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Abstract

We describe a solution of the word problem in free fields (coming from non-
commutative polynomials over a commutative field) using elementary linear
algebra, provided that the elements are given by minimal linear representa-
tions. It relies on the normal form of Cohn and Reutenauer and can be used
more generally to (positively) test rational identities. Moreover we provide
a construction of minimal linear representations for the inverse of non-zero
elements.

Keywords: word problem, minimal linear representation, linearization, realiza-
tion, admissible linear system, rational series
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Introduction

Free (skew) fields arise as universal objects when it comes to embed the ring of
non-commutative polynomials, that is, polynomials in (a finite number of) non-
commuting variables, into a skew field [Coh85, Chapter 7]. The notion of “free
fields” goes back to Amitsur [Ami66]. A brief introduction can be found in [Coh03,
Section 9.3], for details we refer to [Coh95, Section 6.4]. In the present paper we
restrict the setting to commutative ground fields, as a special case. See also [Rob84].
In [CR94], Cohn and Reutenauer introduced a normal form for elements in free fields
in order to extend results from the theory of formal languages. In particular they
characterize minimality of linear representations in terms of linear independence of
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the entries of a column and a row vector, generalizing the concept of “controllability
and observability matrix” (Section 3).

It is difficult to solve the word problem, that is, given linear representations (LRs
for short) of two elements f and g, to decide whether f = g. In [CR99] the authors
describe a answer of this question (for free fields coming from non-commutative
polynomials over a commutative field). In practice however, this technique (using
Gröbner bases) can be impractical even for representations of small dimensions.

Fortunately, it turns out that the word problem is equivalent to the solvability of
a linear system of equations if both elements are given by minimal linear representa-
tions. Constructions of the latter are known for regular elements (non-commutative
rational series), but in general non-linear techniques are necessary. This is consid-
ered in future work. Here we present a simple construction of minimal LRs for the
inverses of arbitrary non-zero elements given by minimal LRs. In particular this
applies to the inverses of non-zero polynomials with vanishing constant coefficient
(which are not regular anymore).

In any case, positive testing of rational identities becomes easy. Furthermore,
the implementation in computer (algebra) software needs only a basic data structure
for matrices (linear matrix pencil) and an exact solver for linear systems.

Section 1 introduces the required notation concerning linear representations and
admissible linear systems in free fields. Rational operations on representation level
are formulated and the related concepts of linearization and realization are briefly
discussed. Section 2 describes the word problem. Theorem 2.4 shows that the (in
general non-linear) problem of finding appropriate transformation matrices can be
reduced to a linear system of equations if the given LRs are minimal. Examples can
be constructed for regular elements (rational series) as special cases (of elements in
the free field), which are summarized in Section 3. Here algorithms for obtaining
minimal LRs are already known. Section 4 provides a first step in the construction of
minimal LRs (with linear techniques), namely for the inverses of non-zero elements
given itself by a minimal linear representations. This is formulated in Theorem 4.20.

The main result is Theorem 2.4, the “linear” word problem. Although it is
rather elementary, it opens the possibility to work directly on linear representations
(instead of the spaces they “span”). Or, using Bergman’s words [Ber78]: “The main
results in this paper are trivial. But what is trivial when described in the abstract
can be far from clear in the context of a complicated situation where it is needed.”

1 Representing Elements

Although there are several ways for representing elements in (a subset of) the
free field (linear representation [CR99], linearization [Coh85], realization [HMV06],
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proper linear system [SS78], etc.) the concept of a linear representation seems to be
the most convenient. It has the advantage (among others) that in the special case of
regular elements, the general definition of the rank coincides with the Hankel rank
[Fli74], [SS78, Section II.3].

Closely related to LRs are admissible linear systems (ALS for short) [Coh85],
which could be seen as a special case. Both notations will be used synonymously. De-
pending on the context an ALS will be written as a triple, for example A = (u,A, v)
or as linear system As = v, sometimes as u = tA. Like the rational operations de-
fined on linear representation level [CR99], similar constructions can be done easily
on ALS level. Thus, starting from systems for monomials (Proposition 4.1) only, a
representation for each element in the free field can be constructed recursively.

Notation. Zero entries in matrices are usually replaced by (lower) dots to stress
the structure of the non-zero entries unless they result from transformations where
there were possibly non-zero entries before. We denote by In the identity matrix
and Σn the permutation matrix that reverses the order of rows/columns of size n.
If the size is clear from the context, I and Σ are used respectively.

Let K be a commutative field and X = {x1, x2, . . . , xd} be a finite alphabet.
K〈X〉 denotes the free associative algebra (or “algebra of non-commutative polyno-
mials”) and K(〈X〉) denotes the universal field of fractions (or “free field”) of K〈X〉
[Coh95], [CR99]. In the examples the alphabet is usually X = {x, y, z}.

Definition 1.1 (Inner Rank, Full Matrix, Hollow Matrix [Coh85], [CR99]). Given
a matrix A ∈ K〈X〉n×n, the inner rank of A is the smallest number m ∈ N such
that there exists a factorization A = TU with T ∈ K〈X〉n×m and U ∈ K〈X〉m×n.
The matrix A is called full if m = n, non-full otherwise. It is called hollow if it
contains a zero submatrix of size k × l with k + l > n.

Definition 1.2 (Associated and Stably Associated Matrices [Coh95]). Two ma-
trices A and B over K〈X〉 (of the same size) are called associated over a subring
R ⊆ K〈X〉 if there exist invertible matrices P,Q over R such that A = PBQ. A
and B (not necessarily of the same size) are called stably associated if A ⊕ Ip and
B ⊕ Iq are associated for some unit matrices Ip and Iq. Here by C ⊕D we denote
the diagonal sum

[

C .
. D

]

.

In general it is hard to decide whether a matrix is full or not. For a linear matrix,
that is, a matrix of the form A = A0 ⊗ 1 + A1 ⊗ x1 + . . . + Ad ⊗ xd with Aℓ over
K, the following criterion is known, which is used in (the proof of) Theorem 2.1. If
a matrix over K〈X〉 is not linear, then Higman’s trick [Coh85, Section 5.8] can be
used to linearize it by enlargement. The inner rank is also discussed in [FR04].

Lemma 1.3 ([Coh95, Corollary 6.3.6]). A linear square matrix over K〈X〉 which
is not full is associated over K to a linear hollow matrix.
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Definition 1.4 (Linear Representations [CR94]). Let f ∈ K(〈X〉). A linear repre-
sentation of f is a triple (u,A, v) with u ∈ K

1×n, A = A0⊗1+A1⊗x1+. . .+Ad⊗xd,
Aℓ ∈ K

n×n and v ∈ K
n×1 such that A is full, that is, A is invertible over the free field

K(〈X〉), and f = uA−1v. The dimension of the representation is dim (u,A, v) = n.
It is called minimal if A has the smallest possible dimension among all linear repre-
sentations of f . The “empty” representation π = (, , ) is the minimal representation
for 0 ∈ K(〈X〉) with dimπ = 0.

Remark. In Definition 1.15 it can be seen that f = uA−1v is (up to sign) the Schur
complement of the linearization

[

0 u
v A

]

with respect to the upper left 1 × 1 block.

Definition 1.5 ([CR99]). Two linear representations are called equivalent if they
represent the same element.

Definition 1.6 (Rank [CR99]). Let f ∈ K(〈X〉) and π be a minimal representation
of f . Then the rank of f is defined as rank f = dimπ.

Remark. The connection to the related concepts of inversion height and depth can
be found in [Reu96], namely inversion height ≤ depth ≤ rank. Additional discussion
about the depth appears in [Coh06, Section 7.7].

Definition 1.7. Let M = M1 ⊗ x1 + . . .+Md ⊗ xd. An element in K(〈X〉) is called
regular, if it has a linear representation (u,A, v) with A = I −M , that is, A0 = I
in Definition 1.4, or equivalently, if A0 is regular (invertible).

Definition 1.8 (Left and Right Families [CR94]). Let π = (u,A, v) be a linear rep-
resentation of f ∈ K(〈X〉) of dimension n. The families (s1, s2, . . . , sn) ⊆ K(〈X〉)
with si = (A−1v)i and (t1, t2, . . . , tn) ⊆ K(〈X〉) with tj = (uA−1)j are called
left family and right family respectively. L(π) = span{s1, s2, . . . , sn} and R(π) =
span{t1, t2, . . . , tn} denote their linear spans.

Remark. The left family (A−1v)i (respectively the right family (uA−1)j) and the
solution vector s of As = v (respectively t of u = tA) will be used synonymously.

Proposition 1.9 ([CR94], Proposition 4.7). A representation π = (u,A, v) of an
element f ∈ K(〈X〉) is minimal if and only if both, the left family and the right
family are K-linearly independent.

Definition 1.10 (Admissible Linear Systems [Coh72]). A linear representation A =
(u,A, v) of f ∈ K(〈X〉) is called admissible linear system (for f), denoted by As = v,
if u = e1 = [1, 0, . . . , 0]. The element f is then the first component of the (unique)
solution vector s.

Remark. In [Coh85], Cohn defines admissible linear systems with v = v0 ⊗ 1 + v1 ⊗
x1 + . . . + vd ⊗ xd with vi ∈ K

n×1, and u = [0, . . . , 0, 1]. Writing B = [−v,A] as
block of size n × (n + 1) the first n columns of B serve as numerator and the last
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n columns of B as denominator. However, in this setting, for regular elements, the
dimension of such a minimal system could differ from the Hankel rank [Fli74], [SS78,
Section II.3].

Definition 1.11 (Admissible Transformations). Given a linear representation A =
(u,A, v) of dimension n of f ∈ K(〈X〉) and invertible matrices P,Q ∈ K

n×n, the
transformed PAQ = (uQ, PAQ,Pv) is again a linear representation (of f). If A
is an ALS, the transformation (P,Q) is called admissible if the first row of Q is
e1 = [1, 0, . . . , 0].

Remark 1.12 (Elementary Transformations). In practice, transformations can be
done by elementary row- and column operations (with respect to the system matrix
A). If we add α-times row i to row j 6= i in A, we also have to do this in v. If we
add β-times column i to column j 6= i we have to subtract β-times row j from row i
in s. Since it is not allowed to change the first entry of s, column 1 cannot be used
to eliminate entries in other columns! As an example consider the ALS

[

1 x− 1
. 1

]

s =

[

.
1

]

, s =

[

1 − x
1

]

for the element 1 − x ∈ K(〈X〉). Adding column 1 to column 2, that is, Q =
[

1 1
. 1

]

(and P = I), yields the ALS

[

1 x
. 1

]

s =

[

.
1

]

, s =

[

−x
1

]

for the element −x 6= 1 − x.

Proposition 1.13 (Rational Operations). Let f, g, h ∈ K(〈X〉) be given by the ad-
missible linear systems Af = (uf , Af , vf ), Ag = (ug, Ag, vg) and Ah = (uh, Ah, vh)
respectively, with h 6= 0 and let µ ∈ K. Then admissible linear systems for the
rational operations can be obtained as follows:

The scalar multiplication µf is given by

µAf =
(

uf , Af , µvf
)

.

The sum f + g is given by

Af + Ag =

(

[

uf .
]

,

[

Af −Afu
⊤
fug

. Ag

]

,

[

vf
vg

])

.

The product fg is given by

Af · Ag =

(

[

uf .
]

,

[

Af −vfug

. Ag

]

,

[

.
vg

])

.
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And the inverse h−1 is given by

A−1
h =

(

[

1 .
]

,

[

−vh Ah

. uh

]

,

[

.
1

])

.

Proof. The reader can easily verify that the solution vectors for the admissible linear
systems defined above are

µsf ,

[

sf + u⊤fg

sg

]

,

[

sfg
sg

]

and

[

h−1

shh
−1

]

respectively, compare [Coh95] and [CR99]. It remains to check that the system
matrices are full. For the sum and the product this is clear from the fact that the
free associative algebra —being a free ideal ring (FIR)— has unbounded generating
number (UGN) and therefore the diagonal sum of full matrices is full, see [Coh85,
Section 7.3]. The system matrix for the inverse is full because h 6= 0 and therefore
the linearization of Ah is full, compare [Coh95, Section 4.5].

Remark 1.14. For the rational operations from Proposition 1.13 we observe that
the left families satisfy the relations

L(µAf ) = L(Af ),

L(Af + Ag) = L(Af ) + L(Ag) and

L(Ag) ⊆ L(Af · Ag) = L(Af )g + L(Ag).

And similarly for the right families we have

R(µAf ) = R(Af ),

R(Af + Ag) = R(Af ) + R(Ag) and

R(Af ) ⊆ R(Af · Ag) = R(Af ) + fR(Ag).

Definition 1.15 (Linearization [BMS13], [CR99]). Let f ∈ K(〈X〉). A linearization
of f is a matrix L = L0⊗ 1 +L1⊗ x1 + . . .+Ld⊗ xd, with Lℓ ∈ K

m×m, of the form

L =

[

c u
v A

]

∈ K〈X〉m×m

such that A is invertible over the free field and f is the Schur complement, that
is, f = c − uA−1v. If c = 0 then L is called a pure linearization. The size of the
linearization is sizeL = m, the dimension is dimL = m− 1.

Proposition 1.16 ([BMS13, Proposition 3.2]). Let F = K(〈X〉) and A ∈ F
k×k,

B ∈ F
k×l, C ∈ F

l×k and D ∈ F
l×l be given and assume that D is invertible in
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F
l×l. Then the matrix

[

A B
C D

]

is invertible in F
(k+l)×(k+l) if and only if the Schur

complement A−BD−1C is invertible in F. In this case
[

A B
C D

]−1

=

[

. .

. D−1

]

+

[

Ik
−D−1C

]

(

A−BD−1C
)−1 [

Ik −BD−1
]

.

Remark 1.17. (i) Let f ∈ K(〈X〉) be given by the linearization L. Then f = |L|1,1
is the (1, 1)-quasideterminant [GGRW05] of L.

(ii) Given a linear representation (u,A, v) of f ∈ K(〈X〉), then L =
[

. u
−v A

]

is a
pure linearization of f .

(iii) Talking about a minimal linearization, one has to specify which class of
matrices is considered: Scalar entries in the first row and column? Pure? And, if
applicable, selfadjoint?

Proposition 1.18. Let

L =

[

c u
v A

]

be a linearization of size n for some element f ∈ K(〈X〉) and define another element
g ∈ K(〈X〉) by the pure linearization

L̃ =

[

. ũ

ṽ Ã

]

with Ã =





c u −1
v A .
−1 . .



 , ũ = [0, . . . , 0, 1], ṽ = ũ⊤

of size n + 2. Then g = f .

Proof. Using Proposition 1.16 —taking the Schur complement with respect to the
block entry (2, 2)— and b = [−1, 0, . . . , 0], the inverse of Ã =

[

L b⊤

b .

]

can be written
as

Ã−1 =

[

L−1 .
. .

]

−

[

−L−1b⊤

1

]

(

bL−1b⊤
)−1 [

−bL−1 1
]

.

Hence

−ũÃ−1ṽ = −
(

[

. .
]

− (bL−1b⊤)−1
[

−bL−1 1
]

)

[

.
1

]

=
(

bL−1b⊤
)−1

=

(

b

([

. .

. A−1

]

+

[

1
−A−1v

]

(

c− uA−1v
)−1 [

1 −uA−1
]

)

b⊤

)−1

=

(

(

[

. .
]

−
(

c− uA−1v
)−1 [

1 −uA−1
]

)

[

−1
.

]

)−1

= c− uA−1v.
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If the first row and column of a linearization for some f ∈ K(〈X〉) contains non-
scalar entries, then Proposition 1.18 can be used to construct a linear representation
of f . On the other hand, given a linear representation of dimension n (of f) which
can be brought to such a form, a linearization of size n − 1 can be obtained. The
characterization of minimality for linearizations will be considered in future work.

Example 1.19. For the anticommutator xy + yx a minimal ALS is given by








[

1 . . .
]

,









1 −x −y .
. 1 . −y
. . 1 −x
. . . 1









,









.

.

.
1

















.

Permuting the columns and multiplying the system matrix by −1 we get the lin-
earization

L′
xy+yx =













. . . . 1

. . y x −1

. y . −1 .

. x −1 . .
1 −1 . . .













which is of the form in Proposition 1.18 and yields a minimal (pure) linearization
of the anticommutator

Lxy+yx =





. y x
y . −1
x −1 .



 .

Definition 1.20 (Realization [HMV06]). A realization of a matrix F ∈ K(〈X〉)p×q

is a quadruple (A,B,C,D) with A = A0 ⊗ 1 +A1 ⊗ x1 + . . .+Ad ⊗ xd, Aℓ ∈ K
n×n,

B ∈ K
n×q, C ∈ K

p×n and D ∈ K
p×q such that A is invertible over the free field

and F = D − CA−1B. The dimension of the realization is dim (A,B,C,D) = n.

Remark. A realization R = (A,B,C,D) could be written in block form

LR =

[

D C
B A

]

∈ K〈X〉(p+n)×(q+n).

Here, the definition is such that F = |LR|1′,1′ is the (1, 1)-block-quasideterminant
[GGRW05] with respect to block D. For A = −J +LA(X) we obtain the descriptor
realization in [HMV06]. Realizations where B and/or C contain non-scalar entries
are sometimes called “butterfly realizations” [HMV06]. Minimality with respect to
realizations is investigated in [Vol15].
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2 The Word Problem

Let f, g ∈ K(〈X〉) be given by the linear representations πf = (uf , Af , vf ) and
πg = (ug, Ag, vg) of dimension nf and ng respectively and define the matrix

M =





. uf ug

vf Af .
vg . −Ag



 ,

which is a linearization of f−g, of size n = nf +ng +1. Then f = g if and only if M
is not full [Coh95, Section 4.5]. For the word problem see also [Coh95, Section 6.6].
Whether M is full or not can be decided by the following theorem.

Theorem 2.1 ([CR99, Theorem 4.1]). For each r ∈ {1, 2, . . . , n}, denote by Ir the
ideal of K[a, b] generated by the polynomials detA− 1, detB− 1 and the coefficients
of each x ∈ {1}∪X in the (i, j) entries of the matrix AMB for 1 ≤ i ≤ r, r ≤ j ≤ n.
Then the linear matrix M is full if and only if for each r ∈ {1, 2, . . . , n}, the ideal
Ir is trivial.

Remark. Notice that there is a misprint in [CR99] and the coefficients of M0 are
omitted.

So far we were not able to apply this theorem practically for n ≥ 5, where 50
or more unknowns are involved. However, if we have any ALS (or linear represen-
tation) for f − g, say from Proposition 1.13, then we could check whether it can be
(admissibly) transformed into a smaller system, for example A′s′ = 0. For polyno-
mials (with A = I−Q and Q upper triangular and nilpotent) this could be done row
by row. In general the pivot blocks (the blocks in the diagonal) can be arbitrarily
large. Therefore this elimination has to be done blockwise by setting up a single
linear system for row and column operations. This idea is used in the following
lemma. Note that the existence of a solution for this linear system is invariant
under admissible transformations (on the subsystems). This is a key requirement
since the normal form [CR94] is defined modulo similarity transformations (more
general by stable association, Definition 1.2).

Theorem 2.2 ([CR99, Theorem 1.4]). If π′ = (u′, A′, v′) and π′′ = (u′′, A′′, v′′)
are equivalent (pure) linear representations, of which the first is minimal, then the
second is isomorphic to a representation (u,A, v) which has the block decomposition

u =
[

∗ u′ .
]

, A =





∗ . .
∗ A′ .
∗ ∗ ∗



 and v =





.
v′

∗



 .
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Lemma 2.3. Let f, g ∈ K(〈X〉) be given by the admissible linear systems Af =
(uf , Af , vf ) and Ag = (ug, Ag, vg) of dimension nf and ng respectively. If there
exist matrices T, U ∈ K

nf×ng such that ufU = 0, TAg − AfU = Afu
⊤
fug and

Tvg = vf , then f = g.

Proof. The difference f − g can be represented by the admissible linear system
As = v with

A =

[

Af −Afu
⊤
fug

. Ag

]

, s =

[

sf − u⊤f g

−sg

]

and v =

[

vf
−vg

]

.

Defining the (invertible) transformations

P =

[

Inf
T

. Ing

]

and Q =

[

Inf
−U

. Ing

]

and A′ = PAQ, s′ = Q−1s and v′ = Pv we get a new system A′s′ = v′:

A′ =

[

Inf
T

. Ing

] [

Af −Afu
⊤
fug

. Ag

] [

Inf
−U

. Ing

]

=

[

Af −Afu
⊤
fug + TAg

. Ag

] [

Inf
−U

. Ing

]

=

[

Af −Afu
⊤
fug + TAg −AfU

. Ag

]

=

[

Af 0
. Ag

]

,

s′ =

[

Inf
U

. Ing

] [

sf − u⊤fg

−sg

]

=

[

sf − u⊤fg − Usg
−sg

]

,

v′ =

[

Inf
T

. Ing

] [

vf
−vg

]

=

[

vf − Tvg
−vg

]

.

Invertibility of A′ over the free field implies sf − u⊤fg − Usg = 0, in particular

0 = ufsf − ufu
⊤
fg − ufUsg

= f − g

because ufU = 0.

Let d be the number of letters in the alphabet X , dimAf = nf and dimAg = ng.
To determine the transformation matrices T, U ∈ K

nf×ng from the lemma we just
have to solve a linear system of (d+ 1)nf (ng + 1) equations in 2nfng unknowns. If
there is a solution then f = g. Neither Af nor Ag have to be minimal. Computer
experiments show, that Hua’s identity [Ami66]

x−
(

x−1 + (y−1 − x)−1
)−1

= xyx

10



can be tested positively by Lemma 2.3 when the left hand side is constructed by the
rational operations from Proposition 1.13. However, without assuming minimality,
the fact that there is no solution does not imply, that f 6= g, see Example 2.5 below.

Theorem 2.4 (“Linear solution” of the Word Problem). Let f, g ∈ K(〈X〉) be given
by the minimal admissible linear systems Af = (uf , Af , vf ) and Ag = (ug, Ag, vg) of
dimension n respectively. Then f = g if and only if there exist matrices T, U ∈ K

n×n

such that ufU = 0, TAg −AfU = Afu
⊤
fug and Tvg = vf .

Proof. If f = g then, since admissible linear systems correspond to (pure) linear
representations, by Theorem 2.2 there exist invertible matrices P,Q ∈ K

n×n such
that Af = PAgQ and vf = Pvg. Let T = P and U = Q−1 − u⊤fug. The admissible
linear systems are minimal. Hence, the left family sf is K-linearly independent.
Since the first component of sg is equal to the first component of sf = Q−1sg and
the left family sg is K-linearly independent, the first row of Q−1 must be [1, 0, . . . , 0].
Therefore ufU = uf (Q−1 − u⊤fug) = 0. Clearly vf = Tvg and

TAg −AfU = PAg −AfQ
−1 + Afu

⊤
fug

= Afu
⊤
fug.

The other implication follows from Lemma 2.3.

Example 2.5. Let f = x−1 and g = x−1 be given by the admissible linear systems

[x]sf = [1] and

[

x −z
. 1

]

sg =

[

1
.

]

respectively. Then the ALS





x −x .
. x −z
. . 1



 s =





1
−1
.



 , s =





0
−x−1

0





represents f − g = 0.

While it is obvious here that the second component of the solution vector sg is
zero, it is not clear in general how one can exclude such “pathological” LRs without
minimality assumption. One might ask, for which class of constructions (rational
operations [CR99], Higman’s trick [Hig40, Coh85], selfadjoint linearization trick
[And13], etc.) there are sufficient conditions for the existence of matrices T, U (over
K) in Lemma 2.3 if f = g. Unfortunately this seems to be impossible except for
some specific examples as the following ALS (constructed by the rational operations
from Proposition 1.13) for x−xyy−1 = 0 suggests (some zeros are kept to emphasize
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the block structure):





























1 −x −1 . . . . . .
0 1 . . . . . . .
. . 1 −x . . . . .
. . 0 1 −1 . . . .
. . . . 0 1 −y . .
. . . . −1 0 1 . .
. . . . 0 1 0 −1 .
. . . . . . . 1 −y
. . . . . . . 0 1





























s =





























.
1
.
.
.
.
.
.
−1





























.

There are no T, U and therefore no P,Q (admissible, with blocks T, U) such that
PAQ has a 2× 7 upper right block of zeros and the first two components of Pv are
zero. Therefore we would like to construct minimal linear representations directly.
For regular elements, algorithms are known, see Section 3. How to proceed in general
is open except for the inverse. This is discussed in Section 4.

3 Regular Elements

For regular elements (Definition 1.7) in the free field minimal linear representations
can be obtained via the Extended Ho-Algorithm [FM80] from the Hankel matrix
or by minimizing a given linear representation via the algorithm in [CC80] by de-
tecting linearly dependent rows in the controllability matrix and linearly dependent
columns in the observability matrix, see Definition 3.3. The basic idea goes back to
Schützenberger [Sch61]. Controllability and observability is discussed in [KFA69,
Chapter 10].

For an alphabet X = {x1, x2, . . . , xd} (finite, non-empty set), the free monoid
generated by X is denoted by X∗. A formal power series (in non-commuting vari-
ables) is a mapping f from X∗ to a commutative field K, written as formal sum

f =
∑

w∈X∗

(f, w)w

with coefficients (f, w) ∈ K. In general, K could be replaced by a ring or a skew
field. [SS78] and [BR11] contain detailed introductions. On the set of formal power
series K〈〈X〉〉 the following rational operations are defined for f, g, h ∈ K〈〈X〉〉 with
(h, 1) = 0, and µ ∈ K:

The scalar multiplication

µf =
∑

w∈X∗

µ(f, w)w.
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The sum

f + g =
∑

w∈X∗

(

(f, w) + (g, w)
)

w.

The product

fg =
∑

w∈X∗

(

∑

uv=w

(f, u)(g, v)

)

w.

And the quasiinverse

h+ =
∑

n≥1

hn.

The set of non-commutative (nc) rational series K
rat〈〈X〉〉 is the smallest ratio-

nally closed (that is, closed under scalar multiplication, sum, product and quasiin-
verse) subset of K〈〈X〉〉 containing the nc polynomials K〈X〉. A series f ∈ K〈〈X〉〉
is called recognizable if there exists a natural number n, a monoid homomorphism
µ : X∗ → K

n×n and two vectors α ∈ K
1×n, β ∈ K

n×1 such that f can be written as

f =
∑

w∈X∗

αµ(w)β w.

The triple (α, µ, β) is called a linear representation [SS78, Section II.2].

Theorem 3.1 ([Sch61]). A series f ∈ K〈〈X〉〉 is rational if and only if it is recog-
nizable.

A rational series f can be represented by a proper linear system (PLS for short)
s = v + Qs where f is the first component of the unique solution vector s (with
v ∈ K

n×1, Q = Q1 ⊗ x1 + Q2 ⊗ x2 + . . . + Qd ⊗ xd, Qi ∈ K
n×n for some n ∈ N).

Rational operations are then formulated on this level [SS78, Section II.1]. Clearly,
every proper linear system gives rise to an admissible linear system A = (u, I−Q, v)
with u = e1. When (α, µ, β) is a linear representation of a recognizable series, then
π = (α, I −Q, β) with

Q =
∑

x∈X

µ(x) ⊗ x. (3.2)

is a linear representation of f ∈ K(〈X〉). For a PLS the solution vector s can be
computed by the quasiinverse Q+:

s = (I −Q)−1v

= (I + Q+)v

= (I + Q + Q2 + Q3 + . . .)v.
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Definition 3.3 (Controllability and Observability Matrix). Let P = (u, I − Q, v)
be a proper linear system of dimension n (for some nc rational series). Then the
controllability matrix and the observability matrix are defined as

V = V(P) =
[

v Qv . . . Qn−1v
]

and U = U(P) =











u
uQ
...

uQn−1











respectively.

Remark. Note that the monomials (in the polynomials) in Qk have length k. The
matrices V and U are over K〈X〉. A priori these matrices would have an infinite
number of columns and rows respectively. However, by [Coh95, Lemma 6.6.3], it
suffices to use the columns of V and rows of U only. This gives the connection to
[BR11, Section I.2] and could be used for minimizing proper linear systems [SS78].
In other words: Instead of identifying K-linear dependence of the left family s =
(I −Q)−1v = (I +Q+Q2 + . . .)v, we can restrict to the “approximated” left family
s̃ = (I + Q + . . . + Qn−1)v.

Now let X∗
k ⊆ X∗ denote the set of words of length k and use µ : X∗ → K

n×n

from (3.2) to define Vk ∈ K
n×dk

with columns µ(w)v for w ∈ X∗
k and Uk ∈ K

dk×n

with rows uµ(w) for w ∈ X∗
k . Then the controllability matrix and the observability

matrix can be defined alternatively as

V ′ =
[

V0 V1 . . . Vn−1

]

and U ′ =











U0

U1

...
Un−1











respectively

with entries in K. Note that the rank of V ′ is at most n while the number of columns
of the blocks Vk is dk. So —for an alphabet with more than one letter— most of
the columns are not needed. For X = {x} and Q = Qx ⊗ x we have Vk = Qk

xv and
Uk = uQk

x. Hence V ′ and U ′ can be written as

V ′ =
[

v Qxv . . . Qn−1
x v

]

and U ′ =











u
uQx

...
uQn−1

x











respectively.

Compare with [KFA69, Section 6.3]. For controllability and observability in con-
nection with realizations (Definition 1.20) see also [HMV06].
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4 Minimizing the Inverse

Having solved the word problem, our next goal is “minimal arithmetics” in the
free field K(〈X〉). That is, given elements by minimal admissible linear systems, to
compute minimal ones for the rational operations. For the scalar multiplication this
is trivial. For the inverse some preparation is necessary. The result is presented
in Theorem 4.20. The “minimal sum” and the “minimal product” are considered
in future work. The main difficulty is not minimality but the restriction to linear
techniques.

Proposition 4.1. Let k ∈ N and f = xi1xi2 · · ·xik be a monomial in K〈X〉 ⊆
K(〈X〉). Then

A =















[

1 . · · · .
]

,















1 −xi1

1 −xi2

. . .
. . .

1 −xik

1















,















.

.

...

.
1





























is a minimal ALS of dimension dimA = k + 1.

Proof. The system matrix of A is full. For row indices [1, xi1 , xi1xi2 , . . . , xi1 · · ·xik ]
and column indices [1, xik , xik−1

xik , . . . , xi1 · · ·xik ] the Hankel matrix [Fli74], [SS78,
Section II.3] of f is

H(f) =









1
1

. .
.

1









and has rank k + 1.

Remark. Trivially, A = ([1], [1], [1]) is a minimal ALS for the unit element (empty
word).

The following proposition is a variant of the inverse in Proposition 1.13 and is
motivated by inverting the inverse of a monomial, for example, f = (xyz)−1. A
minimal ALS for f is given by





z −1 .
. y −1
. . x



 s =





.

.
1



 , s =





z−1y−1x−1

y−1x−1

x−1



 .

Minimality is clear immediately by also checking the K-linear independence of the
right family. Using the construction of the inverse from Proposition 1.13 we get the
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system








. z −1 .

. . y −1
−1 . . x
. 1 . .









s =









.

.

.
1









, s =









xyz
1
z
yz









.

for f−1 = xyz. To obtain the form of Proposition 4.1 we have to reverse the rows
1, 2, 3 and the columns 2, 3, 4 and multiply the rows 1, 2, 3 by −1.

Proposition 4.2 (Standard Inverse). Let 0 6= f ∈ K(〈X〉) be given by the admissible
linear system A = (u,A, v) of dimension n. Then an admissible linear system of
dimension n + 1 for f−1 is given by

A−1 =

(

[

1 .
]

,

[

Σv −ΣAΣ
. uΣ

]

,

[

.
1

])

. (4.3)

(Recall that the permutation matrix Σ = Σn reverses the order of rows/columns.)

Definition 4.4 (Standard Inverse). Let A be an ALS for a non-zero element. We
call the ALS (4.3) the standard inverse of A, denoted by A−1.

Proof. The reader can easily verify that the solution vector of A−1 is
[

f−1

Σnsff
−1

]

.

Compare with Proposition 1.13.

We proceed with the calculation of minimal admissible linear systems for the
inverse. We distinguish four types of ALS according to the form of the system
matrix. Later, in the remark following Lemma 4.18 and 4.19, we will see how to
bring a system matrix to one of these forms depending on the left and right families.

Lemma 4.5 (Inverse Type (1, 1)). Assume that 0 6= f ∈ K(〈X〉) has a minimal
admissible linear system of dimension n of the form

A =





[

1 . .
]

,





1 b′ b
. B b′′

. . 1



 ,





.

.
λ







 . (4.6)

Then a minimal ALS for f−1 of dimension n− 1 is given by

A′ =

(

[

1 .
]

,

[

−λΣb′′ −ΣBΣ
−λb −b′Σ

]

,

[

.
1

])

(4.7)

with 1 /∈ R(A′) and 1 /∈ L(A′).
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Proof. The standard inverse of A is








λ −1 . .
. −Σb′′ −ΣBΣ .
. −b −b′Σ −1
. . . 1









s̃ =









.

.

.
1









.

Adding row 4 to row 3 and λ-times column 2 to column 1 gives








0 −1 . .
−λΣb′′ −Σb′′ −ΣBΣ .
−λb −b −b′Σ 0
. . . 1









s′ =









.

.
1
1









.

It follows that s′2 = 0 and s′n+1 does not contribute to the solution s′1 and thus
the first and the last row as well as the second and the last column can be re-
moved. If A′ were not minimal, then there would exist a system A′′ of dimen-
sion m < n − 1 for f−1. The standard inverse (A′′)−1 would give a system
of dimension m + 1 < n for f , contradicting minimality of A. It remains to
show that 1 /∈ R(A′) and 1 /∈ L(A′). Let t = (t1, t2, . . . , tn) be the right family
of A which is (due to minimality) K-linearly independent. Then the right fam-
ily of A−1 is (tnf

−1, . . . , t2f
−1, t1f

−1, f−1), that after the row operation becomes
(tn, . . . , t2, t1, 1−t1)f

−1. Removing the first and the last component (corresponding
to the first and the last row) yields the right family (tn−1, . . . , t2, t1)f−1. There-
fore 1 /∈ R(A′), because otherwise f ∈ span{tn−1, . . . , t2, t1}, contradicting K-linear
independence of t. Similar arguments show that 1 /∈ L(A′).

Lemma 4.8 (Inverse Type (1, 0)). Assume that 0 6= f ∈ K(〈X〉) has a minimal
admissible linear system of dimension n of the form

A =





[

1 . .
]

,





1 b′ b
. B b′′

. c′ c



 ,





.

.
λ







 (4.9)

with 1 6∈ L(A). Then a minimal ALS for f−1 of dimension n is given by

A′ =





[

1 . .
]

,





1 − 1
λ
c − 1

λ
c′Σ

. −Σb′′ −ΣBΣ

. −b −b′Σ



 ,





.

.
1







 (4.10)

with 1 /∈ L(A′).

Proof. The standard inverse of A is








λ −c −c′Σ .
. −Σb′′ −ΣBΣ .
. −b −b′Σ −1
. . . 1









s̃ =









.

.

.
1
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and has dimension n + 1. After adding row n + 1 to row n we can remove row and
column n + 1 because s̃n+1 does not contribute to the solution s̃1 = f−1. Then we
divide the first row by λ and obtain (4.10). It remains to show that A′ is minimal and
1 /∈ L(A′). Let (s1, s2, . . . , sn) be the left family of A which is (due to minimality)
K-linearly independent. Then the left family of A−1 is (f−1, snf

−1, . . . , s2f
−1, 1).

Note that (admissible) row operations do not affect the left family. Since we removed
the last entry s1f

−1 = s̃n+1 = 1, the left family of A′ is (1, sn, . . . , s2)f−1. By
assumption 1 /∈ L(A). Therefore 1 /∈ span{s2, s3, . . . , sn}, hence (1, sn, . . . , s2)
is K-linearly independent. Clearly, 1 /∈ L(A′) because f /∈ span{1, sn, . . . , s2}.
Similarly, let (t1, t2, . . . , tn) be the right family of A which is K-linearly independent.
Then the right family of A−1 is (tnf

−1, . . . , t2f
−1, t1f

−1, f−1), that after the row
operation is (tnf

−1, . . . , t2f
−1, t1f

−1, f−1−t1f
−1). Since we removed the last entry,

the right family of A′ is (tn, . . . , t2, t1)f−1 which is clearly K-linearly independent.
Proposition 1.9 gives minimality of A′.

Lemma 4.11 (Inverse Type (0, 1)). Assume that 0 6= f ∈ K(〈X〉) has a minimal
admissible linear system of dimension n of the form

A =





[

1 . .
]

,





a b′ b
a′ B b′′

. . 1



 ,





.

.
λ







 (4.12)

with 1 6∈ R(A). Then a minimal ALS for f−1 of dimension n is given by

A′ =





[

1 . .
]

,





−λΣb′′ −ΣBΣ −Σa′.
−λb −b′Σ −a
. . 1



 ,





.

.
1







 (4.13)

with 1 /∈ R(A′).

Proof. The standard inverse of A is









λ −1 . .
. −Σb′′ −ΣBΣ −Σa′

. −b −b′Σ −a

. . . 1









s̃ =









.

.

.
1









.

After adding λ-times column 2 to column 1 we can remove row 1 and column 2,
because s̃2 = 0. Showing minimality and 1 /∈ R(A′) is similar to the proof of
Lemma 4.8 (column operations affect the left family).

Lemma 4.14 (Inverse Type (0, 0)). Let A = (u,A, v) be a minimal admissible
linear system of dimension n for 0 6= f ∈ K(〈X〉) with 1 /∈ R(A) and 1 /∈ L(A).
Then the standard inverse A−1 is a minimal ALS of dimension n + 1 for f−1.
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Proof. If A−1 were not minimal, then there would be a system A′ of dimension
m < n + 1 for f−1. Applying Lemma 4.5 (Inverse Type (1, 1)), we would get a
system of dimension m− 1 < n for f , contradicting minimality of A.

Example 4.15. Taking the minimal ALS (for the anticommutator) from Exam-
ple 1.19, we get, by Lemma 4.5 (Inverse Type (1, 1)), a minimal ALS for (xy+yx)−1:

A′ =





[

1 . .
]

,





x −1 .
y . −1
. y x



 ,





.

.
1







 .

Lemma 4.14 (Inverse Type (0, 0)) gives again a minimal system for xy + yx.

Since it is possible to construct minimal linear representations for regular ele-
ments (see Section 3), this is in particular true for polynomials. These are of the
form (4.6), since A = I − Q with nilpotent Q, which can be choosen upper tri-
angular. This can be seen either by looking at proper linear systems (Section 3)
where admissible transformations are conjugations (of the system matrix such that
the first component of the solution vector is left untouched) or by the following
proposition.

Proposition 4.16 ([CR99, Proposition 2.1]). Let f ∈ K(〈X〉).
(i) f is a power series if and only if in any minimal representation, the constant

term of its system matrix is invertible. There is then a minimal representation which
is unital, that is, A0 = I.

(ii) f is a polynomial if and only if in any unital minimal representation, the ma-
trix A = A1⊗x1+ . . .+Ad⊗xd is nilpotent. There is then a minimal representation
with a unitriangular (ones on and zeros below the diagonal) system matrix.

Example 4.17. The element xyz−1 admits the following minimal ALS

A =





[

1 . .
]

,





1 −x .
. 1 −y
. . z



 ,





.

.
1









with right family t = (1, x, xyz−1) and left family s = (xyz−1, yz−1, z−1). Now
Lemma 4.8 (Inverse Type (1, 0)) can be applied to get the minimal ALS

A′ =





[

1 . .
]

,





1 −z .
. y −1
. . x



 ,





.

.
1









for zy−1x−1. Note that we can apply Lemma 4.8 again, because 1 /∈ L(A′).
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If an admissible linear system A is of the form (4.12) in Lemma 4.11 (Inverse
Type (0, 1)), then it follows immediately that 1 ∈ L(A). Conversely, assuming
1 ∈ L(A), the proof of the existence of an admissible transformation (P,Q) such
that PAQ is of the form (4.12) is a bit more involved and requires minimality.

Lemma 4.18 (for Inverse Type (0, 1)). Let A = (u,A, v) be a minimal admissible
linear system with dimA = n ≥ 2 and 1 ∈ L(A). Then there exists an admissible
transformation (P,Q) such that (uQ, PAQ,Pv) is of the form (4.12).

Proof. Without loss of generality, assume that v = [0, . . . , 0, 1]⊤ and the left family
s = A−1v is (s1, s2, . . . , sn−1, 1). Otherwise it can be brought to this form by some
admissible transformation (P ◦, Q◦). Now let Ā denote the upper left (n−1)×(n−1)
block of A, let s̄ = (s1, . . . , sn−1) and write As = v as

[

Ā b
c d

] [

s̄
1

]

=

[

0
1

]

.

This system is equivalent to
[

Ā b
c d− 1

] [

s̄
1

]

=

[

0
0

]

.

Since the left family is K-linearly independent (by minimality of A), the matrix
Ã =

[

Ā b
c d−1

]

cannot be full. We claim that there is only one possibility to transform

Ã to a hollow matrix, namely with zero last row. If we cannot produce a (n− i)× i
block of zeros (by invertible transformations) in the first n− 1 rows of Ã, then we
cannot get blocks of zeros of size (n− i + 1) × i and we are done.

Now assume that there are invertible matrices P ′ ∈ K
(n−1)×(n−1) and (admissi-

ble) Q ∈ K
n×n with (Q−1s)1 = s1, such that P ′[Ā, b]Q contains a zero block of size

(n− i) × i for some i = 1, . . . , n− 1. There are two cases. If the first n− i entries
in column 1 cannot be made zero, we construct an upper right zero block:

Â =

[

A11 .
A21 A22

]

, ŝ = Q−1s and v̂ = Pv = v

where A11 has size (n − i) × (n − i). If A11 were not full, then A would not be
full (the last row is not involved in the transformation). Hence this pivot block is
invertible over the free field. Therefore ŝ1 = ŝ2 = . . . = ŝn−i = 0. Otherwise we
construct an upper left zero block in PAQ. But then ŝi+1 = ŝi+2 = . . . = ŝn = 0.
Both contradict K-linear independence of the left family.

So there is only one block left, which can make Ã non-full. Hence, by Lemma 1.3,
the modified (system) matrix Ã is associated over K to a linear hollow matrix with
a 1 × n block of zeros, say in the last row (the columns and the first n− 1 rows are
left unouched):

[

In−1 .
T 1

] [

Ā b
c d− 1

]

In =

[

Ā b
0 0

]

.
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Hence we have T Ā + c = 0 and therefore
[

Ā b
0 Tb + d

] [

s̄
1

]

=

[

0
1

]

.

Clearly Tb + d = 1. The transformation

(P,Q) =

([

In−1 .
T 1

]

P ◦, Q◦

)

does the job.

Lemma 4.19 (for Inverse Type (1, 0)). Let A = (u,A, v) be a minimal admissible
linear system with dimA = n ≥ 2 and 1 ∈ R(A). Then there exists an admissible
transformation (P,Q) such that (uQ, PAQ,Pv) is of the form (4.9).

Proof. The proof is similar to the previous one switching the role of left and right
family.

Remark. If 1 ∈ R(A) for some minimal ALS A = (u,A, v), say dimA = n, then,
by Lemma 4.19, there is an admissible transformation (P,Q) such that the first
column in PAQ is [1, 0, . . . , 0]⊤. So, if the first column of A = (aij) is not in this
form, an admissible transformation can be found in two steps: Firstly, we can set
up a linear system to determine an (n − 1)-duple of scalars (µ2, µ3, . . . , µn) such
that ai1 + µ2ai2 + µ3ai3 + . . . + µnain is in K for i = 1, 2, . . . , n. Secondly, we use
elementary row transformations (Gaussian elimination in the first column) and —if
necessary— permutations to get the desired form of the first column. Together,
these transformations give some (admissible) transformation (P ′, Q′).

An analogous procedure can be applied if 1 ∈ L(A). And it can be combined
for the case as in Lemma 4.5 (Inverse Type (1, 1)). It works more generally for non-
minimal systems, but can fail in “pathological” cases. Compare with Example 2.5.

Theorem 4.20 (Minimal Inverse). Let 0 6= f ∈ K(〈X〉) be given by the minimal
system A = (u,A, v) of dimension n. Then a minimal admissible linear system for
f−1 is given by

A′ =



















(4.7) of dimA′ = n− 1 if 1 ∈ L(A) and 1 ∈ R(A),

(4.10) of dimA′ = n if 1 6∈ L(A) and 1 ∈ R(A),

(4.13) of dimA′ = n if 1 ∈ L(A) and 1 6∈ R(A) and

(4.3) of dimA′ = n + 1 if 1 6∈ L(A) and 1 6∈ R(A)

provided that the necessary transformations according to Lemma 4.18 and 4.19 are
done before.

Proof. See Lemma 4.5, 4.8, 4.11 and 4.14.
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