Detecting Malicious Behavior for the Sensors and Actuators Embedded in Medical Devices: A Hardware Approach ERSI7

Razan Abdulhammed, Miad Faezipour and Khaled Elleithy

Department of Computer Science and Engineering University of Bridgeport, Bridgeport, CT rabdulha@my.bridgeport.edu, mfaezipo@bridgeport.edu, elleithy@bridgeport.edu

Abstract

The goal of this study is to investigate a behavior-rule based technique for detecting the malicious behavior of the sensors and actuators embedded in medical devices such as Vital Sign Monitor (VSM), Patient Analgesic Control (PCA), Cardiac Device (CD), and Continuous Glaucous Monitor (CGM). First, a set of behavior rules for both malicious and normal behaviors are proposed. Second, a transformation methodology has been used to transfer the proposed set of behavior rules into a state machine. Finally, a Finite State Machine (FSM) has been built using Altera ModelSim and Quartus II toolset. The simulation and synthesis results using a Field Programmable Gate Array (FPGA) demonstrate that our FSM hardware model can effectively identify malicious behavior from normal behavior.

1. PCA

An RTL circuit for the PCA device's FSM module is shown in Figure. 2.

Figure 2. An RTL view of the PCA device's Behavior Specification Rules Tool (BSRT) along with the simulation waveforms

An RTL circuit for the CD device's FSM module is shown in Figure 3.

Keywords: FSM; Behavior rule; PCA; CD; VSM; CGM; FPGA.

Introduction

The proposed study uses sensors as well as actuator readings and settings to build a Behavior Monitoring Tool (BMT) that the notion of behavior rules to specify acceptable uses behaviors of sensors and actuators embedded in certain medical devices such as VSM, PCA, CD, and CGM. Tables 1 and 2 show a sample of both normal behavior status rules and malicious behavior status rules [1],[2], respectively.

Figure 3. An RTL view for the CD device 's Behavior Specification Rules Tool along with the simulation waveforms

3. VSM

4. CGM

An RTL circuit for the VSM device's FSM module is shown in Figure 4.

	10 10 10 10 10 10 10 10 10 10 10 10 10 1		10 - D		-D-D-	00	BBB	
			 Lym•n	- Barris		22		
	_ ₽		Provide a la seconda de la sec					
1018-000-000-00 1-02-000-0-00	\$							
		Land and L						
-8								

Name	Value at 0 ps	0 ps 3 ps	80.0 ms	360,0 m	240.0 ms	320.0 ms	60.0 ms 480.0	ns 560,0 ms	640,0 rs	720,0 m	800,0 ms 880,0	s 960,0 m
	80		5				1		1			1
i nput, Monitor, VSM, Blood, Pressure	U 120		130 X	125	130) 135	X 140	X 245	150	X 35	X 360	X 365
) nput, Montor, VSM, Oxygen, Saturation	U 10		10	20	(30	X 40	X 50	60	(7)) 10	X 90	100
> Yout, Minitor, VSM, Puble	U 50		90 X	55	(60	X 65	X 70	Хя	(80	Хв	X 90	X 95
+ input_Monitor_VSM_Respiration	0.10		20 X	12	14	X #	X	X 20	22	× ×	Xx	X 20
) input_Monitor_VSM_Temperature	U 32		n X	tt	(э	X 35	XX	(#	38	X 18	χ 40	(41
> rout_trates_V94_Blood_treasure	U 120		100 X	125	130	X 135	X 140	X 145	550	X 15	X 350	265
I input_Trustee_VSM_Oxygen_Seturation	U 10		20 X	20	()0	X +0	X 10	X 60	()0	X 10	X 90	X 100
) input_Trustee_VSH_Pulse	U 50		50 X	60	n	X 80) 10	(100	110	120	X 130	140
> rout_trustee_VDH_Respiration	U 30		м Х	12	(14	X 38	Хы	X 20	22	XX	Xx	(3
+ input_Trustee_VEM_Temperature	U 32		n X	33	()	X B	X×	X 10) »	X 40	X 41
+ Output_Alert	8.00		10 X					11				
reset	0.0		ĨĨ									

Figure 4. An RTL view for the VSM Behavior Specification Rules Tool along with the simulation waveforms

TABLE 1. NORMAL BEHAVIOR STATUS RULES IN CONJUNCTION NORMAL FORM (CNF)

Description	Safe State	Trustee	Monitor
Pulse above threshold during analgesic request	(Analgesic Request = TRUE) A (Pulse > Ts)	PCA	VSM
Pulse matches pacemaker frequency	Pulse = Pacemaker frequency	CD	VSM
Trustee blood pressure matches monitor	Trustee blood pressure = Monitor blood pressure	VSM	Peer VSM
Trustee Glucose matches monitor	Monitor Glucose = Trustee Glucose	CGM	Peer CGM

TABLE 2. MALICIOUS BEHAVIOR STATUS RULES IN CNF

Device	Malicious State	Device attributes
PCA	Analgesic Request Rate > T	Analgesic request
CD	(Mode =PACEMAKER) л (Pulse -Pacemaker Frequency) > ⁸	CD mode ,pulse
VSM	Monitor Oxygen Saturation - Trustee Oxygen Saturation > 8	Oxygen Saturation
CGM	(Insulin Request = TRUE) л (Pulse < T) л (Glucose < T)	Insulin Request rate, pulse,
		Glucose

States in State Machine Terminology

Each device functions in different modes of operation, also known as states (see Figure 1). Table 3 shows different states of a system.

Figure 5. An RTL view for the CGM Behavior Specification Rules Tool along with the simulation waveforms

TABLE 4. UTILIZATION SUMMARY OF THE PCA BSRM TOOI

E 4. UTILIZATION SUMMARY OF 1	THE PCA BSRM TOOL	TABLE 5. POWER ANALYSIS SUMMARY OF THE PCA BSRM TOOL		
Attribute	Criteria	Attribute	Criteria	
Family	Cyclone III	Family	Cvclone III	
Device	EP3C120F780C7	· ·	, , , , , , , , , , , , , , , , , , ,	
Timing Models	Final	Device	EP3C120F780C7	
Total logic elements	57 / 119,088 (< 1 %)	Power Models	Final	
otal combinational functions	57 / 119,088 (< 1 %)	Total Thermal Power Dissipation	120.48 mW	

	Warning Status True Warning Status True Warning Status True Tigure. 1: State Transition Diagram TABLE 3. DEVICE STATUS	Unsafe Linafe Statise Trice
Status	Cause	Output Alarm
Safe	The device is working correctly as specified by the behavior rules.	00
Unsafe	The device is seen to deviate from normal behavior specified by the	11
	behavior rules.	
Warning	The values exceed the warning threshold for at least one behavior	10
	rule	
dle	Initial State of the system	01

Simulation and Synthesis

Using Altera ModelSim and Quartus II toolset, we implemented four Finite State Machines (FSM) for PCA, CD, VSM, and CGM, respectively. The resulting Register Transfer Level (RTL) views are shown in Figures 2, 3, 4 and 5, respectively. We ran a functional simulation within a range of different acceptable parameters of the state components. These ranges of values reflect the physiology and responses of patient treatment for each device. The waveform simulation results for PCA, CD, VSM, and CGM are shown in Figures 6, 7, 8, and 9, respectively. Furthermore, device utilization and power analysis summaries for the PCA and CD devices are shown in Tables 4, 5, 6 and 7, respectively.

Dedicated logic registers	4 / 119,088 (< 1 %)
Total registers	4
Total pins	32 / 532 (6 %)

TABLE 6. UTILIZATION SUMMARY OF THE CD BSRM TOOL

Attribute	Criteria
Family	Cyclone IV GX
Device	EP4CGX150DF31I7
Timing Models	Final
Total logic elements	54 / 149,760 (< 1 %)
Total combinational functions	54 / 149,760 (< 1 %)
Dedicated logic registers	4 / 149,760 (< 1 %)
Total registers	4
Total pins	36 / 508 (7 %)
onclusion	

Core Dynamic Thermal Power Dissipation 1.64 mW **Core Static Thermal Power Dissipation** 99.06 mW I/O Thermal Power Dissipation 19.77 mW

TABLE 7. POWER ANALYSIS SUMMARY OF THE CD BSRM TOOL

Attribute	Criteria
Family	Cyclone IV GX
Device	EP4CGX150DF31I7
Power Models	Final
Total Thermal Power Dissipation	141.18 mW
Core Dynamic Thermal Power Dissipation	2.14 mW
Core Static Thermal Power Dissipation	118.71 mW
I/O Thermal Power Dissipation	20.33 mW

This study determined the effect of using a hardware approach to detect malicious behavior in sensors and actuators that are embedded in medical devices. The experimental results confirmed that the specification behavior rules can be utilized to build a hardware monitoring tool that can identify the expected normal behavior of a device and detect any deviation from its normal behavior. Furthermore, we showed through our analysis that our model is consistent with two dominant design requirements for next-generation high-end applications; lower power consumption and higher bandwidth. The reconfigurable nature of FPGA allows to modify and update the whole design according to the set of behavior rules, which outperform software based approaches that are difficult to update. In addition, hardware approaches are difficult to be hacked. One of the most significant findings to emerge from this study is that a hardware based specification rules approach can be used to identify malicious behavior.

References

[1] A. E. W. Johnson, T. J. Pollard, L. Shen, L.-w. H. Lehman, M. Feng, M. Ghassemi, et al., "MIMIC-III, a freely accessible critical care database," *Scientific Data, vol.* 3, p. 160035, 05/24/online 2016. [2] D. Liu, M. Görges, and S. A. Jenkins, "University of Queensland vital signs dataset: Development of an accessible repository of anesthesia patient monitoring data for research," Anesthesia & Analgesia, vol. 114, pp. 584-589, 2012.

