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The field of quantum computing is based on the laws of quantum
mechanics, including states superposition and entanglement. Quantum
cryptography is amongst the most surprising applications of quantum
mechanics in quantum information processing. Remote state
preparation allows a known state to a sender to be remotely prepared
at a receiver’s location when they prior share entanglement and
transmit one classical bit. A trusted authority in a network where
every user is only authenticated to the third party distributes a secret
key using quantum entanglement parity bit, controlled gates, ancillary
states, and transmit one classical bit. We also show it is possible to
distribute entanglement in a typical tele-com metropolitan optical
network.

Key Idea, Hypothesis And Specific Problem 

Entanglement Distribution in Optical Network
Contains: Backbone network; Backbone nodes; Access network
Centralized EPR source: Classical signals; Quantum signals
Simultaneous transmission of classical and quantum signals
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Quantum Cryptography, Quantum key distribution. Quantum teleport-
tation consumes two cbits and ebits. Remote state preparation cons-
umes one cbit. Key distribution between untrusted parties by secure
and efficient secret key establishment. Also, entanglement distribution
in an optical network. Consumes one cbit on average for each qubit by
Finding a secure and efficient entanglement-assisted three-party quan-
tum key distribution protocol. In addition, how to distribute entangle-
ment in a typical telecom metropolitan optical network.

Conventional And Quantum Computing
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Quantum Entanglement
Pair of particles share the same properties
Bell States:
Ψ− = 0 1 − 1 0
Ψ+ = 0 1 + 1 0
Φ+ = 0 0 + 1 1
Φ− = 0 0 − 1 1

EPR Source

-

+
+
-

Efficient Quantum Key Distribution
• Pre-shared EPR parity bits

For Ψ± = 𝑇𝑇 𝐶𝐶𝐶𝐶 = 1
For Φ± = 𝑇𝑇 𝐶𝐶𝐶𝐶 = |0〉

• Ancillary qubits
For Alice 0 𝐴𝐴
For Bob   0 𝐵𝐵

• Controlled-U Gates
• Algorithm as quantum circuit

Intrinsic Efficiency
𝜂𝜂 =

𝑞𝑞𝑠𝑠
𝑞𝑞𝑢𝑢 + 𝑏𝑏𝑡𝑡

∗ 𝑞𝑞𝑠𝑠qubits ∗ 𝑞𝑞𝑢𝑢 ebits ∗ 𝑏𝑏𝑡𝑡 cbits
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Fig 1. Entanglement distribution in an access network

Fig 2. Design of the backbone node (ROADM)

Fig 3. The architecture of the metropolitan optical network (MON)

Fig 4. Raman gain generated from each classical channel

Fig 5. Show the optical signal to noise ratio
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