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Abstract. Formation and motion of copper adatoms and addimers on Ag(1 1 1)
are investigated with low-temperature scanning tunnelling microscopy between
6 and 25 K. Adatoms move between fcc and hcp sites with a strong preference for
the fcc site.Adatom motion and dimer rotation change due to the presence of other
adatoms or dimers. Furthermore, rotating dimers influence other rotating dimers.
These changes are attributed to changes in the diffusion or rotation potential,
which are mediated by the electrons in the two-dimensional surface state band.
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1. Introduction

A comprehensive picture that connects diffusional properties on the atomic level with
macroscopic patterns that develop during growth requires deep insight into motion and
aggregation of adparticles starting from monomers. Thus, numerous experiments and accurate
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theoretical calculations have addressed the diffusion of single adatoms [1]–[7]. Fewer studies
have dealt with the properties of dimers [8]–[10] or even larger adparticles [11], although theory
suggests dimer diffusion to be important, e.g. for mass transport [12] and for step bunching
instabilities during growth [13].

Important information on the processes of diffusion on metal surfaces has been gathered
with field ion microscopes [5]. An inherent information gap left by this valuable method is
starting to be filled by application of scanning tunnelling microscopy (STM). Some experimental
difficulties, however, still hamper this development and the number of direct STM studies on
adatom migration is therefore limited [14]–[18]. The main problem is the inadequacy between the
scanning speed of STM imaging and the rate of diffusional motion [10] (for a discussion of this
problem, see [19]). To circumvent this problem, conclusions about atomistic motion have been
drawn from the observation of larger and thus slower adparticles [11] revealing that a complete
characterization of the diffusion process of adparticles is much more complicated than that for
single adatoms. Theory has shown that this is already true for the case of dimers [20].

Concerning the interaction between adparticles, there are different interactions depending
on adparticle distance. At small separation, direct electronic interactions prevail leading to
localized chemical bonds [21], i.e. to dimers or larger adparticles.At larger separations, adsorbate
interactions can be mediated either by electrostatic (dipole–dipole) and elastic (deformation
of substrate lattice) fields, which decay with separation d as 1/d3, or via oscillatory Friedel-
type interactions decaying asymptotically as sin(2qFd )/d2 in the case of a filled surface band
and as cos(2qFd )/d5 otherwise [22], with qF the in-plane Fermi vector. In the case of an
occupied surface state, each adparticle induces scattering of the electrons and causes spatial
oscillations in the surface band density of states (DOS). As the binding energy of an adparticle
depends on electron density, the interference between such DOS variations produce a Friedel-
type adparticle–adparticle interaction, whose interaction energy also oscillates with the mutual
adparticle separation d. In the limit of large separation [23]:

�Epair ≈ −εF

(
2 sin δF

π

)2 sin(2qFd + 2δF)

(qFd)2
(1)

with the in-surface Fermi wave vector qF = √
2meffεF and the phase shift δF . This asymptotic

expression has been shown to be accurate down to distances of λF/2 [23], with λF the Fermi
wavelength. Bogicevic et al [22] calculated for copper adatoms on Cu(1 1 1) that indirect
interactions lead to a binding energy variation of about 46 meV. Experimentally, the repulsion
barrier was estimated to lie between 10 and 14 meV [24]. STM measurements revealed strong
effects on adsorbate arrangement due to these oscillatory interactions [15, 16, 25]. The surface
state electrons thus influence the adatom motion at low temperature by modifying the diffusion
potential in oscillatory form.

In a recent letter, we sketched results for adatom and dimer motion and interaction in the
hetero-epitaxial case of copper on Ag(1 1 1) [18]. We showed that in this system also the adatom
motion is influenced by the surface electron oscillations around other adatoms. An even stronger
long-range oscillation was found for the interaction of adatoms with dimers.

In this paper, we present additional data on the adatom motion, particularly the diffusion
between hcp and fcc sites. Furthermore, temperature-dependent data are presented about the
influence of adatoms on dimer rotation. Finally, we show the influence of dimer orientation on
rotation of other dimers.
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2. Experimental procedure

The experiments are performed in ultrahigh vacuum with a low-temperature STM which operates
at temperatures between 6 and 300 K [26]. The single crystalline Ag(1 1 1) surface is cleaned
by sputtering and annealing cycles. Copper is deposited from a home-built evaporator on to the
cold surface within the shields of the STM at 7 K. Measurements are performed between 6 and
25 K. Special care is taken that imaging does not influence the measurements [27].

3. Results and discussion

Figure 1(a) shows the surface directly after deposition. Three types of protrusions are discernible
in figure 1(a); most frequently, circular protrusions with an apparent height of 40 pm at 100 mV
and 85 pm at 210 mV (figure 1(b)), and a FWHM of 0.42 nm (with the sharpest tips). These are
adatoms. The ellipsoidal protrusions with an apparent height of 65 pm at 100 mV and 137 pm at
210 mV (figure 1(b)) and a FWHM of 0.62 and 0.48 nm along its long and short axis, respectively,
are dimers as verified by direct observation of dimer formation. Dimer formation (figure 2) is
observed above 19 K on the timescale of the experiment and increases the number of dimers.4 In
addition, we observe bright spots with more than twice the apparent height (Dm in figure 1(a)),
which disappear by raising the temperature to 8.1 K (figure 1(c)). As Cu deposition reduces
the mean value of impurities prior to deposition (1/(16.5 nm)2) only slightly to 1/(15.8 nm)2

on average, the bright spots with a density of 1/(15.3 nm)2 cannot be related to copper atoms
adsorbed on or near impurities. We attribute those tentatively to metastable dimers with a smaller
in-plane atomic distance than regular dimers, which necessitates out of place displacement.

The distance distribution function (figure 1(d)) has a mean value of 9 and 16 nm for an image
size of 18.75 nm ×18.75 nm (figure 1(d1)) and 34.9 nm ×34.9 nm (figure 1(d2)), respectively.
In the distance distribution we count all distances measurable between atoms on the STM
image, regardless of whether or not there is another atom on the direct path between them.
The distance distribution is in accordance with a random deposition of adatoms. However, very
small distances do not exist: for more than 10 000 measured distances, only once a distance of
0.5 nm was observed, all other distances are larger than 0.6 nm. Thus a short-range repulsion
already influences the adsorption of the adatoms.

We followed the diffusion of adatoms and dimers for temperatures between 6 and 25 K
by recording images at regular time intervals between 45 and 200 s. The upper temperature
limit is imposed by the frequency of position changes as compared to the scanning speed. At
elevated temperatures we observe position changes of the adatoms during scanning and dimers
that appear as trimers (figure 3(a)). The steep Arrhenius-like increase in the not-identifiable
dimer positions (figure 3(b)) suggests that we have reached the experimental temperature limit.
Enhancing the scanning speed of the STM will only slightly rise the highest possible temperature.
More importantly, at 24 K adatoms are lost to pre-existing step edges or due to adparticle
formation, such that no adatoms are left on the terrace. For Cu/Cu(1 1 1) the same problem
exists at a slightly lower temperature of 22 K [24].

4 At 8 K we observe only two adatom motions for 42 832 recorded events at time intervals of 200 s. For dimer
diffusion we observe a single event at 24.3 K for 3330 recorded events at time intervals of 100 s. This means that a
single adatom moves on average once within 50 days at 8 K and a dimer moves out of the cell once within 4 days
at 24.3 K, and thus we consider these motions as not yet activated at the respective temperatures.
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Figure 1. Deposition of adatoms at low temperature (7 K). (a) Large-scale
STM image of Cu adatoms (circular protrusion) and Cu dimers (ellipsoidal
protrusions, some marked with D) and some bright spots (see text, marked Dm) on
Ag(1 1 1) directly after deposition; coverage of approximately 1.5% ML (5.6 K,
Ut = 99 mV, It = 0.65 nA). (b) Line scans through maximum of protrusion of
adatom, dimer (in two perpendicular directions), and bright spot; inset shows
adatoms and dimer at higher resolution (7 K, 210 mV, 0.82 nA). (c) STM image
of Cu adatoms (circular protrusion) and Cu dimers (ellipsoidal protrusions, some
marked with D) onAg(1 1 1); same deposition as in (a), but in a different part of the
surface and at a higher measurement temperature (8.1 K, 210 mV, 0.47 nA). (d)
Histogram of distances �r between adatoms directly after deposition for 18.8 and
34.9 nm image size, respectively; the solid line is the expected random distribution
for this image size and adatom density.
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Figure 2. Dimer formation: �t = 100 s, 20 K, 203 mV and 0.43 nA.
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Figure 3. Experimental limits: (a) rotating dimer (D) in upper-left corner looks
like a trimer and monomer (M) moves during scan (23.7 K, 200 mV, 0.4 nA) and
(b) percentage of the not-identifiable dimer positions � versus temperature T , the
line is an exponential fit.

Figure 4 shows snapshots of two movies that record motion at two different temperatures
over 8 h. Movies are available at [28]. The dark impurity in snapshot (a) is immobile at 21 K
and is used as a reference point to compensate for thermal drift. In snapshot (b) a protrusion at
the step in the lower-left corner serves this aim. The adatom motion is random and increases
with temperature. Two adatoms as followed in the movie (see [28]) are marked in figure 4 for
clearer impression. From the temperature dependence of the adatom diffusivity, we determined
an activation energy of (65 ± 9) meV for adatom motion [18].

On fcc surfaces, monomers may occupy the fcc as well as the metastable hcp site (figure 5(a))
and thus move between these two non-equivalent sites. In the experiment, the adatoms move,
however, predominately by lattice constant distances (figure 5(b)) indicating hops between
equivalent sites. At this temperature, the hopping rate is so small, i.e., the average residence
time of an atom on a certain site is so large, that only single hops are observed and all hops
are expected to be seen. In rare cases, intermediate sites are occupied (figure 5(b) at ∼19 000 s).
From the sites visited during the 8 h movie of figure 4(a) as recorded in figure 5(c) it is possible to
construct the atomic lattice.As shown for two examples, each adatom visits the intermediate sites
but rather seldom. In this particular movie (at 21 K), the hcp and fcc sites are occupied for 207
and 7274 times respectively. This allows one to estimate the energy difference between the two
sites to be (5.5 ± 1.0) meV. For Cu diffusion on Cu(1 1 1) only jumps by entire lattice spacings
were observed [15]–[17] and the site was identified to be the fcc site. In agreement, theory for
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Figure 4. Snapshots of movies [28]: time lapse sequence of adatom and dimer
motions. Letters R, L and H mark three possible dimer positions; the ellipse marks
identical adatoms. (a) At 21 K (203 mV, 0.43 nA); N = 262 images; �t = 100 s
and total time covered by movie 1 ttot = 7 h 18 min. (b) At 24 K (200 mV, 0.4 nA);
N = 330 images; �t = 80 s and ttot = 8 h (see movie 2).
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Cu/Cu(1 1 1) finds the hcp site to be as unstable as the bridge site and therefore predicts diffusion
to occur between fcc sites only [22]. To our knowledge, diffusion of Cu on Ag(1 1 1) has not
been calculated with first principles.

In a distribution of distances between adatoms and dimers, strong oscillations are observed
indicating that the adatom motion is influenced by the presence of dimers (figure 6). The first
maximum, corresponding to the first potential minimum, is observed at 3.9 nm and seven minima
are observed, up to a distance of 23.1 nm. The histogram in figure 6(b) shows that the dimers
influence the adatom motion. The change in diffusion energy is, apart from the strong first
repulsion, of the order of ±1 meV (cf to Co/Ag(1 1 1) in [16]).

In the temperature range investigated, the dimer shows a rotation [18] in which it changes
between three equivalent sites. These are marked with R (= right inclined), L (= left inclined)
and H (= horizontal) in figures 4, 7 and 8. For isolated dimers, all three positions are observed
equally often. In [18] we showed that the dimer rotation potential becomes asymmetric due
to elastic deformation of the lattice, if a monomer is in close proximity. Also an influence at
larger distances mediated by the surface state electrons was observed. In the examples shown in
figure 7(a) only two positions, L and R, are observed for 28 consecutive images (2700 s), i.e.
as long as the third adatom stays close by. As soon as the adatom has increased the distance
to >1.7 nm all three orientations of the dimer are observed (see [28]). Thus, the long-range
interaction leads to an asymmetry for individual dimers for distances of adatoms to dimers of up
to several nanometres. In the example in figure 7(b), for a dimer surrounded by three adatoms,
the rotation depends sensitively on the adatom distances (see [28]).
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Due to this influence, the average residence time of the dimer in one position before
it changes to one of the other two increases with increasing temperature between 17.5 and
22 K (figure 7(c)); only above 23 K it decreases as expected for activated processes (Arrhenius
behaviour). Thereby, the measured average time at high temperature represents an upper limit
due to scanning speed limitations.

We can comprehend this non-Arrhenius behaviour by the onset of adatom diffusion, which
is a prerequisite of an influence of the adatoms on to the dimer rotation. An increased diffusion
leads to adatoms coming close enough to a dimer to stabilize a certain dimer position. The
decrease at higher temperature is, however, an artifact of the decreasing adatom density with
increasing temperature (see above). This interpretation is corroborated by a dependence of the
average residence time of the dimer in one position before it changes to one of the other two
positions on the (local) density of adatoms [18].

A noticeable influence of adatoms on dimer rotation requires a distance of less than 1.7 nm.
For dimers we find a mutual influence on the rotation for even larger distances. Figure 8(a) shows
an example of two dimers that have a distance of 3.7 nm. From the nine possible combinations of
dimer orientations, the three most common ones, RL, RR and LR occur in 57% of all cases, while
the three least frequent ones, HL, HR and RH only in 11% of the cases. Therein the orientation
HL is never observed. In figure 8(b) for a distance of 2.4 nm the probabilities are 64% for RL,
HL and HH and 11% for LL, LR and RH. None of the adatoms is close enough to explain
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Figure 8. Mutual influence during dimer rotation (�t = 100 s, 203 mV, 0.43 nA).
(a) T = 21 K, distance between dimers �d = λF/2. See movie 6. (b) T = 21 K,
�d = 2.5 nm. See movie 7. (c) Standing wave pattern around dimer as compared
to monomer (44 mV, 0.22 nA). (d) Line scan through dimer and monomer
including standing wave taken on two well-separated adparticles. (e) Sketch of
change in the potential minimum upon dimer rotation (see text); the ellipses
indicate the potential minimum due to dimer D1 in the two indicated orientations.

this behaviour by an adatom influence. Furthermore, in both cases the same orientation of an
individual dimer is observed in the most frequent and the least frequent pair orientations. Thus,
rotations of dimers with distances of up to at least λF/2 is not independent of each other.

This can be understood by realizing that the standing wave pattern around the ellipsoidal
dimer is also slightly ellipsoidal (figure 8(c)) with an aspect ratio of 1.06. The smaller diameter
is similar to the one around an isolated adatom (figure 8(d)). The larger diameter is the sum of the
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atom distance plus the standing wave around an isolated atom. Thus, the potential maxima and
minima around a rotating dimer shift on the order of half-a-lattice distance during dimer rotation,
changing thereby the rotational potential of the neighbouring dimer. Consider, for example, the
situation sketched in figure 8(e). In the initial position, dimer D1 is horizontal and dimer D2 at
a distance of 3.7 nm lies with both atoms within the potential minimum. Now dimer D1 rotates
clockwise. To regain the most favourable adsorption site, D2 would have to diffuse as indicated by
the arrow. However, as long as the temperature is too low for dimer diffusion, it might get a more
favourable adsorption site by rotation. Whether or not the new site is energetically favourable
depends on the distance and relative orientation of the dimers to each other. We hope to induce
theoretical effort into this direction through our results.

4. Conclusion

On the system Cu/Ag(1 1 1), we have directly observed adatom motion between non-equivalent
sites, dimer formation and dimer rotation. We found an influence of the dimers on the adatom
motion, an influence of the adatoms on the dimer rotation and a mutual influence of the dimers
on each other. The observed interactions have consequences for nucleation and thus growth. Our
investigation suggests that it is important to understand diffusional properties and interaction of
small adparticles beyond the adatom both experimentally and theoretically. We hope to stimulate
theoretical work to understand why the influence of dimers on adatom motion is much more
long-ranged than the similar influence of adatoms on adatom motion. We suggest to prepare
surfaces predominantly with dimers to investigate this influence in more detail.
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