the method is related to the manner in which
Alice was evaluated based on quantitative analysis of student performance
scores. The research method for this section involved a quasi-experimental
design with repeated measures. As a result, the researcher was able to compare
pre- and posttest performance differences as well group differences (i.e.,
Comparison versus Alice Group). One advantage of this type of analysis is that
interaction effects were able to be calculated and analyzed.
 In the quantitative study, the focus was on measuring how much students
learned. In support of this objective, construct validity was achieved by: (a)
using standardized test theory; and (b) validating the pre- and posttests by asking
domain experts to review the tests (Trochim, 2001). Both of these perspectives
were accomplished by involving domain experts which included 4 Computer
Science faculty members (with speciality in introductory undergraduate level
teaching), and 4 Computer Science graduate teaching assistants (who were

knowledgeable with the Alice programming language and introductory
Computer Science courses). These domain experts reviewed and commented on
the content and questions on the pre- and posttests so that appropriate alterations
could be made before administering the tests to the students. All tests were a
combination of (a) knowledge-based; (b) skill-set-based; and (c) problem
solving-based programming problems. In support of standardized test theory, at
least half of each test’s content were based on high-order thinking skills (i.e.,
analysis, synthesis, and evaluation) implemented in order to test the students
general ability to problem solve (Bloom, 1956; Furst, 1981).

Subjects

 The population of this study was students across the province taking a first
comparable course in programming. The sample in this study was the students
in their first year of university taking an introductory Computer Science I course
at McMaster University. Two comparison groups were used in this research.
They were students from the Computer Science I course in the summer of 2004
(i.e., Comparison Group 1, [C1]), and the summer of 2005 (i.e., Comparison
Group 2, [C2]). The experimental group (i.e., the Alice Group) consisted of the
students in Computer Science I during the fall of 2005.
 At McMaster University, Computer Science I is considered an “elective”
course. As a result, students from various backgrounds and levels took these
courses. For example, some students had previously taken several programming
courses during high school, while others had not experienced any computer
programming at all. Furthermore, the academic level of students in the courses
was not consistent. Some of the students were studying Mathematics at the
fourth year level, some were in third year of Biology, some were in their fourth
year studying Psychology, while the rest were focused on their first year in
Computer Science. Nonetheless, these “variations” were consistent throughout
all Groups in this study. That is, the same degree of background and level
variations were present in both comparison groups and the Alice group.
 The Comparison Group 1 consisted of 23 students, the Comparison Group 2
consisted of 11 students, and during the fall of 2005, the Alice Group consisted
of 72 students1. One professor taught all three groups for the entire term. Both
C1 and C2 were taught in a traditional format using the C programming
language. For the Alice Group, approximately every week, ½-hour long
sessions were conducted by the researcher to elicit specific information about
their experience with the course and the Alice programming environment.
Additionally, many students posted on the course WebCT discussion forum with
comments and suggestions for improvement. The manner in which students
were interviewed was primarily individually based; however, there were some

1 The fall term is the main startup term for all students at McMaster. As a result, the
enrollment for this term is the largest. The summer term typically has a much smaller
enrollment due to students wishing to transfer into Computer Science or a related
program from another program at the university or another university.

occasions when an issue was raised that was a shared concern among several
students.

Professors were also selected to participate in this study. The selection of
professors was based on a number of factors including their knowledge of 3D
programming environments, experience with first year Computer Science, and
interest in offering critical opinions on Alice. A total of 4 professors were
selected for this study.

Statement of Procedures

Two global procedures were required:

Part A Qualitative investigation on the Alice Group; and
Part B Quantitative investigation on student performance scores.

Part A: Qualitative Investigation on the Alice Group

 The research procedure for this section involved a two-phase qualitative
investigation that was conducted in the form of surveys during regularly
scheduled class periods. The first phase surveys captured general information
regarding the course and the use of Alice. This survey was conducted near the
beginning of the course. A second survey was issued near the end of the course,
after the students had a substantial amount of Alice experience to offer grounded
opinions. This survey was an interview-style survey sheet designed to gather
specific information from students on their assessment of Alice. The survey
included seven open-ended questions to facilitate a great number of perspectives
and opinions. Table 1 depicts this measurement instrument. By presenting the
survey to students who had used Alice, feedback was gathered representative of
both student and professor perspectives. Additionally, the researcher often
visited the lab sessions to observe students using Alice. The kind of note taking
procedures were observations recorded in a researcher’s logbook. Such
observations included information regarding individual students’ progress
through a specific programming problem in Alice. Furthermore, discussions
were conducted on a regular basis with several faculty members from the
Computing and Software department at McMaster University to elicit opinions
from a teacher’s perspective of using Alice.

Table 1. Qualitative Survey Sheet
__

This survey is used to determine the effectiveness of learning within the Alice
programming environment. For each question, select the most appropriate
response based on the following scale:
1 = strongly favourable to the concept, 2 = somewhat favourable to the concept,
3 = undecided, 4 = somewhat unfavourable to the concept,
5 = strongly unfavourable to the concept.

1. How do you rate the Alice Programming Environment’s usefulness?

 Very Useful Not Useful
 1 2 3 4 5

 Comments:

2. Do you feel Alice is beneficial to your studies? List and explain the
advantages/disadvantages of this learning environment.

 Very Beneficial No Benefits
 1 2 3 4 5

 Comments:

3. Compare Alice with a traditional programming language (e.g., C, Turing, Pascal,
etc.). Do you feel Alice is better or worse than these environments? Identify any
similarities and differences between Alice and these other programming
environments.

Alice is better than Alice is worse than
other programming other programming
environments environments
 1 2 3 4 5

 Comments:

__

Table 1. (continued)
__

4. How do you rate the ease with which you use and understand the Alice style of

programming?

 Very easy to use Very difficult to use
 and understand and understand
 1 2 3 4 5

 Comments:

5. Have you enjoyed Alice? Explain why or why not.

 Very Enjoyable Not enjoyable
 1 2 3 4 5

 Comments:

6. Do you feel you learn more detailed information in Alice or about the same as a
traditional programming language? Explain why or why not.

 Learn Better Learn the same
 1 2 3 4 5

 Comments:

7. Please add any other comments regarding the Alice programming environment that

you would like to share:

__

Part B: Quantitative Investigation on Student Performance Scores

 A series of programming problems were developed for the Comparison
Groups and the Alice Group. Students in the Comparison Groups were taught in
a traditional format such as instructor-led instruction, group-work,
demonstration, etc. using the C programming language. The Alice Group
received the same instruction as well but using Alice instead of C. This
investigation involved both intragroup and intergroup comparison of student
achievement by using pre- and posttest performance tests. Performance tests are
small quizzes containing two to four programming problems and space for the
student to write their solutions.
 The performance tests were administered near the beginning of the term and
at midterm. As a result, there were statistical analysis opportunities. These

nonsubjective measurements quantify the performance level of students prior to
exposure to Alice and allow comparison to the level after exposure to Alice. In
addition, comparisons were made between the Alice Group and Comparison
Groups. The following section describes the details of the way in which this
quantitative investigation procedure was performed.

Prepare a series of programming problems for the Comparison Groups:

1. Select a series of topics that are routinely taught to students when
learning the fundamentals of programming, for example, datatypes,
identifiers, scope, methods, decision making constructs, and repetition
constructs;

2. develop a series of programming problems that are based on those
selected topics; and

3. ensure that they meet the requirements of the unit or subunit of study
by encouraging several teachers with expertise in this area to review the
series of lessons developed.

Prepare a series of programming problems for the Alice Group:

1. Select the same topical area corresponding to the Comparison Group’s
lessons;

2. develop a series of problems for the Alice Group; and
3. ensure that they meet the requirements of the unit or subunit of study

by encouraging several teachers with expertise in this area to review the
series of lessons developed in Alice.

Collect data to determine the effectiveness of the learning experience by:

1. conducting the pretest for baseline data on students in the Alice and
Comparison Groups prior to exposure to the experiment;

2. determining the mean and standard deviation for the Alice and
Comparison Groups;

3. conducting regularly scheduled lectures, labs, and tutorial sessions
using Alice to the experimental group;

4. conducting traditional-form lessons for the Comparison groups;
5. conducting the posttest given to both Alice and Comparison Groups; 2
6. computing standard statistical measures between pre- and postexposure

to the two groups respectively (i.e., Alice and Comparison Groups);
and

7. computing additional statistical information such as two-way ANOVA
with repeated measures.

2 All tests for this study were knowledge-based and skill-set-based programming

problems corresponding to the material covered in the classes.

FINDINGS

 The findings of this research are presented in the two respective sections:
Part A Qualitative investigation findings on the Alice Group; and
Part B Quantitative investigation findings on student performance scores.

Part A: Qualitative Investigation Findings on the Alice Group

 The culmination of surveys, observations, and researcher’s notes were
analyzed in an effort to uncover common themes in the students’ opinion of
Alice. The analysis yielded the following findings:

Student Perspective

 The following comments are from students in an effort to uncover common
elements regarding benefits and/or problems with using the Alice programming
environment.

Positive Comments:

1. “I think it is fun to use Alice, I have used Java in the past (highschool),
and there it was all just console based programming. So, with graphics
it is easier and more exciting to implement programs in Alice. It has
lots of different characters and animations which makes learning much
more exciting.”

2. “It is really easy to understand the fundamental concepts such as
repetition, decision making (e.g., if—else statements), and concurrency
in Alice—this is harder to see in other programming environments.”
[anecdote: The bottom section of Figure 4 contains a list of Alice’s
programming constructs. This visual display of programming
constructs is always available and eases program development for
students.]

3. “I love Alice—please keep Alice for future classes! It is enjoyable and
fun while learning to program.”

4. “Alice gave me an understanding of concepts used in other
programming languages.”

5. “I liked working with something I could see. Alice is simple to
program with drag-and-drop mouse manipulation. It felt pretty
rewarding and fun to make the games in this environment.”

6. “Alice is good because it focuses on logic (problem solving) rather than
syntax.”

7. “Alice is really good visually because it allows you to check and run
during any stage in the development of your program—just press ‘Play’
and you can test your program at any time.”

8. “Alice is quite helpful in problem solving and its environment makes it
easy to break problems into smaller steps.” [anecdote: This is known
as the concept of stepwise refinement discussed in detail in the course.]

Negative Comments:

1. “Slow, unstable, resource heavy, and not very reliable.”
2. “Although Alice is a fun language to use for beginners, it can only do

animations and interactive games—it can't do computations like C or
Java. As a result, Alice is not suited to programming that solves
problems in real world situations.”

3. A number of students felt that the absence of dealing with syntax of a
programming language is a disadvantage, as one student stated: “I
think you can learn more from a traditional language because you
would need to type in the code and deal with both syntax and logic
errors. Too much of the work is done for you in Alice with its drag-
and-drop coding style.”

4. “Alice is very different in terms of syntax from other languages.
Therefore, moving on to a real programming language (e.g., Java) is
very difficult for beginners.”

5. Virtually all of the students had experienced Alice crashing:
a. “Alice has some inherent bugs—in the middle of programming,

Alice will crash for no apparent reason.”
b. “Alice is plagued by a variety of bugs that mask its ability to be a

useful tool for teaching. Java could be taught which would be
more stable and less frustrating.”

c. “Alice may be beneficial to someone with no background in
programming. However, I spent more time fixing Alice's
particular quirks (trying to prevent Alice from crashing, etc.) than
actual coding.”

d. “If there is an error in Alice (i.e., it crashes) it can take a lot longer
to fix due to having to reconstruct the method again from scratch
because you lose all your work and it doesn’t let you save your
code. I prefer to program where I type the code instead.”

 Beyond the comments gathered from students, statistical analysis based on
the survey was also performed. Table 2 depicts the summary statistics of the
qualitative survey from the students’ perspective.

There were a number of interesting observations that result from the
analysis of this data. The following are the most significant ones. For question
5, nearly a third of the students (29%) stated that they found Alice to be “very
enjoyable.” Furthermore, the statistical measure for the mode was “1,”
indicating that the majority of the students found Alice to be "very enjoyable"
for this category.

For question 6, only 23% felt that Alice is better than other programming
languages. In fact, it was found that 34% of the students felt that other

Table 2. Alice Qualitative Summary Results for Students
__

Qualitative Summary Results—Students

1. Usefulness…………………………………… 54%
2. Beneficial …………………………………… 43%
3. Alice is better than other languages…………. 31%
4. Ease of use and understanding of Alice……. 80%
5. Enjoyable……………………………………. 51%
6. Learn better than in other languages………... 23%

__

programming environments are better than Alice. Based on the student
comments, this could be a result of Alice’s instability, “quirks,” and heavy
resource demands experienced by many of the students. It leads one to believe
that Computer Science I level students would like to learn more established
languages such as C/C++, C#, Java, etc. instead of Alice.

Professor Perspective

 The professors’ perspective largely reflects the same opinions as the
students. Table 3 presents the qualitative summary results from the professor
perspective. The professors felt the primary concern was the lack of stability in
Alice and knowing that the novice programmer may feel the crashes are his/her
fault. Numerous tests using Alice (in its original form and the “Slow-and-
Steady” versions) were conducted by professors and teaching assistants in an
attempt to ascertain why Alice was crashing so often3. The types of crashes
spanned from unable to save one’s work–which could have been numerous
hours of work essentially lost, to random errors such as unable to create a user-
defined method.
 Alice’s error output window typically showed a Java stack trace with an
unrecoverable message such as a null pointer exception
(NullPointerException), illegal argument exception
(IllegalArgumentException), array index out of bounds exception
(ArrayIndexOutOfBoundsException), etc. Unfortunately, there were no
posted solutions to the problems experienced from the main Alice web site,

3 It should be noted that the machines the students and professors were using exceeded
not only the minimum hardware requirements but also the recommended hardware
requirements (based on information posted on http://www.alice.org).

Table 3. Alice Qualitative Summary Results for Professors
__

Qualitative Summary Results—Professors

1. Usefulness…………………………………… 50%
2. Beneficial …………………………………… 50%
3. Alice is better than other languages…………. 25%
4. Ease of use and understanding of Alice……. 100%
5. Enjoyable……………………………………. 100%
6. Learn better than in other languages………... 25%

__

textbook, or other sources in terms of patch updates, FAQs, or forum posts and
solutions.
 Several professors commented on the structure of the textbook in terms of
its treatment of variables. The curriculum coverage of variables was not
discussed until near the end of the text (Dann et al., 2005). This is in direct
contradiction with the ACM Computing Curricula 2001, numerous other
programming textbooks, and current practices in many institutions (ACM
Computing Curricula, 2001; (Barnes & Kolling, 2004; Lambert & Obsorne,
2001). The topic of variables (or identifiers), including data members of
objects, should be covered early in an introductory programming course since
the implementation of algorithms relies on a solid understanding of
fundamental concepts of identifiers and the process of storing information
during computation (ACM Computing Curricula; (Barnes & Kolling, 2004;
Becker, 2007; Jarc, 2004; Lambert & Obsorne, 2001; Salvage, 2001).

Part B: Quantitative Investigation on Student Performance Scores

This section presents the findings of the quantitative investigation of this

study. Table 4 presents a summary of the descriptive statistical findings on the
performance scores for the two comparison groups and the Alice Group. In
order to determine the relationship between the performance scores in C1, C2,
and the Alice Groups, a two-way ANOVA with repeated measures was
conducted. Table 5 presents the results from the ANOVA for between-
subjects effects for C1, C2, and the Alice Group. There was a statistically
significant difference between C1, C2, and the Alice Group, F(2,103) =
16.484, p < .001.

The students in the Alice Group outperformed students in both C1 and C2
Groups. There was a significant level of differentiation between the two
Comparison Groups (C1 and C2) and the Alice Group in performance scores.
Two 2-way ANOVAs with repeated measures were conducted that confirm
these results: F(1,93) = 30.322, p < .001, indicating there was a significant

difference between C1 and Alice groups, F(1,81) = 4.182, p = .044, indicating
a statistically significant difference between the Alice Group and C2 at the
0.05 level. Tables 6 and 7 show the results from these ANOVAs.

Table 4. Standard Statistical Measures for C1, C2, and Alice Groups

Group Pretest
mean and (standard deviation)

Posttest
mean and (standard deviation)

C1 56.308 (12.279) 61.908 (18.312)
C2 66.863 (8.506) 69.318 (9.306)
Alice 71.708 (13.741) 80.096 (15.008)

Table 5. Two-way ANOVA with Repeated Measures: Between-Subjects
Effects for C1, C2, and Alice Groups

Source
Type III sum of

squares df Mean square F Sig.
Intercept 556397.917 1 556397.917 1814.578 .000
Group 10108.625 2 5054.312 16.484 .000
Error 31582.549 103 306.627

Table 6. Two-way ANOVA with Repeated Measures: Between-Subjects
Effects for C1 and Alice Groups

Source
Type III sum of

squares df Mean square F Sig.
Intercept 635482.520 1 635482.520 1959.822 .000
Group 9832.034 1 9832.034 30.322 .000
Error 30155.731 93 324.255

Table 7. Two-way ANOVA with Repeated Measures: Between-Subjects
Effects for C2 and Alice Groups

Source
Type III sum of

squares df Mean square F Sig.
Intercept 395694.305 1 395694.305 1421.174 .000
Group 1164.420 1 1164.420 4.182 .044
Error 22552.643 81 278.428

Figure 5 shows a pictorial summary of performance scores between C1, C2,
and the Alice Group using the mean grades as the data. It is evident that the
Alice Group posttest performance was significantly higher than both
comparison groups. The Alice Group (80% at posttest) finished a grade letter
above C2 (69% at posttest) and nearly two letter grades above C1 (61% at
posttest).

PreTest PostTest

55.00

60.00

65.00

70.00

75.00

80.00

85.00

G
ra

de
 (%

)

Group
Alice
C1
C2

Performance Comparison between Control Groups (C1 and
C2), and the Alice Group using PreTest and PostTest Means as

Data

Figure 5. Alice Group versus C1 and C2 performance comparison using

pretest and posttest means as data.

CONCLUSIONS

The goal of this study focused on determining the effectiveness of Alice as
a tool for instruction in Computer Science I courses. In order to determine the
degree and quality of learning that took place by students using Alice, a rigorous
investigation involving qualitative and quantitative techniques was conducted.

The results from the first section of the study investigated the use of Alice
from a student perspective using qualitative instruments. The results from this
section of the study distinctly fall into two main categories–those that support
the use of Alice, and those that disfavour Alice in Computer Science I courses.
The benefits of using Alice included:

• Alice completely eliminates syntax errors which is one of the most
problematic concepts for beginning programmers (Dann et al., 2005).

• Alice is a highly visual programming environment that allows students
to create animations and interactive games in a fun, easy, and exciting
way, which is very attractive for entry-level college and university
students.

• Alice enables students to focus on problem-solving skills instead of
spending time on syntax errors, compilation errors, and environment
setup problems (e.g., as in Java).

• Overall, students found Alice to be enjoyable (51%), easy to use and
understand (80%), and beneficial (43%).

The disadvantages of Alice are summarized below.

• The current version of Alice has a number of problems relating to
stability. The main problems were (a) random unexplained crashes
(where one’s work is completely lost), (b) inability to save one’s work,
and (c) irreconcilable Java stack trace errors (where a popup window
would appear and the “ignore” and/or “retry” buttons would have no
effect).

• Not all of the students were happy with a “game programming
environment.” A number of students stated they would have been
happier with a traditional programming environment to develop core
programming skills, including skills and knowledge of debugging
syntax errors.

• Alice programs often led to long, verbose code that was hard to read
and understand.

• Alice is not suited to solve “real-world” problems. Languages such as
Java, C/C++, and FORTRAN are general-purpose languages that are
used to solve a myriad of different types of “real-world” problems
(Arnow & Weiss, 2001; Chapman, 2003; Deitel, 2002; Gosling, Joy,
Steele, & Bracha, 2000; Kernighan & Ritchie, 1988; Stroustrap, 2004).

• Students do not develop any skills in typing code, resolving syntax,
compilation, or environment setup problems—problems that exist in
virtually all other programming languages.

 The second section of this study involved an investigation of student
performance scores. Three classes were involved in this study, the Alice Group
and two comparison groups. In all of the experiments, the Alice Group
significantly exceeded the performance of the Comparison Groups, C1 and C2.
Two two-way ANOVAs with repeated measures were conducted that confirm
these results: F(1,93) = 30.322, p < .001, indicating there was a significant
difference between C1 and Alice groups, F(1,81) = 4.182, p = .044, indicating a
statistically significant difference between the C2 and the Alice Group at the
0.05 level. These results, coupled with the generally positive qualitative
feedback from students and professors, indicate that Alice is a good environment
for novice programming students. It is interesting to note that, despite the
numerous technical problems, the Alice group persevered and rose over these
problems to outperform the comparison groups. The findings from the
qualitative aspect of this study speak to this issue. Students spent up to four
times more time on the Alice course over other courses they were taking in the
same semester. Students found the environment fun yet at times, quite
frustrating. In many respects, it is very similar to many computer games that are
addictive yet at the same time frustrating when you lose (Gredler, 2003). This
addiction keeps the attention of the student and stimulates him/her to do better.
Research literature in this area support this perspective (Gredler, 2003; Horwitz,
2005; Jarc, 2004; Kafai, 1994; Moskal et al., 2002; Rieber, 2005; Salvage, 2001;
White & Frederiksen, 2000).
 Recent investigation of the number of students taking Computer Science I
has increased significantly for the fall 2006 term (the year following the
introduction of Alice to the curriculum). The fall 2006 Computer Science I
group at McMaster University had 105 students—a 33% increase over the 2005
group. This could be attributed to a number of reasons, however, it is
reasonable to speculate that the word got out that the course is enjoyable and
uses an interactive and game-like programming environment.

FUTURE RESEARCH

 A number of questions have been raised by the current study that future
research could examine. First and foremost is the problem of Alice’s stability.
In order for Alice to be successful in an environment of novice programmers, it
must be stable. In this research a number of students stated the difficulties they
experienced due to Alice errors and Alice crashing. Future development of
Alice must improve on this aspect and perform significant testing before
releasing it to the public as a fully developed version.
 Furthermore, there is the question of transfer: How are students performing
in Computer Science II? Currently, research is underway to gather information
about this question: “After learning introductory programming in Alice, are
students able to program in a more traditional language with ease or with great
difficulty?”

It was recently announced (March 2006) that Alice has commenced a
complete overhaul that will span the next 18 to 24 months (Watzman & Spice,
2006). Electronic Arts Incorporated (EA) has agreed to help underwrite the
development of Alice 3.0 with Carnegie Mellon University with the primary
goal of dramatically improving the degree of “realism” in the 3D characters and
animation in Alice. EA designed and developed “The Sims™”, a very popular
PC video game. On the Alice web site, “Experts say that when the
transformation is complete, the new programming environment will be in
position to become the national standard for teaching software programming”
(Watzman & Spice, 2006).

While this redevelopment of Alice to improve on its “visual” features may
be exciting and beneficial for learners, managers and developers of version 3.0
need to address how Alice may be improved in terms of its stability.
Furthermore, if there were a seamless approach to bridging Alice’s code-style to
other “conventional” programming languages, such as C/C++ or Java, it would
ease the transition for students into environments in which syntax, compilation
errors become an issue. Ultimately, the goal for all first year Computer Science
educators is to provide an interesting, rewarding experience and to increase the
chances that students will continue and succeed in Computer Science. With
some careful adjustments, Alice may be the means by which educators may
accomplish this goal.

REFERENCES

ACM computing curricula 2001. (2001). ACM Special Interest Group in
Computer Science Education, Vol. 3, p. 267-298.

Arnow, D., & Weiss, G. (2001). Introduction to programming using Java: an
object-oriented approach: Addison-Wesley.

Barnes, D., & Kolling, M. (2004). Object First with Java -- A Practical
Introduction using BlueJ (2nd ed.): Prentice Hall / Pearson Education.

Becker, B. W. (2007). Java: Learning to Program with Robots: Thomson
Course Technology.

Bloom, B. (1956). Taxonomy of educational objectives: the classification of
educational goals. Handbook 1: Cognitive domain, . New York: New
York, McKay.

Chapman, S. J. (2003). Fortran 90/95 for Scientists and Engineers: McGraw-
Hill.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching Objects-first In
Introductory Computer Science. Paper presented at the 34th SIGCSE
technical symposium on Computer science education, Reno, NV, USA.

Crawford, C. (1984). The Art of Computer Game Design. Berkeley, Calif.:
Osborne/McGraw-Hill.

Dann, W., Cooper, S., & Pausch, R. (2005). Learning to Program with Alice:
Prentice Hall.

Deitel, D. (2002). C++ How To Program (4th ed.): McGraw-Hill.
Dempsey, J., Lucassen, B., Gilley, W., & Rasmussen, K. (1994). Since Malone's

theory of intrinsically motivating instruction: What's the score in the
gaming literature? . Journal of Educational Technology Systems, 22(2),
173-183.

Furst, E. (1981). Bloom's Taxonomy of Educational Objectives for the
Cognitive Domain: Philosophical and Educational Issues Review of
Educational Research, 51(4), 441-453.

Gosling, J., Joy, B., Steele, G., & Bracha, G. (2000). The Java language
specification (2nd ed.): Addison-Wesley.

Gredler, M. E. (2003). Games and simulations and their relationships to
learning. In D. H. Jonassen (Ed.), Handbook of research for
educational communications and technology (pp. 571-581). Mahwah,
NJ: Lawrence Erlbaum Associates.

Horwitz, P. (2005). GenScope Project. Retrieved October 20, 2006, from
http://genscope.concord.org/about/staff.html

Jarc, D. (2004). Computer Science I/II, C++ Interactive Exercises. Retrieved
March 20, 2006, from http://nova.umuc.edu/~jarc/sdsd/

Jonassen, D. H. (1994). Technology as Cognitive Tools: Learners as Designers.
Retrieved November 3, 2006, from
http://itech1.coe.uga.edu/itforum/paper1/paper1.html

Jonassen, D. H. (1999). Computers as Mindtools for Schools: Engaging Critical
Thinking (2nd ed.): Prentice Hall.

Jonassen, D. H., Wilson, B., Wang, S., & Grabinger, R. (1993). Constructivist
uses of expert systems to support learning. Journal of Computer-Based
Instruction, 20(3), 86-94.

Kafai, Y. (1994). Electronic play worlds: Children's construction of video
games. In Y. Kafai & M. Resnick (Eds.), Constructionism in practice:
Rethinking the roles of technology in learning. Mahwah, NJ: Lawrence
Erlbaum Associates.

Kafai, Y., Ching, C., & Marshall, S. (1997). Children as designers of
educational multimedia software. Computers and Education, 29, 117-
126.

Kernighan, B., & Ritchie, D. (1988). C Programming Language (2nd Edition).
New York, New York: Prentice Hall.

Kessler, M. (2005). Fewer Students Major in Computer Science. Retrieved
March 20, 2006, from
http://oracle.ittoolbox.com/news/display.asp?i=129596

Kirriemuir, J., & McFarlane, A. (2004). Literature review in games and
learning: A report for NESTA Futurelab. Retrieved November 3, 2006,
from http://www.nestafuturelab.org/research/reviews/08_01.htm

Lambert, K., & Obsorne, M. (2001). Java: A Framework for Programming and
Problem Solving (2nd ed.): Brooks/Cole.

Morris, J. (2004). Programming Doesn't Begin to Define Computer Science.
Retrieved March 20, 2006, from http://www.post-
gazette.com/pg/04186/341012.stm

Moskal, B., Lurie, D., & Cooper, S. (2002). Evaluating the Effectiveness of a
New Instructional Approach. Paper presented at the Proceedings of the
35th SIGCSE technical symposium on Computer science education,
Norfolk, VN, USA.

Papert, S. (1990). Constructionist learning. Boston: MIT Laboratory.
Pausch, R., & Conway, M. (2000). Alice: Lessons Learned from Building a 3D

System for Novices. Paper presented at the Conference on Human
Factors in Computing Systems, The Hague, The Netherlands.

Perkins, D. N. (1993). Person-plus: A distributed view of thinking and learning.
In G. Salomon (Ed.), Distributed cognitions: Psychological and
educational considerations (pp. 88-110). Cambridge: Cambridge
University Press.

Rieber, L. P. (2005). Multimedia Learning in Games, Simulations, and
Microworlds. In R. E. Mayer (Ed.), The Cambridge Handbook of
Multimedia Learning (pp. 549-567): Cambridge University Press

Robertson, J., & Good, J. (2004). Interaction Design And Children Paper
presented at the Proceeding of the 2004 conference on Interaction
design and children: building a community Maryland.

Rouse, R. (2004). Game Design: Theory & Practice. Plano, TX, USA
Wordware Publishing Inc.

Salvage, J. (2001). C++ coach: Essentials for introductory programming:
Addison-Wesley.

Stroustrap, B. (2004). The C++ programming language. Retrieved March 4,
2004, from http://www.research.att.com/~bs/C++.html

Trochim, W. (2001). The Research Methods Knowledge Base: Atomic Dog
Publishing.

Tucci, L. (2005). College students continue to shun computer science. Retrieved
March 20, 2006, from
http://searchcio.techtarget.com/originalContent/0,289142,sid19_gci109
6260,00.html

Vegso, J. (2005). Interest in CS as a major drops among incoming freshmen.
Computing Research News, 17(3), 236-248.

Watzman, A., & Spice, B. (2006). Carnegie Mellon collaborates with EA to
revolutionize and reinvigorate computer science education in the US.
Retrieved March 22, 2006, from http://www.alice.org/index2.html

White, B. Y., & Frederiksen, J. R. (2000). Technological tools and instructional
approaches for making scientific inquiry accessible to all. In M. J.
Jacobson & R. B. Kozma (Eds.), Learning the sciences of the 21st
century: Research, design, and implementing advanced technology
learning environments (pp. 321-359). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Direct reprint requests to:

Dr. Edward R. Sykes
Professor, Computer Science
School of Applied Computing and Engineering Sciences
Sheridan Institute of Technology and Advanced Learning
1430 Trafalgar Road, Oakville, Ontario, Canada, L6H 2L1
e-mail: ed.sykes@sheridanc.on.ca

	Sheridan College
	SOURCE: Sheridan Scholarly Output Undergraduate Research Creative Excellence
	3-2007

	Determining the Effectiveness of the 3D Alice Programming Environment at the Computer Science I Level
	Edward R. Sykes
	SOURCE Citation

	Abstract Paper Submission

