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Abstract. We examine the prospects of discrete quantum walks (QWs) with
trapped ions. In particular, we analyze in detail the limitations of the protocol
of Travaglione and Milburn (2002 Phys. Rev. A 65 032310) that has been
implemented by several experimental groups in recent years. Based on the first
realization in our group (Schmitz et al 2009 Phys. Rev. Lett. 103 090504),
we investigate the consequences of leaving the scope of the approximations
originally made, such as the Lamb–Dicke approximation. We explain the
consequential deviations from the idealized QW for different experimental
realizations and an increasing number of steps by taking into account higher-
order terms of the quantum evolution. It turns out that these already become
significant after a few steps, which is confirmed by experimental results and is
currently limiting the scalability of this approach. Finally, we propose a new
scheme using short laser pulses, derived from a protocol from the field of
quantum computation. We show that this scheme is not subject to the above-
mentioned restrictions and analytically and numerically evaluate its limitations,
based on a realistic implementation with our specific setup. Implementing
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the protocol with state-of-the-art techniques should allow for substantially
increasing the number of steps to 100 and beyond and should be extendable to
higher-dimensional QWs.
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1. Introduction

Random walks are powerful models that allow one to describe, understand and make use of
stochastic processes occurring in a wide variety of areas [1, 2]. Models describing related
processes in the quantum world are called quantum walks (QWs) [3].

An implementation of a discrete (-time and -space) random walk on a line requires two
basic operations. The coin operation, with the random outcome of Heads or Tails, is followed
by the shift operation to the left or right, depending on the outcome of the coin toss. After
N steps the walker will therefore have followed randomly one out of many possible paths,
with the probability for its location being given by a binomial distribution centered around
the starting point. The average displacement of the walker, i.e. the standard deviation of that
distribution, increases with the square root of N . The quantum mechanical version replaces the
probabilistic coin toss by a deterministic operation. It prepares the quantum coin in an (equal)
superposition of Heads and Tails. As a consequence, the walker performs the conditional step
in both directions simultaneously. The walker follows all paths during this deterministic (and
thus reversible) process, allowing for constructive and destructive interferences at subsequent
crossings. The probability distribution of the position of the walker is due to these interferences
substantially different from a binomial one. In particular, the average displacement of the walker
scales linearly in N .

Historically, QWs were introduced as quantum random walks with small step sizes and a
random character induced by a projection measurement following each step operation [3]. This
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form of random walk is also related to the concept of weak measurements. Here, however,
we will consider QWs with large step sizes, where a measurement is only necessary for
state tomography after the complete walk consisting of alternating unitary coin and step
operations. These purely coherent QWs have been thoroughly investigated theoretically and
several applications have been proposed, for example in terms of quantum computing [4]. Many
classical algorithms in computer science make use of random walks for sampling purposes.
Algorithms of that kind might get substantially speeded up by quantum versions of the random
walk, where all possible paths are tested in parallel, potentially providing a similar gain as the
prominent example of Grover’s search algorithm [5]. In addition, QWs can be interpreted as the
one-particle sector of a quantum cellular automaton, which is a fundamental model of a quantum
computer [6]. Furthermore, it has been shown that QWs themselves are suitable for universal
quantum computation [7] and different aspects of quantum information processing [8–10].

In a different context, QWs can be exploited as prototype models for intriguing transport
processes in nature. One example is the energy transfer in photosynthesis with an efficiency
of close to 100% [11–13], a performance that is not achievable classically. Other examples are
the creation of molecules in interacting QWs [14] and effects such as Anderson localization
and diffusive scaling in disordered QWs [15, 16]. Here, QWs might be suited for experimental
quantum simulations to provide deeper insight into complex quantum dynamics. Additionally,
even relativistic effects can be considered [17].

Promising attempts at their implementation have been made for the discrete and continuous
versions of QWs. Important aspects of QWs have been realized in a nuclear magnetic resonance
experiment [18] using the internal degrees of freedom of molecules to span the coin and position
space. An implementation based on neutral atoms in an optical lattice [19, 20] has resulted in
an experiment [21] where the lattice sites in a standing wave of light span the position space of
the walker/atom, two electronic states encode the two coin states and a state-dependent optical
force provides the conditional shift. Other proposals consider an array of microtraps illuminated
by a set of microlenses [22], Bose–Einstein condensates [23] and atoms in cavities [24]. Photons
have mimicked single walkers on the longitudinal modes of a linear optical resonator [24] and
in a loop of a split optical fibre [25, 26]. Single [27] and two time-correlated photons [28–30]
have recently been travelling and interfering in a lattice of optical waveguides. Travaglione and
Milburn [31] proposed a scheme for trapped ions to transfer the high operational fidelities [32]
obtained in quantum information processing to the field of QWs. While coin states and steps
are operated similarly to the atoms in the optical lattice, the position is encoded in the motional
degree of freedom of the ion(s), which oscillate in a quantized harmonic trapping potential.
The proof-of-principle has been performed by our group by the implementation of a discrete,
asymmetric QW of one trapped ion along a line in phase space [33]. Recently, the proposal was
theoretically refined [34] and experimentally extended to an increased number of steps [35].

All of the above-described systems and their related protocols of implementation are
severely limited in the total number of steps due to a lack of operation fidelities or even
fundamental restrictions. However, a larger number of precisely performed steps is the crucial
prerequisite to exploit QWs for the envisioned applications. For the case of trapped ions, the
limit of coherent displacements to states inside the Lamb–Dicke regime has already been
foreseen [31], experimentally observed in a different context [36, 37], and confirmed by us [38]
and others [35].

In this paper, we substantially extend the description of the experimental implementation
of the asymmetric QW with three steps [38]. We carefully analyze the effects that arise when
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approaching the fundamental limitations of the proposed protocol [31] after the related, severely
restricted number of steps for different step sizes. We consider higher-order terms to the soon
overstrained approximation building on the work of [36]. In parallel, we experimentally confirm
the essentials by further investigating our results [38], which already lead into a regime where
the refined theory is required. Finally, we develop a novel protocol for a QW, based on a scheme
from the field of quantum information processing using photon kicks [39, 40], to overcome
these restrictions and to allow in principle for hundred(s) of steps, extendable to QWs in higher
dimensions.

The paper is structured as follows. In section 2, we give a theoretical description of
the QW as it has been realized in our experiment, similar to the original proposal [31], and
analyze issues concerning non-orthogonality of the position states. In section 3, we describe
the experimental method of realizing the necessary operations of the QW and analyze the
limitation of the position space to the LDR of the optical dipole force. In section 3.5, we describe
the experimental methods of ion state detection. In section 4, we describe the experimental
procedure, in particular the determination of the relevant parameters. In section 5, we summarize
the results and limitations of the implementation of the QW. Finally, in section 6, we propose
the implementation of the shift operator with short laser pulses (photon kicks) and the extension
to higher dimensions.

2. Theoretical considerations

In the following, we give a theoretical description of the discrete QW on a line as it is realized
in our proof-of-principle experiment for the first three steps.

Consider a Hilbert space vector

|ψ〉 ∈H=Hcoin ⊗Hmotion. (1)

Hcoin denotes the coin space with basis states

|H〉 =

(
1

0

)
, |T 〉 =

(
0

1

)
, (2)

encoding the coin states, Heads and Tails.Hmotion is the infinite-dimensional phase space, related
to a harmonic oscillator. We encode the discrete positions as coherent states

|αk〉 = e−|αk |
2/2

∞∑
n=0

αn
k

√
n!

|n〉, (3)

where k ∈ Z and αk = k ·1α with1α ∈ C. The states |n〉 denote the (orthonormal) Fock states.
For the QW, the distance |1α| between neighboring positions in phase space is of importance,
whereas the argument of the complex number1α can be chosen to be constant for all steps and
is therefore irrelevant.

Concerning the notation of the position states, we will use the following convention.
Ideally, the position states are coherent motional states |αk〉, as described above. In the
experiment the position states will contain a small amount of motional squeezing (section 4.1).
These states will be denoted by |̃αk〉. Additionally, whenever necessary, we will distinguish
between position states generated in a numerical simulation, |̃αS

k 〉, and experimentally, |̃αE
k 〉.

Further, we will generally use the superindices S and E to distinguish between simulation and
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experiment, whenever necessary. For the simulation we will use 3SB (see section 3.4.2) if not
stated differently.

Ideally, the initial state of the QW is chosen to be

|ψ0〉 = |T 〉 ⊗ |α0 = 0〉. (4)

Each step of the QW is described by the subsequent application of the coin operator C and the
shift operator S. Thus the state after N steps is given by |wN 〉 = (S · C)N

|w0〉.
The coin operator C is defined as

C = R
(π

2
, φ
)

=
1

√
2

(
1 eiφ

−e−iφ 1

)
⊗ 1motion, (5)

according to

R(θ, φ)=

(
cos(θ/2) eiφ sin (θ/2)

−e−iφ sin (θ/2) cos (θ/2)

)
⊗ 1motion. (6)

From the initial state |ψ0〉, the operator C with φ being arbitrary, but equal for every
application of C , leads to an asymmetric QW (figure 1). A symmetric QW can be realized
with the coin operator for the first step being R(p/2, φ) and for all following steps being
R(π/2, φ +π/2) (with φ arbitrary). In that case, the first coin toss can be interpreted as the
initialization of the coin state such that all following coin tosses act symmetrically on it.

The shift operator S is defined as

S = |T 〉〈T | ⊗ D(1α)+ |H〉〈H | ⊗ D(−1α), (7)

with D(1α)= exp(1α · a†
−1α∗

· a) being the displacement operator and a†, a the
corresponding raising and lowering operators.

In contrast to a typical QW,5 the position states |αk〉 are not orthogonal. The step size |1α|

determines the overlap of the position states, 〈αk|αl〉 = exp(−(k − l)2|1α|
2/2). If the state of

the walker after N steps is |ψN 〉 =
∑N

k=−N (c
T
k |T 〉|αk〉 + cH

k |H〉|αk〉), the probability of finding
the walker in position |αL〉 is given by

P(αL, ψN )= 〈ψN |(1 ⊗ |αL〉〈αL |)|ψN 〉

=

∣∣∣∣∣
N∑

k=−N

cH
k · 〈αk|αL〉

∣∣∣∣∣
2

+

∣∣∣∣∣
N∑

k=−N

cT
k · 〈αk|αL〉

∣∣∣∣∣
2

. (8)

Thus only if the step size |1α| is large enough such that the overlap between different position
states remains negligible, the above probability is given by the coefficients cH

L and cT
L only. In

figure 2, the probability distributions after 100 steps for QWs with different step sizes |1α|

are illustrated. We find that for |1α|> 2, where the position states contain a negligible overlap
of |〈αk|αk+1〉|

2 6 e−4, the probability distribution shows the shape of an orthogonal QW [4]. For
smaller values of |1α| the probability distributions are smeared out due to the increased overlaps
between the position states. As |1α| approaches zero, the probability distribution approaches a
Gaussian shape. The mean distance of the walker from the origin, which is given by the standard
deviation

σN =

√
〈k2〉N − 〈k〉

2
N (9)

5 In the sense that the position states are orthogonal, which has to our knowledge been assumed in the vast majority
of publications concerning QWs, so far.
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Figure 1. The asymmetric QW on a line. (a) Schematic diagram of the QW.
Starting at the position with index 0, the walker tosses a coin and does a shift
to the position index 1 (−1) for the coin showing Tails (T ) (Heads (H )). If the
coin is in a superposition of T and H , the walker shifts into both directions
simultaneously, taking the part related to T to position 1 and the one related to
H to position −1. Further coin tosses from T (H ) cause superposition states
with different relative phases, i.e. H + T and H − T , respectively. The relative
phases allow for interferences of the wave function between different paths.
The first interference occurs during the third step, taking the walker from the
state ψ2 to ψ3. At position 0 the coin toss results in constructive (destructive)
interference for T (H), illustrated by the bold (dashed) arrow for the subsequent
shift. (b) We implement the QW with a trapped ion, where the position space
is encoded into the co-rotating phase space (Re(α), Im(α)) equation (23) of the
axial normal mode of motion. The positions k are represented by coherent states
|αk〉, which are aligned along a line in the co-rotating phase space. Two electronic
(hyperfine) states of the ion encode the coin states. The transition from position
|αk〉 to |αk±1〉 is achieved via two subsequent displacements, each followed by a
pulse exchanging the coin states (see figure 9). (c) Probability distribution of the
walker in position space after three steps, under the assumption that the position
states are orthogonal. The black (white) filled boxes represent the contributions
of the wave function related to |T 〉 (|H〉). The asymmetry between the position
state probabilities P(α1, ψ3)= 〈ψ3|(1 ⊗ |α1〉〈α1|)|ψ3〉 and P(α−1, ψ3) is due to
the interferences indicated by the bold and dashed arrows in (a).
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Figure 2. Characteristics of the probability distribution for asymmetric QWs of
different step sizes |1α|. (a) Position probabilities P (αk, ψ100) after N = 100
steps. The probabilities are normalized to

∑
k P (αk, ψ100)= 1. For |1α|> 2

the position states are approximately orthogonal and therefore the probability
distribution shows the shape of an orthogonal QW [4]. In particular, the
probabilities for positions |αk〉 with odd index k vanish. For |1α| = 1 the
probability distribution is smeared out and all position states are populated.
However, the characteristic peaks around k = 70 are still prominent. For |1α| =

0.5 the probability distribution does not feature the main peak around k = 70 any
more. For |1α| = 0.1 the probability distribution approaches a Gaussian shape.
(b) Standard deviation σN (9) as a function of N for QWs with different step
sizes |1α|. After a few initial steps the standard deviation scales linearly in N ,
i.e. σN = v(|1α|) · N . For |1α| = 0.1 already the initial state |ψ0〉 of the walker
is considerably spread out over the position states |αk〉 such that the standard
deviation differs significantly from zero. The linear scaling becomes evident for
N & 60. (c) Scaling factor v(|1α|) of the standard deviation for different step
sizes |1α|. For |1α|> 2 the scaling factor is larger than 99% of the asymptotic
value (v(|1α| → ∞)= 0.457), which is the scaling of a QW with orthogonal
position states. In our experiment we set the step size to |1α| ≈ 1, which results
in a scaling factor of 89% of the asymptotic value.

with

〈 f (k)〉N =

∑N
k=−N f (k) · P(αk, ψN )∑N

k=−N P(αk, ψN )
(10)

for any function f (k), grows slower with N for smaller values of |1α|. This is because the lower
the value of |1α|, the less the shift operator S actually changes the state of the walker. However,
for every realization of |1α| the average distance of the walker from the origin scales linearly
with the step number N , i.e. rN ≡ v(1a) · N , after a certain number of steps, as depicted in
figure 2(b). The asymptotic scaling for the limit |1α| → 0 has not been investigated yet.
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In our experiment we set the step size to |1α| ≈ 1. In this case, the overlaps between the
position states amount to | 〈αk|αk+1〉 |

2
= 1/e. The characteristic of the probability distribution

after 100 steps (figure 2(a)) is still close to that of |1α|> 2 and thus an orthogonal QW.
Ideally, with the initial state |ψ0〉 and φ = 0 (5), three steps of the asymmetric QW lead to

the state

|ψ3〉 =
1

√
8
|T 〉 ⊗ (−2|α1〉 + |α3〉 − |α−1〉)+

1
√

8
|H〉 ⊗ (|α−3〉 + |α1〉). (11)

The probabilities of finding the walker in the coin state |H〉 or |T 〉 after three steps are
given by PH (ψ3)= 〈ψ3|(|H〉〈H | ⊗ 1)|ψ3〉 and PT (ψ3)= 〈ψ3|(|T 〉〈T | ⊗ 1)|ψ3〉. Their ratio

PH (|ψ3〉)

PT (|ψ3〉)
=

1 + e−8|1α|
2

3 − e−8|1α|2
(12)

amounts to ≈ 1/3 for |1α|> 1.

3. Implementation of the quantum walk (QW)

3.1. System and definitions

For the experimental implementation we confine a single 25Mg+ ion in a linear Paul trap [41].
The motional frequency related to the confinement in the axial direction of the trap is set to
ωz = 2π × 2.13 MHz and in the radial directions to xx ≈ xy ≈ 2p × 5 MHz. We define two out
of 12 electronic states of the hyperfine ground state manifolds [38] (figure 4)

|H〉 ≡ |
2S1/2, F = 2,m F = 2〉,

|T 〉 ≡ |
2S1/2, F = 3,m F = 3〉

(13)

as the coin states. Further, we will use the state

|A〉 ≡ |
2S1/2, F = 2,m F = −2〉 (14)

in the detection procedure. To lift the degeneracy within each hyperfine manifold, we apply a
magnetic field inducing a Zeeman shift with an energy separation related to xZm ≈ 2p · 3 MHz
between neighboring states. The energy difference (including the hyperfine splitting) between
|H〉 and |T 〉 amounts to a frequency of xcoin = 2p × 1.77 GHz.

Our realization of the QW consists in the application of a sequence of laser and
radiofrequency (RF) pulses to (1) initialize the ion’s electronic and motional state, (2) to
implement the QW and (3) to read out the final state via photon scattering. The experiments are
repeated of the order of 1000 times for each set of parameters to obtain the required statistical
relevance. A concise discussion of these tools in a generic context can be found in [42] and [43].

3.2. State initialization

At the beginning of each experiment the ion is prepared in the coin state |T 〉 with a fidelity
>0.99 by optical pumping [44], while the axial mode of motion is cooled close to the ground
state by Doppler cooling (n ≈ 10) [45] and subsequent sideband cooling (n < 0.03) [44]. The
phase space of the axial mode of motion is used to encode the position of the walker. The radial
modes are Doppler cooled (n ≈ 4), which enables a sufficient decoupling from the axial degree
of freedom.
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Figure 3. Schematic diagram of the operations required for the implementation
of the QW. (a) Implementation of the coin operator R(θ, φ) (6). Left: the gray
boxes represent a side view of two out of four electrodes of the Paul trap.
The black dot between them depicts the trapped ion. We apply an RF field
via an antenna (below the gray boxes), driving coherent transitions between the
coin states |T 〉 and |H〉. The straight solid lines represent the phase fronts of
the RF field. Right: in our protocol of the QW we apply R(θ =

π

2 , φ)-pulses
(φ = const), rotating the state vector (Bloch representation) of |ψcoin〉 by 90

◦

from
|T 〉 (|H〉) to |H〉 + |T 〉 (|H〉 − |T 〉). (b) State-dependent optical dipole force for
the implementation of the shift operator S (7). Left: we apply two laser beams,
R1 and R2, with a frequency difference ω1 −ω2 = ωL = ωz − δ, perpendicular
in polarization and beam direction. The effective wave vector is k = kez, pointing
in the axial direction z. Right: this creates a walking standing wave and related
state-dependent ac-Stark shifts on the coin states |H〉 and |T 〉, providing state-
dependent oscillating forces FT (FH ) (solid sinusoidal lines) acting on the ion in
the z-direction with frequency ωL .

3.3. The coin operator

We drive coherent transitions between the coin states by applying an RF field for a duration
t with frequency ωcoin (figures 3 and 4) [42]. This implements the operator R (θ, φ) (6) with
h =� · t and �= 2p × 100 kHz, the Rabi frequency of the transition. The phase φ for the
first pulse of each experimental cycle is arbitrary. For every following pulse the phase φ is
set identically with respect to the first pulse. The duration of one R(π, φ)-pulse amounts
to Tπ = 5 ls. The coherence time (drop of oscillation contrast below 50%) for the RF field
exceeds several tens of milliseconds [38]. The duration of a single experimental cycle (without
initialization and detection) of the QW with three steps amounts to 150 ls (figure 10). Therefore
the dephasing of the coin remains small. Spin-echo sequences [42], which are included in the
QW pulse sequence (figure 10), further reduce the dephasing.

3.4. The shift operator

Ideally, we encode the positions of the QW into coherent motional states |αk〉 of the ion’s axial
harmonic motion. We manipulate the motion by implementing the shift operator S (7) via the
application of a coin-state-dependent optical dipole force (see figure 3(b)). In the following we
describe this method and its limitations.
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Figure 4. Schematic diagram of the relevant electronic and some of the lowest
motional energy levels (not to scale) of 25Mg+ and the transitions used for the
QW experiment. A magnetic field, pointing in the direction of the laser beam
R1, provides a Zeeman splitting of the hyperfine levels and the quantization
axis of the system. The coin states are encoded in |

2S1/2, F = 3,mF = 3〉 = |T 〉

and |
2S1/2, F= 2,mF= 2〉 = |H〉. Laser D, driving a closed cycling transition,

in good approximation independent of the motional level |n〉, is used to
optically pump the electronic state into |T 〉, for Doppler cooling of all motional
modes [45] and readout of the internal state (see section 3.5) [42]. The pair
of laser beams B R and R2 is used to drive a two-photon stimulated Raman
transition on the red sideband of the coin state transition for sideband cooling
of the axial motional direction [44] and on the blue sideband (BSB, shown
here) for the readout of the motional state (see section 3.5). The laser beams
R1 and R2 drive a two-photon stimulated Raman transition providing the coin-
state-dependent optical dipole force (figure 3(b)). Additionally, we apply an
RF to drive coherent transitions between electronic states, independent of the
motional state (figure 3(a)). With the RF we implement the coin operation and the
transition via several steps from |H〉 to |A〉 = |

2S1/2, F = −2,m F = 2〉 required
for the readout of the motional state (see section 3.5).

3.4.1. Experimental tools. The initial motional state after sideband cooling is close to the
ground state |n = 0〉 (n < 0.03). We apply a two-photon-stimulated Raman transition between
the coin states by applying two laser beams (R1, R2) (figures 3(b) and 4), at a detuning of
1= 2π × 80 GHz from the P3/2 state manifold and a fixed phase relation [42]. The frequency
difference between R1 and R2 amounts to

ωL = ω1 −ω2 = ωz − δ, (15)

with δ = 2π × 100 kHz. The effective wave vector is k1 − k2 = kez, pointing into the
axial direction (figure 3(b)). This allows for two-photon stimulated Raman transitions
|T 〉|n〉 ↔ |T 〉|n + 1〉 and |H〉|n〉 ↔ |H〉|n + 1〉 (∀n). In a simplified picture the two laser beams
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provide a walking standing wave causing a state dependent ac-Stark shift. This yields a coin-
state-dependent force (FT , FH ), proportional to the spacial gradient of the walking wave and
oscillating with frequency ωL . The ratio of the forces acting on the coin states amounts to
FH/FT ≈ −2/3. The polarizations and intensities of the laser beams are adjusted such that the
time-averaged ac-Stark shift for pulse durations T � 0.5 ls is negligible [46]. Thus application
of the dipole force does not change the relation between the relative phase of the coin states
and the phase of the RF, which implements the coin operator. The effective wavelength of the
walking wave amounts to λ≈ 200 nm. With the width of the axial ground-state wave function
of z0 ≈ 10 nm this results in a Lamb–Dicke parameter of η = z0 × 2π/λ= 0.31 [42].

3.4.2. Description of the dynamics. We consider the following Hamiltonian describing a two-
level system coupled to a harmonic oscillator and interacting with a classical light field [42]:

H=Hcoin +Hmotion +Hinteraction

=
h̄

2
ωcoinσz + h̄ωz

(
a†a + 1

2

)
+ h̄�D cos(k · z −ωL t +φ0)

=
h̄

2
ωcoinσz + h̄ωz

(
a†a + 1

2

)
+

h̄

2
�D(e

i(η(a+a†)−ωL t+φ0) + h.c.), (16)

where �D =�D(|T 〉〈T | −
2
3 |H〉〈H |) with �D being the coupling factor and σz the Pauli z-

matrix. The dynamics have been investigated for many applications in QIP [47, 48] (in the
LDA, see below), for the simulation of nonlinear optics [49] and in the context of mesoscopic
entanglement [36, 37]. In the interaction picture, with the free Hamiltonian beingHcoin +Hmotion,
the interaction Hamiltonian can be written as

HI (t)=
h̄

2
�D ⊗

∞∑
m=0

∞∑
n=0

|m〉〈m|eiη(a+a†)
|n〉〈n|

×
(
ei((m−n)ωz−ωL )t+iφ0 + (−1)|m−n| ei((m−n)ωz+ωL )t−iφ0

)
. (17)

We apply the dipole force with a small detuning of δ = ωz −ωL = 2π × 100 kHz, such that
the terms corresponding to first-sideband transitions, |n〉 ↔ |n + 1〉, rotate slowest and thus
dominate. However, we also consider contributions up to the third sideband, |m − n| = 3, an
approximation we refer to as 3SB (figures 6, 8 and 12).

When considering only the slowest rotating terms, i.e. applying the usual rotating-wave
approximation (RWA), the interaction Hamiltonian is reduced to

HRWA
I (t)=

h̄

2
�D ⊗

∞∑
n=0

(
〈n + 1|eiη(a+a†)

|n〉ei(δt+φ0)|n + 1〉〈n|

− 〈n|eiη(a+a†)
|n + 1〉e−i(δt+φ0)|n〉〈n + 1|

)
. (18)

For states with k
√

〈z2〉 = η
√

〈(a + a†)2〉 � 1, we can approximate 〈n + 1|eiη(a+a†)
|n〉 ≈

iη
√

n + 1 [43]. That is, the potential providing the dipole force changes linearly over the
extension of the wave function. We can then simplify the interaction Hamiltonian to

HLD
I (t)=

h̄

2
�D ⊗ iη

(
a† ei(δt+φ0) − a e−i(δt+φ0)

)
. (19)
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This is the Lamb–Dicke approximation (LDA) [42] or the linear approximation, respectively. In
the following, we set h̄ = 1 and φ0 = 0, as φ0 represents the initial phase relation between the ion
motion and the dipole force, which does not influence the results of the QW (see section 3.4.3).

Within the LDA, the time evolution operator is given by [50]

U (t)= |T 〉〈T | ⊗ D(α(t)) · ei8(α(t),t) + |H〉〈H | ⊗ D

(
−

2

3
α(t)

)
· ei8(− 2

3α(t),t), (20)

which is a displacement operator D(α(t)) with a phase factor, where the phase amounts to

8(α(t), t)= Im

(∫ t

0
dτ α∗(τ )

dα(τ)

dτ

)
. (21)

The factor 2/3 in the displacement operator for the Heads part results from the difference of the
state-dependent dipole force, FH/FT = −2/3 (see figure 3). The complex parameter appearing
in the displacement operator and in the phase amounts to

α(t)=
η�D

2
·

∫ t

0
eiδt dt = −i

η�D

2δ
· (eiδt

− 1) (22)

and corresponds to a circular trajectory in a co-rotating phase space, given by the interaction
picture as (

Re(α(t))

Im(α(t))

)
=

(
cos(ωzt) sin(ωzt)

− sin(ωzt) cos(ωzt)

)(
1

2z0
〈z〉 (t)

z0 〈p〉 (t)

)
, (23)

with 〈z〉(t) and 〈p〉(t) being the expectation values of position and momentum.
For each coin state, the motional wave function is coherently displaced along a circular

trajectory in the co-rotating phase space (figure 6). The circular shape of the trajectory is caused
by the dipole force being applied with a detuning δ relative to the oscillator frequency. Thus the
relative phase between dipole force and oscillation of the ion evolves in time as φD(t)= δ · t .
After a duration of Tπ = π/δ of driving the motional state and increasing its amplitude, the
relative phase amounts to φD(Tπ)= π and therefore the dipole force starts to decelerate the
oscillation of the ion. After a duration of T2π = 2π/δ the coherent state returns to its initial
location in the co-rotating phase space. The total acquired phase of the motional state, which
equals the enclosed area of the trajectory [47], amounts to

8T = π

(
η�D

2δ

)2

(24)

for |T 〉 and 8H = (4/9) ·8T for |H〉.
The nonlinearity of the potential causing spatial variations of the dipole force can

be described by the absolute values of the transition matrix elements, i.e. �n+1,n = 〈n +
1| exp(iη(a + a†))|n〉 (figure 5). For small Fock state numbers n they remain close to the
approximative results within the LDA (where the potential is linear in z). Close to n = 8 ≡ g1

(for η = 0.31) they start to significantly deviate from that approximation. In particular, the
transition matrix elements feature a maximum value at g1. The excitation of motion via the
dipole force ceases at n = 37 ≡ g2, due to |�38,37| ≈ 0. It therefore represents an upper bound
for the motional excitation with a dipole force applied close to resonance. (Applying the dipole
force with a frequency ωL = 2 ·ωz would allow populating higher Fock states, but since the
overall time evolution is then described by a squeezing operator, it cannot be used for the
implementation of a QW based on coherent displacements, following [31].)
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Figure 5. Normalized Fock-state transition rates |�n+1,n|/|�1,0|= |〈n +1|

exp(iη(a + a†))|n〉| (18) for a Lamb–Dicke parameter η = 0.31 (experimental
value) and η = 0.001 (deeply within the LDR). As long as |�n+1,n|/|�1,0| ≈

η
√

n, the force is constant over the ion’s motional extension. The time evolution
is then described by a displacement operator (20), preserving the shape of
coherent states. As the motional amplitude |α| =

√
〈n〉 increases, the force starts

to remarkably change over the oscillating range of the wave function leading
to motional squeezing. The Fock state at which the matrix element is maximal,
i.e. n = 8 ≡ g1 for η = 0.31, can be considered as the threshold above which
severe motional squeezing of coherent states starts. The motional amplitude does
not increase by the application of a continuous detuned force (see figure 6).
Motional states up to g2 for η = 0.31 can be created—with an increasing amount
of squeezing—by applying the dipole force resonantly (figure 7) or by step-wise
excitation (figure 8).

Figure 6 presents the results of our numerical simulations of the time evolution, comparing
the three different approximations 3SB, RWA and LDA. Starting in the motional ground state,
the trajectory in the co-rotating phase space first follows the circular evolution, as long as the
amplitude remains small, i.e. 〈n〉< g1. This regime can be well described by the LDA (with
the driving potential being linear in z). As the amplitude of the motional state approaches g1,
the driving potential becomes sufficiently nonlinear to severely affect the subsequent evolution.
The amount of displacement per time interval is substantially reduced, as the transition rates
|�n+1,n| decrease for n > g1, such that the trajectory remains in the vicinity of g1. At this point
motional squeezing occurs. The probability distribution of the wave function in the Fock state
basis becomes narrower than Poissonian, which results in a squeezed shape of the corresponding
Wigner function. The relative phase between the dipole force and the oscillation of the ion
changes faster than in the linear case. Thus the squeezed wavefunction reaches the origin of the
phase space after a time significantly shorter than 2π/δ. The dependence of the return time and
the amount of squeezing on the maximal motional amplitude severely affect an implementation
of a QW with position states outside the LDR, following the scheme described in [31]. However,
in section 6 we propose an alternative protocol for the implementation of the shift operator that
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Figure 6. Numerical simulation of the ion’s trajectory in co-rotating phase space
(23) driven by the dipole force for the three relevant approximations 3SB (17),
RWA (18) and LDA (19). The initial state is at the origin (|α0 = 0〉). The thin
concentric lines represent contours of its Wigner function W (at W> = 0.6 and
W< = 0.3). The bold dotted line represents g1 (figure 5). The thin circular
trajectory with dots represents the result of the simulation within the LDA.
The dots on the trajectory depict the positions after t = 0, 0.5, . . . , 10 ls. The
final state, reached after T2π = 2π/δ = 10µs, equals the initial one, up to a
phase factor. The bold trajectory represents the result within the RWA, taking
nonlinearities of the dipole force into account (figure 5). The dots on the
trajectory again depict the position at the times t = 0, 0.5, . . . , 10 ls. Starting
from the origin, the trajectory is identical to the one within the LDA. In
the vicinity of g1 the trajectories start to deviate. The acceleration of the ion
ceases at a certain amplitude, the state gets squeezed and then returns to the
origin after a duration shorter than T2π . The spiraling trajectory, which follows
the one within the RWA, represents the results within 3SB. Here terms of
higher frequencies in the Hamiltonian are taken into account. The final Wigner
function is almost identical to the one in the RWA and is therefore not shown.
Parameters: �D = 2π × 1.2 MHz, ωL = 2π × 2.03 MHz, ωz = 2π × 2.13 MHz,
η = 0.31 and t ∈ [0, 10] ls.

circumvents this restriction. The faster rotating terms, which are taken into account in the 3SB
approximation, cause additional modulations of the trajectory with low amplitudes and high
frequencies (2ωz + δ) and (3ωz + δ), respectively.

Further motional excitation (up to g2) can be realized either by applying the dipole force
resonantly (figure 7) [49] or by the repeated off-resonant application of a weak dipole force
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Figure 7. Numerical simulation (3SB) of a resonant (δ = 0) excitation from
the motional ground state, trajectory (gray horizontal line) and contours of
the Wigner function W (black: W = 0.1, gray: W = −0.1) for increasing
durations t = {0, 1.5, 2, 4, 6, 8} ls. Starting from the ground state, the dipole
force continuously displaces the ion in good approximation to coherent states
along the real axis up to g1 (dotted circle). Further excitation comes along
with severe motional squeezing. Amplitudes higher than g2 are not considerably
populated, due to the almost vanishing matrix element �37,38 at g2 (dash-dotted
circle) (figure 5). As a consequence, at g2 the wave function gets reflected in the
sense that the amplitude gets decreased again. The interference of the accelerated
and the decelerated (reflected) part of the wave function is reflected in the Wigner
function, which shows concentric lines of positive and negative values in the
populated area of the rotating phase space. Parameters: �D = 2π × 2.0 MHz,
ωL = ωz = 2π × 2.0 MHz and η = 0.3.

with duration π/δ and constant time delays between the pulses (figure 8). However, in either
way severe motional squeezing occurs as the amplitude approaches and becomes larger than g1.

3.4.3. Implementation of the shift operator. We implement several shifts into a certain
direction in the co-rotating phase space by a synchronized application of dipole force pulses.
Switching the dipole force is realized by acousto-optical modulators (AOMs), refracting the
laser beams R1 and R2 into the Paul trap [42]. As the laser and the electronic oscillator driving
the AOMs are continuously on during the whole experiment, the phase relation between the
dipole force and the motion of the ion continuously evolves in time as φD(t)= δ · t even when
the optical dipole force is switched off. Therefore, after the first pulse of the dipole force, the
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Figure 8. Numerical simulation (3SB) of the ion’s trajectory in the co-rotating
phase space during a stepwise excitation. (a) The first dipole force pulse (inlay)
displaces the ion from the ground state to |̃α1∗〉 (which is not the position
state |̃α1〉, compare figure 9) along trajectory τ1. During the pulse, the relative
phase between the dipole force and the oscillator motion increases to φD = π .
The phase difference further increases after the dipole force is switched off
(section 3.4.3). After the duration t = π/δ, it amounts to φD = 2π . Applying
now a second dipole force pulse (inlay) displaces the ion to |̃α2∗〉 along trajectory
τ2. (b) Stepwise excitation as described above, with eight steps, passing the
threshold g1. As the state passes g1, the trajectory during each dipole force pulse
follows the opposite direction of rotation (counter-clockwise). In this regime (in
particular, close to g2) the time evolution can be approximated by a displacement
operator as in (20) parameterized with α(−t) [49]. The contours of the final
Wigner function show the strong motional squeezing. In addition, due to the
dependence of the return time on the amplitude (cf figure 6) the trajectory is
on average not oriented along the horizontal axis. This is the case also for the
protocol of the three-step QW (figure 10), but does not affect its performance.
Parameters: �D = 2π × 0.4 MHz, ωz = 2π × 2.0 MHz, δ = 2π × 100 kHz
and η = 0.3.

relative phase φD(t) and thus the direction of the displacement caused by the following dipole
force pulse depend on the intermitted delay. We apply pulses of the duration T QW

D ≈ π/δ = 5µs
and mutual delays of even multiples of T QW

D (see timing in figure 10) such that the phase
difference evolves by multiples of 2π and the displacements are concatenated along a line in
the co-rotating phase space (figure 8).

However, the motional states corresponding to |H〉 and |T 〉 acquire different phase factors
8H , 8T (24) during each displacement. To compensate for these coin-state-dependent phases,
we implement the shift operation of the QW as a combined pulse, which consists of two dipole
force pulses, each followed by an R(π, 0)-pulse (figure 9). In this scheme each coin state
acquires the sum of the phase factors,8T +8H , which therefore turns into a global phase factor
not affecting the QW. A schematic diagram of the overall pulse sequence for the QW is depicted
in figure 10.

For the implementation of the QW the following is crucial. After a step fulfilling the
operation |T 〉|̃αk〉 → |T 〉|̃αk+1〉, the subsequent coin toss and shift operation have to ensure
the operation |H〉|̃αk+1〉 → |H〉|̃αk〉, i.e. the motional state |̃αk+1〉 must be transferred back to
the previous state |̃αk〉. This must be fulfilled for all k simultaneously (see figure 1). In order
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Figure 9. Numerical simulation (3SB) of the trajectories related to the ion’s
coin states |T 〉 (bold trajectory) and |H〉 (thin trajectory) during step 1 of the
QW (figure 10). After the coin operation the ion’s state is |ψ〉 = (|T 〉 + |H〉)|̃α0〉

(where |̃αk〉 denotes the possibly slightly squeezed version of |αk〉). The shift
operation S is implemented by a combined pulse. The first dipole force pulse
displaces the motional state related to |T 〉 (|H〉) to |̃α1∗〉 (|̃α−1∗〉). As the forces
are of different amplitudes, the two different trajectories lead to different phase
factors, related to 8T , 8H (24). Subsequently the coin states are exchanged
via an R(π, 0)-pulse without affecting the motional states, and after a specific
waiting duration (figure 10) a second dipole force pulse is applied, displacing
the motional states to |̃α−1〉 (|̃α1〉). A second R(π, 0)-pulse exchanges the
coin states again, such that the resulting state of the ion is |ψ1〉 = exp(i(8T +
8H )) · (|T 〉|̃α1〉 + |H〉|̃α−1〉), accumulating only a global phase during the shift
operation. The combined-pulse scheme further provides equal step distances
in both directions. Parameters: �D = 2π × 0.24 MHz, ωz = 2π × 2.13 MHz,
δ = 2π × 100 kHz and η = 0.31.

to reach the state |̃αk〉, the duration TD and detuning δ of the dipole force have to be adjusted
properly (in the LDR to TD = π/δ), implementing semi-circular trajectories in the co-rotating
phase space. But since the return time is reduced outside the LDR (figure 6), the shift operation
implements the transition from |̃αk+1〉 to some other state |̃αk2〉 6= |̃αk〉. The reduced overlap
〈̃αk2 |̃αk〉< 1 leads to reduced interference during the succeeding coin toss (figure 1).

In principle, the shift operator can alternatively be implemented by the dipole force
on resonance (δ = 0). However, in that case, small variations of ωL and ωz have a much
stronger influence than in the detuned case. This can be seen by comparing the difference
in displacement, i.e. |α(δ, t)−α(δ + ε, t)|, for a fixed duration t and a fixed difference in the
detuning, ε, using equation (22) for different values of δ, where α(δ, t) fulfills equation (22) for
the detuning δ.

3.5. State readout

The state after three steps of the QW is

|ψ̃3〉 =
1

√
2
(|T 〉|MT 〉 + |H〉|MH 〉), (25)
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Figure 10. Schematic diagram of the pulse sequence for the implementation
of three steps of an asymmetric QW. The first line (top) illustrates the overall
pulse sequence for one experimental cycle, in chronological order from left to
right. We initialize the ion in the state |ψ0〉 = |T 〉|α0〉. Then we apply the pulse
sequence for the QW, creating the state |ψ̃3〉 (25), and finally a pulse sequence
to read out the coin or motional state (section 3.5). The pulse sequence for the
QW consists of three subsequent applications of coin C (figure 3) and shift S
(figure 9) operations, implementing the three steps of the QW as illustrated in
the second line. The third line depicts the pulses implementing one coin and
one shift operation. The phase φ (not depicted) is equal for every RF pulse
(section 3.3). The sequence of all RF pulses incorporates a spin-echo scheme,
reducing dephasing of the coin states. A symmetric QW can be implemented
with the same scheme, but with the phase of the initial RF pulse differing by
π/2 from the (equal) phases of all other RF pulses. The timing of the pulses, in
particular for the dipole force, is given by the parameter TD, as illustrated in the
bottom. On the one hand, the phase difference between the off-resonant dipole
force and the ion oscillation must be the same for each dipole-force pulse of one
cycle of the QW. This ensures the position states to be ordered along a line in
the co-rotating phase space (figure 1). We achieve this by separating the pulses
in time by even multiples of TD, which corresponds to an evolution of the phase
difference by multiples of 2π . On the other hand, the overlap of the interfering
motional states (figure 1) should be maximized. The theoretical optimal value
within the LDR would be TD = π/δ. We determine the optimal value of TD,
denoted by T QW

D ≈ π/δ, experimentally to account for the nonlinearity of the
dipole force as well as for experimental imperfections (figure 12).

with |MT 〉 =
∑3

k=−3 cT
k |̃αk〉 and |MH 〉 =

∑3
k=−3 cH

k |̃αk〉 (cf equation (11)). The basics for
the readout are state-of-the-art techniques in quantum information processing with trapped
ions [42, 51].

We read out the coin state by driving the cycling transition |T 〉|n〉 → |2P3/2, F = 4,m F =

4〉|n〉 (figure 4) for a duration of 20 ls and detect scattered photons with a photomultiplier. This
transition is in good approximation independent of the motional state. The average number of
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detected photons is proportional to the probability PT (ψ̃3), related to the coin state |T 〉 [42]. The
probability PH (ψ̃3) is accessible via the application of an R (π, 0)-pulse before the coin-state
detection.

To characterize the motional states of |ψ̃3〉 we determine the position-state probabilities
|cT

k |
2 and |cH

k |
2. To analyze |T 〉|MT 〉, we isolate the other part, |H〉|MH 〉, by transfering

|H〉|MH 〉 → |A〉|MH 〉 using appropriate RF pulses (figure 4). The part |A〉|MH 〉 of the ion’s
state is not affected by the subsequent operations. We then apply a two-photon stimulated
Raman transition |T 〉|n〉 ↔ |H〉|n + 1〉 (∀n) using the lasers B R and R2 (figure 4), with
a frequency difference of ωL = ωcoin +ωz (BSB) for a variable duration tBSB [42]. The
corresponding Rabi frequency for each n is proportional to �n+1,n (figure 5). Finally, we
apply the coin-state detection, as described above. The average number of detected photons
is proportional to the probability [42]

PT (tBSB)=
1

2

(
1 +

∞∑
n=0

|aT
n |

2
· cos(�n+1,n · tBSB)e

−γ ·tBSB

)
, (26)

with aT
n = 〈n|MT 〉 being the coefficients of |MT 〉 in the Fock-state basis. The damping factor

γ accounts for decohering effects, mainly of the BSB operation [42]. A discrete Fourier
transform of the function PT (tBSB) allows one to access the Fock-state probabilities |aT

n |
2
=

|
∑

k cT
k 〈n |̃αk〉|

2.
We numerically simulate the QW and generate a corresponding function P S

T (tBSB) (where
the index S denotes the result of the simulation) and optimize the parameters of the simulation
in order to fit P S

T (tBSB) onto the experimental data, P E
T (tBSB) (indicated by the index E ). The

state |ψ̃ S
3 〉, generated by the simulation, respectively the Fock-state probabilities of its motional

parts, are fed into the algorithm for the discrete Fourier transform of P E
T (tBSB) to improve

the convergence of the results. The Fock-state probabilities pn (̃αk)= | 〈n |̃αk〉 |
2 of the position

states |̃αk〉 are determined separately (figure 11), using the same method.
To identify the position state probabilities |cT

k |
2 from the Fock-state probabilities of

|MT 〉, in particular to distinguish between the coefficients related to pn (̃αk) and pn (̃α−k), we
additionally apply the motional-state readout to the shifted states |ψ̃+

3 〉 = S|ψ̃3〉 and |ψ̃−

3 〉 =

S−1
|ψ̃3〉 (see equation (7) and figure 14), where S−1 is (up to a global phase) implemented by a

proper timing of the corresponding dipole force pulses.

4. Experimental procedure

4.1. Calibration of the step size |1α|

Starting from the initial state |ψ0〉 we apply 0–4 shift operations S with a dipole force duration
of TD ≈

π

δ
, exciting the motion of the ion to one of the position states |̃αk〉. Then we read

out the motional state to determine its Fock-state probabilities pn (̃αk) and the expectation
of the number operator 〈n〉 ≡ |̃αk|

2. Small deviations of the dipole force duration (see the
next subsection) do not influence the probabilities significantly. We adjust the amplitude of
the dipole force by adjusting the corresponding laser beam intensities to approximately meet
the conditions |1α|> 1 and |̃α3|

2
≡ 〈̃α3|n |̃α3〉6 9 (three well-distinguishable position states

within or close to the LDR). The Fock-state expectation values of the position states amount
to 〈n〉0 = 〈̃α0|n |̃α0〉 = 0, 〈n〉1 = 1.33, 〈n〉2 = 4.71, 〈n〉3 = 9.08 and 〈n〉4 = 13.50. The outer
position states |̃α±3〉 and |̃α±4〉 are not within the LDR. The step sizes therefore differ, reaching
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Figure 11. Fock-state probabilities pn (̃α
S
k )= |〈n |̃αS

k 〉|
2 of the simulated (3SB)

position states |̃αS
k 〉 resembling the probabilities pn (̃α

E
k ) of the experimental

position states |̃αE
k 〉. Experimentally, we apply the shift operation S (figure 9)

k times (without coin operations) to the initialized ion and read out the motional
state (section 3.5). The inlay shows the coin state probability P E

T (t) (black
squares) from the motional state readout of |T 〉|̃αE

1 〉, as an example. Each
experimental data point represents the average of 3000 realizations. A simulation
(3SB) of this procedure is optimized such that the values P S

T (t) (dotted line,
cf (26)) correspond to the experimental result for every position state |̃αS

k 〉, as
shown for |̃αS

1 〉 in the inlay. The related expectation values of the position states in
the Fock basis (main figure) are 〈n〉

S
0 = 0, 〈n〉

S
1 = 1.33, 〈n〉

S
2 = 4.71, 〈n〉

S
3 = 9.08

and 〈n〉
S
4 = 13.50. Their mutual overlaps amount to |〈αS

k |αS
k+1〉|

2
≈ 0.24.

from |̃α1| − |̃α0| = 1.15 to |̃α4| − |̃α3| = 0.66. However, due to the motional squeezing the
overlaps of all neighboring states amount to |〈̃αk |̃αk+1〉|

2
≈ 0.24< 1/e, which corresponds to the

overlap of coherent states with a step size of |1α|> 1 as assumed in the theory (see section 2).
With δ = 2π × 100 kHz and η = 0.31 the corresponding coupling strength of the dipole force
amounts to �D = 2π × 0.24 MHz. The amplitude of the corresponding dipole force amounts to
FT = (h̄g�D)/(2z0)= 2.54 × 10−21 N inside the LDR.

To estimate the amount of motional squeezing (not affecting the fidelity of our results on the
QW), we compute coherent states |αk〉 according to equation (3) with αk ≡ α̃k . We then compute
their overlaps Fk = |〈̃αk|αk〉|

2, which amount to F0 = 1.00, F1 = 1.00, F2 = 0.97, F3 = 0.90 and
F4 = 0.78.

4.2. Calibration of the dipole force duration

The duration TD of the dipole force pulses (and the related mutual delays, see figure 10) is a very
sensitive parameter for the implementation of the QW. For a given detuning δ, TD determines the

New Journal of Physics 14 (2012) 035012 (http://www.njp.org/)

http://www.njp.org/


21

relative direction of subsequent shifts in the co-rotating phase space. By altering TD we can con-
trol and maximize the overlap of the interfering parts of the wave function in the QW (figure 1).
We repeat the QW pulse sequence with increasing values of TD (figure 10) and acquire the coin-
state probabilities PT and PH via the coin-state detection (figure 12). The ratio PT /PH is an
indicator of the amount of interference. If no interference occurs, it amounts to PT /PH = 1. We
maximize the ratio by iterating to the optimal dipole force duration, denoted by T QW

D ≈ π/δ. The
nonlinearity of the dipole force, in particular the reduced return time discussed in section 3.4.2,
leads to a deviation of T QW

D from the duration π/δ, optimal within the LDA only. Additionally,
this method is suitable for implicitly determining the detuning δ to the required precision.

As illustrated in figure 12, the maximum ratio of the measured probabilities amounts
to PT /PH ≈ 3, with the related dipole force duration being defined as T QW

D . In a separate
precision measurement, averaged over 60 000 measurements the coin state probabilities at this
point amount to PT = 0.741 ± 0.002 and PH = 0.259 ± 0.001, which is close to the theoretical
predictions 0.75 and 0.25 (figure 1). At slightly different values of the dipole force duration,
TD = T QW

D × (1 ± 0.02) the coin state probabilities are approximately equal (PT /PH ≈ 1),
indicating that the overlaps and hence the interference of different parts of the wave function
vanish.

The results of a numerical simulation of this procedure within 3SB are in good agreement
with the experimental data (figure 12). Additionally, the simulation shows similar splittings
of the coin state probabilities at the dipole force durations TD = 4.6 ls and TD = 5.4 ls, for
δ = 2π × 100 kHz (figure 13). These are QWs in which the step directions of |T 〉 and |H〉 are
exchanged at each step.

The simulation also shows a high frequent modulation of the coin state probabilities as a
function of TD. This is due to the fast modulations of the trajectories in the rotating phase space,
mainly caused by |n + 2〉 ↔ |n〉-contributions of the dipole force (see figure 6).

5. Experimental results and conclusion

We implement the QW pulse sequence (figure 10) with the optimized dipole force duration
T QW

D (figure 12) and apply the motional state readout (section 3.5). The resulting Fock-state
probabilities from the corresponding simulation are illustrated in figure 14. To distinguish the
position states |̃αk〉 and |̃α−k〉, which have the same Fock state probabilities, we also apply
the motional state readout to the states |ψ̃+

3 〉 and |ψ̃−

3 〉, where after the QW pulse sequence an
additional shift operation towards higher (lower) position states has been applied. The position
state probabilities corresponding to the experimental data are illustrated in figure 15.

The experiment demonstrates the feasibility of implementing a QW with a trapped ion.
Although the number of steps is small in our experiment, the trapped-ion system clearly reveals
its strengths in the high fidelity of the results. The coin degree of freedom shows no limitation
since the pulse duration of 150 ls is well below the coherence time of O(10) ls and the
pulse protocol incorporates spin-echo schemes reducing dephasing (figure 10). However, for
implementing more steps, this should be considered. The severe limitation on the number of
steps for the implementation of the shift operator via the optical dipole force is due to the
Lamb–Dicke parameter η, since shifts in terms of the displacement operator are only possible
within the LDR (figures 5 and 6). Our comparatively large Lamb–Dicke parameter η = 0.31
allows for three well-distinguishable (|1α| = 1) steps. For a Lamb–Dicke parameter of η = 0.1,
the limit of the LDR is g1 = 85 with a corresponding maximal position state |αmax ≈ 9〉 within
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Figure 12. Coin-state probabilities in dependence of the relative dipole force
pulse duration (TD/(

π

δ
)) after the application of the QW pulse sequence

(figure 10) to the ion in state |ψ0〉, and the corresponding numerical simulations
(solid line: 3SB; dashed line: RWA). Each data point represents the average of
1500 realizations. The maximum ratio PH/PT = 1/3 indicates the asymmetry
due to interference (see figure 1). In a separate precision measurement at this
point, with an averaging over 60 000 realizations, we obtain the coin state
probabilities PT = 0.741 ± 0.002 and PH = 0.259 ± 0.001, which is close to the
theoretical predictions 0.75 and 0.25. The corresponding dipole force duration,
denoted by T QW

D , is the optimal value to perform the QW. The precise value of
T QW

D depends on the detuning δ, which is prone to slow drifts of the conditions
of the experimental setup (on a time scale of a few hours, much longer than an
experiment) and can be estimated to the required precision (for each experiment)
by this method. For other values of TD (i.e. 2% longer or shorter) the effect of the
interference vanishes, since the shift operations of the pulse sequence do not lead
to mutual overlaps of the related parts of the wave function. In this experiment
the QW pulse sequence (figure 10) contains waiting durations of 4TD instead of
2TD, which increases the sensitivity of the interference to TD and therefore allows
for a more precise estimation of the optimal dipole force duration T QW

D . The 3SB
simulation (solid line), in contrast to the RWA simulation (dashed line), contains
a high-frequency modulation of the coin state probabilities due to additionally
modulated overlap of the interfering states caused by the spiralling trajectories
during the displacements (figure 6). This is, however, not yet resolved in the
experimental data.

the LDR. This would allow for a QW with nine steps of similar fidelity, using our scheme.
Equivalently, a Lamb–Dicke parameter of η = 0.06 would allow for 15 steps. Additionally,
since in such a setup the step size is very small compared to the size of the LDR, the threshold
g1 may be less of a limitation, as it can be overcome via small steps (cf figure 8). A QW
with up to 23 steps, implemented with a dipole force on resonance (δ = 0), has recently been
demonstrated [35]. As described in section 2, a QW with effectively orthogonal position states
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Figure 13. Numerical simulation (3SB) as depicted in figure 12 for extended
values of TD. Next to the largest difference between PT (ψ̃

S
3 ) and PH (ψ̃

S
3 )

at TD ≈ 5.0 ls = π/δ, similar splittings occur at TD ≈ 4.6 ls and TD ≈ 5.4 ls.
These durations are such that subsequent shift operations displace into opposite
directions in the co-rotating phase space. That is, at odd step numbers of the QW
the shift operation acts as |T 〉|αk〉 → |T 〉|αk+1〉 and at even steps as |T 〉|αk〉 →

|T 〉|αk−1〉, and analogously for |H〉|αk〉. This creates again a QW in which the
shift directions of |T 〉 and |H〉 are exchanged at each step.

requires a step size of |1α|> 2. This reduces the number of steps within the LDR for any given
setup. Extending the number of possible steps substantially by further reducing the Lamb–Dicke
factor is a difficult task. The trap frequency ωz has to be increased and the mutual angles
of the laser beams providing the dipole force must be reduced (cf figure 3(b)). However, a
small Lamb–Dicke factor η yields a weak coupling of the light field to the motional degree of
freedom. This weak coupling must be compensated for by an increased intensity of the laser
beams. This in turn results in an increased rate of spontaneous emission [46] from the off-
resonantly excited |

2 P3/2, F = 4〉 states (figure 4) and thus in a reduced coherence time for
the QW.

6. Outlook

6.1. Implementation on the shift operator using photon kicks

In the following, we propose the implementation of the shift operator with photon kicks [39, 40],
which is substantially less dependent on the motional state and allows for the implementation
of QWs with many steps. The principle of a photon kick is to apply a π -pulse on the coin
states which is sufficiently short such that the free harmonic motion of the ion during the pulse
itself is negligible. It was shown that the change of the momentum of the ion during such
a pulse can be described by a displacement operator, allowing us to propose its application
as a building block for the shift operator of a QW. In the original protocol [39], which has
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Figure 14. Fock-state probabilities pT
n (ψ)= |〈T | 〈n|ψ〉|

2 and pH
n =

|〈H | 〈n|ψ〉|
2 of the simulated QW state |ψ̃ S

3 〉 (top), the shifted states
|ψ̃

+,S
3 〉, |ψ̃

−,S
3 〉 (center, bottom) and of the position states |αS

k 〉 (dotted lines), as in
figure 11. All simulations are computed with equal parameters (T QW

D = 4.990 ls
and the 3SB approximation). Each simulated state is in agreement with the
corresponding experimental data, as exemplarily depicted in figure 11 (inlay).
Top: |ψ̃3〉 contains a superposition of |̃α1〉 and |̃α−1〉. This causes an interference
(not related to the interference of the QW) in Fock space, resulting in high
probabilities for even (n = 0, 2, 4) and low probabilities for odd Fock states.
With the states |ψ̃

+,S
3 〉 (center) and |ψ̃

−,S
3 〉 (bottom), where the position occupa-

tions are shifted by one position, it is possible to distinguish the probabilities
corresponding to |̃αk〉 and |̃α−k〉.
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Figure 15. Position probabilities P (̃αE
k , ψ̃

E
3 ) after three steps of the asymmetric

QW. These are acquired by a discrete Fourier analysis of the data from the
motional state detection (26) of the states ψ̃ E

3 , ψ̃+,E
3 , ψ̃−,E

3 (cf figure 14). The
error bars represent the errors of the discrete Fourier analysis. The probabilities
are in agreement with the theoretical values of an asymmetric QW (see figure 1).
In particular, the difference of the probabilities P (̃αE

1 , ψ̃
E
3 ) and P (̃αE

−1, ψ̃
E
3 )

indicates the high fidelity of the implementation of the QW. The probabilities
at the positions |̃αE

−2〉, |̃αE
0 〉 and |̃αE

2 〉 remain nonzero due to the overlaps with
the neighboring position states. The probabilities due to the overlaps have been
subtracted, using the probabilities at |̃αE

±1〉 and |̃αE
±3〉 as the reference. Therefore

the remaining nonzero values are an indicator of the error of the implementation
and readout of the QW.

been realized recently [52], however, the influence of the motional state on the performance
of the photon kicks has not been considered, since the amplitudes of the motional states were
assumed to remain small. For the implementation of a QW with many steps, we have to consider
(coherent) motional states with a very large amplitude and thus have to re-assess the validity
of the above-mentioned approximation. We find that, for a given fidelity, the upper bound for
the pulse duration scales inversely with the motional amplitude, and additionally, for coherent
motional states, depends on the phase of their harmonic oscillation at the moment when the
pulse is applied. In the following, we derive an analytic bound for general states and present the
results of a numerical study for coherent motional states. With the latter we show that QWs with
up to 100 steps for a step size of |1α| = 2 should be possible with state-of-the-art technology.

Referring to [39], we start our analysis with the Hamiltonian

H=H0 +H1

=
�

2

(
σ+ ⊗ eiη(a†+a) + σ− ⊗ e−iη(a†+a)

)
+ωza

†a.
(27)

This Hamiltonian can be implemented in various ways, e.g. via direct dipole coupling,
two-photon stimulated Raman transitions or stimulated Raman adiabatic passage [39]. Each
implementation imposes different constraints on pulse duration, laser intensities, etc. In the
following, we will focus on the implementation with a two-photon stimulated Raman transition
and consider the energy levels of 25Mg+.
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In this configuration, two laser beams (Ra,Rb) resonantly drive two-photon transitions
between the coin states via a virtual state detuned from the P3/2 manifold by 1R. Each laser
beam drives only one of the two Raman branches, due to their different polarizations. In a
RWA, terms varying at optical frequencies are neglected. This is valid in our case for pulse
durations well above 1/10−15 Hz = 1 fs. Finally, an adiabatic elimination of the P3/2 states
requires |�/1R| � 1. The pulse duration Tp in our case must therefore be sufficiently longer
than 5 ps for 1R ≈ 2π × 1011 Hz and Tp�= π (see below). The effective wave vector of the
two-photon transition is k = ka − kb.

Hamiltonian (27) implements the desired displacement operator for a pulse duration of
Tp = π/�, if we neglect the perturbation H1. The time evolution operator then reads

U0(Tp)= e−iH0Tp

= cos

(
�Tp

2

)
· 1coin ⊗ 1motion − i sin

(
�Tp

2

)
· (σ+ ⊗ D (iη)+ σ− ⊗ D (−iη))

= −i (σ+ ⊗ D (iη)+ σ− ⊗ D (−iη)) , (28)

which is obtained by expanding the exponential function, splitting the series into odd and even
parts and using the properties of the Pauli matrices and displacement operators.

The shift operator itself, implementing the desired step size (i.e. |1α| = 2, see figure 2),
can be realized by the subsequent application of 2/η kicks in such a way that the displacements
D(iη) of several π -pulses add up to D(1α = iη · 2/η). This can be achieved by changing
the direction of the effective wave vector by 180

◦

for each photon kick. In practice one can
either switch between two Raman beam configurations with opposite effective wave vectors,
or implement every second π -pulse by an RF transition for which the momentum transfer is
negligible. Notably, with this protocol the step sizes for both directions of the QW are equal, in
contrast to the method of optical dipole forces used in our current experiment.

In the following, we derive a conservative estimate for the deviation from a coherent-state
displacement induced by H1. The total time evolution is

U (t)= e−iHt
= U0(t) · V (t) (29)

with V (t)= eiH0t e−iHt . Note that V (t) can be differentiated

V̇ (t)= −i eiH0tH1 e−iH0t
· V (t), (30)

leading to an equation that is formally solved by the integral equation

V (t)= 1 − i
∫ t

0
ds eiH0sH1e−iH0s

· V (s), (31)

using V (0)= 1. Now we define ε as the distance between the evolved state according to the full
Hamiltonian and the desired evolved state according to H0:

ε ≡‖ (U (t)− U0(t)) |ψ〉‖

=‖ (V (t)− 1)|ψ〉 ‖

=‖

∫ t

0
ds eiH0sH1 e−iH0s V (s)|ψ〉‖ . (32)

Approximating the last expression by the largest term of the first-order Dyson series, and
considering a motional state |ψ〉 = |H〉|α〉, gives the following error estimate for a pulse with
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duration Tp [39]:

ε ≈‖

∫ Tp

0
ds ωz1 ⊗ a†a|ψ〉 ‖= Tpωz|α|

2. (33)

Thus, for an initial state |H〉|α〉 (the coin state can be chosen arbitrarily), the pulse duration Tp

necessary to implement the displacement operator with an error smaller than ε must fulfill

Tp 6
ε

ωz · |α|2
. (34)

The scaling with |α|
−2 is, however, a rather rough estimate. This is shown by a

numerical simulation of this process, in particular considering the application of photon
kicks to (superpositions of) coherent motional states. We compute the fidelity f =

|〈H |〈α|U †
0 (Tp)U (Tp)|H〉|α〉|

2 with the initial state |H〉|α〉, a pulse duration Tp and �= π/Tp,
where the time evolution is implemented using a Runge–Kutta method. The results show that
the fidelity strongly depends on the phase of ion oscillation at the moment of the photon kick.

Demanding a fidelity of f > 0.99 and for imaginary α, i.e. at the moment of the photon
kick the ion is at the center of the harmonic potential and thus fastest, for our experimental
parameters we find that6

T =

f =0.99(|α|)= exp(−17.55 − 0.63 ln(|α|)− 0.05 (ln (|α|))2). (35)

For |α| = 200, an amplitude reached after the 100th step of a QW with |1α| = 2, the pulse
duration must be shorter than T =

f =0.99(200)= 0.21 ns.
However, applying the photon kick when the ion is at its turning point, i.e. the ion is slowest

and α is real, the scaling is less demanding. We find that

T <

f =0.99(|α|)= exp(−17.03 − 0.02 ln(|α|)− 0.1(ln(|α|))2). (36)

Most importantly, the prefactor of the term linear in ln(|α|) is much smaller than for an
imaginary α. For the 100th step, the pulse duration therefore only has to be shorter than
T <

f =0.99(200)= 2.18 ns, which is within the specifications of a fast-switching electro-optic
modulator and our current continuous-wave laser system. Timing the application of the photon
kick to the (spatial) turning points of all the coherent oscillations occurring during the QW
is possible, because we start the QW in the motional ground state and the position states are
aligned along a line in the co-rotating phase space. Thus, coherent states of different |1α| reach
their turning points simultaneously.

Given our experimental parameters, in particular the width of the ground state wave
function z0 = 10 nm, the coherent motional state of maximal amplitude, |αmax = 200〉, would
have a real-space amplitude of 〈αmax|z|αmax〉 = 4µm. At such high motional amplitudes
anharmonicities of the trapping potential must be considered. These depend on the design
of the electrodes and could be eliminated, for example by designing the Paul trap electrodes
in a hyperbolic shape [53]. Additionally, micromotion might increase the deviation from the
ideal walk, for example by reducing the overlap of the additionally oscillating motional wave
functions. However, it will remain negligible when the QW is implemented in the axial degree
of freedom of an ion in a linear Paul trap.

6 Equations (35) and (36) are the results of quadratic fits to double-logarithmic plots of pairs (Tp, |α|) for a fidelity
f = 0.99 and |α|6 10. Higher motional amplitudes were not considered due to sizable additional numerical effort.
For the following estimates, the scaling is considered to be preserved.
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A major challenge, but also an interesting research topic on its own, is the consideration
of decoherence processes, in particular the heating and dephasing of the motional state
and especially at the desired motional amplitude. Several studies—theoretical [54] and
experimental [48, 55]—have been accomplished in the past. To estimate the amount
of decoherence one can consider a Ramsey-interferometry experiment incorporating a
Schrödinger-cat state, consisting of the two outermost states |α100〉 and |α−100〉, and estimate
the expected decay of the Ramsey fringes, which has experimentally been found to scale as
exp(−d2λt) [48]. There d = |α100 −α−100|, the phase-space distance of the coherent state, t
being the duration between the creation of both states and λ representing the scaling parameter,
incorporating heating and dephasing. Using a Paul trap with hyperbolically shaped electrodes
to ensure a harmonic confinement implies a large electrode–ion distance of the order of
millimeters. This reduces heating by several orders of magnitude compared, for example, to
the setup used in [55], where the dependence of heating on the electrode–ion distance has
been investigated. Additionally, cooling the electrodes to cryogenic temperatures, which further
reduces the heating rate [55], is currently becoming state-of-the-art technology in trapped-ion
experiments. Dephasing, on the other hand, depends mainly on the stability of the trap frequency
ωz against fluctuations. We believe that much improvement is possible there by extensive use of
stabilization electronics, which has not yet been brought to the edge of the technically possible,
since large motional amplitudes have not been a major issue in most experiments. In fact,
our experiment of the three-step QW required an improved frequency stabilization, which was
achieved to a sufficient degree by a simple electronic circuit. Still to be considered is the duration
t , which, using the fast pulse protocol, is about one order of magnitude longer compared to [48].
However, the duration of the coin toss, being the constituent of longest duration in the protocol,
can be reduced to a pulse duration of less than a microsecond, in analogy to [48].

6.2. QW in higher dimensions

A QW in two or three dimensions is possible by additionally considering the motion in the
radial direction. The pulse sequence for a step of a QW is then the subsequent application of the
shift operator in each direction where each operation is preceded by a coin toss.

More possibilities and reduced technical requirements might be achieved by trapping more
than one ion and considering the collective degrees of motion in one direction. The work [56]
describes the scheme with two ions, creating a four-sided coin, where two coin states affect the
walk in the center-of-mass motional mode and the other two in the stretch mode of motion. In
particular, possibilities with the coin being initialized in an entangled state are investigated.

A photon kick, as described above, induces motion in all motional modes in the direction
of the effective wave vector k, according to the respective coin states. That is, with N ions, one
step of the QW consists of a coin operation on the 2N -sided coin and a single shift operation,
which displaces the part of the motional wave function related to each coin state into the opposite
direction in phase space of one motional mode. Particularly difficult is to assign the 2N−1 pairs of
coin states to N different axial motional modes such that for each coin state the corresponding
state-dependent force induces motion in one direction in a certain mode [57]. One possible
way to obtain the required number of motional modes is by adding ions that do not contain a
transition corresponding to the coin states and are therefore not affected by the photon kicks.
That would be in our case 24Mg ions without hyperfine structure and therefore no coin states
and no corresponding transition. With this, the implementation of a QW in four dimensions is

New Journal of Physics 14 (2012) 035012 (http://www.njp.org/)

http://www.njp.org/


29

possible using three 25Mg ions and one 24Mg ion. For more dimensions the issue arises that the
24Mg and 25Mg ions have to be arranged in such a way that for each coin state the corresponding
state dependent force induces motion in a certain mode, which has not yet been clarified.
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