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Strasbourg, France, 2 Martin-Luther Universität Halle-Wittenberg, Institut für Genetik, Halle (Saale),

Germany

¤a Current address: Institut für Pflanzengenetik, Leibniz Universität Hannover, Hannover, Germany

¤b Current address: International Space University, Illkirch-Graffenstaden, France

* gloria.volohonsky@community.isunet.edu (GV); e.marois@unistra.fr (EM)

Abstract

Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a

promising novel approach in the fight against malaria. The insect immune system itself is a

source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles

gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is

secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds

and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create

malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat

body is the main site of TEP1 expression. We generated transgenic mosquitoes that

express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity

of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic

TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the

presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein

expressed from the transgene in the fat body was taken up by hemocytes upon a challenge

with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the

cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce

parasite numbers and induce parasite melanization. We also report here the first use of

Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expres-

sion of endogenous TEP1. We found that artificial elevation of TEP1 expression remains

moderate in vivo and that enhancement of endogenous TEP1 expression did not result in

increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artifi-

cially influencing TEP1-mediated Plasmodium resistance, and contribute to further our

understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium

parasites.
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Author Summary

We examined whether the natural anti-parasitic protein TEP1 can be harnessed to gener-

ate malaria resistant mosquitoes. We report the expression pattern of genes of the TEP1
immune pathway and the effects of both exogenous and enhanced endogenous expression

of TEP1 on the development of Plasmodium in Anopheles gambiae. We found that exoge-

nous expression of TEP1 increases resistance to Plasmodium in TEP1mutants but not in a

wild type background, and that enhancing expression of endogenous TEP1 does not

increase resistance. We conclude that increased expression of TEP1 alone is not sufficient

to render mosquitoes resistant to Plasmodium.

Introduction

Malaria is a devastating disease annually infecting over 200 million people worldwide, and is a

leading cause of death in Sub-Saharan Africa [1]. The malaria-causing Plasmodium parasites

are vectored by Anopheline mosquitoes, which constitute the obligatory primary host for Plas-
modium. Out of 462 described species of Anopheles mosquitoes, about 34 are dominant vectors

of human malaria [2,3]. A. gambiae is the major vector of the most deadly parasite, P. falcipa-
rum, in Sub-Saharan Africa. Thanks to vector control and the availability of anti-malarial com-

bination therapies, estimated global malaria cases and mortality rates between 2000 and 2015

have declined by 37% and 60%, respectively, falling to approximately 440,000 deaths annually.

Despite this downward trend, the fight against malaria is complicated by the spread of genetic

resistance to insecticides in mosquitoes, and to anti-malarial drugs in Plasmodium. To prevent

a reversal in the current malaria decline, new vector control strategies need to be developed.

Vector control strategies based on genetically modified mosquitoes have been advocated

for over 15 years to complement existing anti-malaria interventions (reviewed by [4] and [5]).

Interventions based on the sterile insect technique (SIT) [6,7] or its transgenic variants, such

as the Release of Insects carrying a Dominant Lethal (RIDL) technique deployed in recent

years against the dengue vector mosquito Aedes aegypti [8,9,10], are unpractical on the vast

geographical scales of malaria transmission. Gene drive-based strategies, whereby a desired

genetic character (female sterility for population suppression, malaria resistance for population

replacement) is inserted on a selfish genetic element designed to spread throughout a target

population, have raised great interest [11,12,13] but their development has been limited by the

paucity of molecular engineering tools. Today, these prospects are regaining momentum

thanks to the advent of the CRISPR-Cas9 system, which provides a simple means to build a

gene drive construct [14,15]. Major leaps towards establishing CRISPR-Cas9 gene drive

designs for spreading malaria resistance and for population suppression have been accom-

plished in two recent studies [16,17], moving these approaches a step closer to implementa-

tion. However, the capacity to modify, or even eradicate, an entire insect species poses serious

ethical and environmental questions. While regional population suppression or eradication

appears desirable for invasive insect species such as Aedes aegypti that is not part of the native

ecosystem in most of its current range, the importance of the role that a “legitimate” species

like A. gambiae in Sub-Saharan Africa plays in its ecosystem needs to be examined. In this

case, gene drive strategies aiming at population replacement with malaria-refractory mosqui-

toes rather than population suppression may be preferred, at least as a first test of gene drive

interventions within a malaria eradication program. Therefore, candidate genes that would

confer mosquito resistance against malaria parasites need to be screened and validated for effi-

ciency in transgenic mosquitoes.
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When Plasmodium ookinetes, the motile stage of the parasite that forms in the blood meal

of female mosquitoes, traverse the mosquito midgut epithelium and reach the basal lamina fac-

ing the insect’s hemocoele, they are attacked by the mosquito’s innate immune system. This

process has been mostly studied in A. gambiae mosquitoes in combination with the murine

parasite P. berghei, which offers a convenient model to study Anopheles—Plasmodium interac-

tions in the laboratory [18]. The killing of ookinetes at the basal lamina is associated with direct

binding of mosquito Thioester protein 1 (TEP1) to the ookinete surface [19]. TEP1 is a homo-

log of the mammalian C3 complement factor. Like C3, which circulates in mammalian blood,

TEP1 is a soluble hemolymph protein and its activity is dependent on an intact thioester bond

thought to mediate covalent binding to bacteria and parasites [19,20]. TEP1 is secreted as a

full-length protein (TEP1-full) and cleaved to produce activated TEP1 (TEP1-cut) in which the

two cleaved parts of TEP1 remain connected by a disulfide bond [20,21,22]. TEP1-cut circu-

lates in the hemolymph as a complex with two leucine rich repeat (LRR) proteins, LRIM1 and

APL1C. Knocking down TEP1 itself or any of these LRR genes results in the disappearance of

TEP1-cut from the hemolymph, and eliminates parasite killing [21,22]. However, TEP1 does

not appear to directly lyse pathogens and the precise mechanism of killing remains unknown.

TEP1 has also been shown to act in mosquito resistance against the human parasite P. fal-
ciparum, though parasite virulence factors such as the ookinete surface protein Pfs47 have

evolved in some parasite strains to counteract the TEP1-dependent immune response [23,24].

In addition, several TEP1 alleles are present in mosquito populations. The abundant TEP1�S
alleles (hereinafter termed TEP1s) are associated with susceptibility to P. berghei infection, sup-

porting the production of large numbers of oocysts. The less frequent TEP1�R1 allele (herein-

after TEP1r) confers high resistance to P. berghei, and leads to parasite melanization [25].

Consistently, the laboratory L3-5 line that was selected based on the ability to kill P. cynomolgi
[26] also kills all P. berghei parasites, is homozygous for TEP1r and exhibits high levels of para-

site melanization. Furthermore, silencing TEP1 in mosquitoes before infection further

increases parasite loads in susceptible mosquitoes and abolishes resistance and parasite mela-

nization in refractory mosquitoes [19]. Recently obtained TEP1 mutants exhibit the same phe-

notype [27].

Melanization is a powerful anti-parasitic and anti-microbial defense response used by

insects to isolate and kill invading pathogens. The biochemical process has been well character-

ized in Drosophila and shown to be tightly regulated by both positive and negative effectors

[28]. Recognition of pathogens triggers activation of a serine protease cascade that culminates

in the cleavage of the inactive circulating Prophenoloxidase (PPO) to its active Phenoloxidase

(PO) form. PO then oxidizes quinones that polymerize to form melanin, which is in turn

cross-linked with proteins and deposited on the pathogen. This chain reaction is localized in

close proximity to the pathogen. High local levels of reactive oxygen species arising from qui-

none oxidation reactions also contribute to pathogen killing [29]. In mosquitoes, this serine

protease cascade is negatively regulated by serpins and activated by several CLIP domain pro-

teases [30,31]. In resistant mosquitoes, silencing either TEP1, LRIM1 or APL1C abolishes mela-

nization and allows parasite survival [19,21,22,32]. Furthermore, it is possible to disrupt

melanization by knocking down genes that regulate actin polymerization without affecting the

killing of parasites [33]. These results suggest that the role of TEP1r in the resistant L3-5 mos-

quitoes is first in killing the parasites, then in promoting their melanization.

Here, we investigated the possibility of rendering mosquitoes resistant to P. berghei by

transgenic expression of TEP1r. Together with insights regarding the potential of TEP1 trans-

genes as malaria control agents, our observations reveal new aspects of TEP1 biology, includ-

ing expression pattern, promoter characterization, competition between TEP1 allelic forms,

and anti-parasitic activity.
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Results

The TEP1, LRIM1 and APL1C expression pattern in transgenic reporter

mosquitoes

In order to over-express TEP1 in mosquitoes in the endogenous source tissue, we first sought

to determine which cells express TEP1mRNA and attempted to perform RNA in situ hybrid-

ization in both larva and adult mosquitoes. However, the fat body tissue did not withstand the

procedure and was lost from the analysis. Thus, we constructed a transgenic reporter line

expressing GFP under control of the TEP1 promoter. For this, we cloned a 3.1 kb genomic

DNA fragment located 5’ of the TEP1s gene from the A. gambiae G3 strain, ending at the

TEP1s initiator ATG codon. Transfection assays in Drosophila S2 cells confirmed that this

cloned TEP1s 5’ region is responsive to bacterial challenge (see below), as is the endogenous

TEP1 gene [20]. Investigation of the expression pattern of GFP in the transgenic mosquitoes

revealed strong expression in the fat body tissue at larval (Fig 1a and 1b), pupal (Fig 1c and 1d)

and adult stages (Figs 1n and 2). In addition, intense GFP expression was detected in cells of

the midgut proventriculus (cardia) of adult mosquitoes, both males and females, regardless of

blood feeding (Fig 1i and 1j, and S1a and S1b Fig). Other tissues showing some GFP expression

included the oviduct, and more variably, the Malpighian tubules (S1c Fig). GFP was expressed

in fat body loosely attached to the testis, but was not observed in the male reproductive organs

themselves.

As a control for fat body and hemocyte expression we used the Lipophorin (Lp) promoter-

driven RFP reporter line constitutively expressing RFP in the fat body and the hemocyte-spe-

cific PP06-RFP line [34]. Comparing the expression of TEP1-GFP to the Lp-RFP pattern shows

similar expression in the same cells in dissected carcass tissues (Fig 2a). Mosquitoes carrying

both reporter genes showed perfect GFP/RFP overlap. Upon crossing TEP1-GFPmosquitoes to

the hemocyte reporter PPO6-RFP line, the observed RFP-positive hemocytes were never posi-

tive for GFP, indicating that the TEP1 reporter is not strongly expressed in the hemocytes that

express PPO6 (Fig 1e–1h). Although the reporter mosquitoes did not display obvious GFP-pos-

itive hemocytes, we do not rule out a possible expression of endogenous TEP1 in some hemo-

cytes, as the cloned regulatory sequences may lack distant hemocyte-specific enhancers.

To identify the expression pattern of other genes known to act in the TEP1 pathway, we

also constructed transgenic reporter lines expressing GFP under the control of the promoters

of the leucine-rich proteins LRIM1 and APL1C that associate with TEP1 in the hemolymph.

Both reporter lines showed a GFP expression pattern similar to TEP1, namely expression in

the fat body at all developmental stages (Fig 1k–1n). However, neither LRIM1-GFP nor

APL1C-GFP exhibited GFP expression in the proventriculus. Of note, all these reporters were

created using the same docking line, and are thus subjected to the same potential positional

effects. Many other fluorescent reporter constructs inserted at the same locus exhibit different,

promoter-specific patterns of expression [34], indicating that the TEP1, LRIM1 and APL1C
promoters must contain sequences determining fat body-specific expression.

In mosquitoes, fat body cells are challenging to manipulate. Dissection of mosquitoes in

buffer results in immediate loss of large parts of the fat body. The fat body cells that remain

attached to the carcass detach easily during fixation and disappear during permeabilization in

buffers containing detergents. To verify the expression of TEP1 in the fat body cells that

remain attached to dissected mosquito carcasses, we performed an antibody staining of fixed

samples using a modified protocol (see materials and methods). Indeed, careful examination

showed that some fat body cells that express the fat body specific protein Lipophorin (Lp) also

stain positive for TEP1 (Fig 2b). In mosquitoes where TEP1was silenced by RNAi, this fat

body TEP1 staining was markedly reduced (Fig 2c), indicating that the signal is TEP1-specific.

Transgenic Expression of Anti-malarial Factor TEP1
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Fig 1. Expression patterns of transgenic reporter lines. The 3xP3 promoter drives expression of transgenesis markers in

eyes and nerve cells. a. Control 3xP3-RFP transgenic A. gambiae larva, image is a merge of green and red channels. Red

arrows point to RFP expression in nerve cells, used as transgenesis marker (tm). b. TEP1-GFP, 3xP3-RFP larva. Arrows point

to some of the lobes of the fat body expressing GFP. Note the fine architecture of thoracic fat body revealed by GFP

expression. c. control wild type pupa, showing little auto fluorescence in the green channel. d. TEP1-GFP, 3xP3-RFP pupa

showing GFP expression in fat body (fb, white arrows) and RFP expression in the eye (red arrows, tm). e-g. Larva carrying

both ppo6-RFP, 3xP3-YFP and TEP1-GFP, 3xP3-RFP. RFP is expressed in hemocytes (white arrows) while GFP is

expressed in fat body cells. YFP and RFP transgenic markers (red arrows, tm) are expressed in the nervous system. Scale

bar = 200 μm h. RFP and YFP expression in ppo6-RFP, 3xP3-YFP pupa, showing RFP expression in hemocytes (hc). White

arrows point to some RFP expressing hemocytes. Transgenesis YFP marker is expressed in the eye (red arrow, tm). i. Midgut

of TEP1-GFP,3xP3-RFP female 24h after blood feeding, showing distinct GFP expression in proventriculus. (pv) j. Close-up on

a proventriculus expressing GFP in TEP1-GFP gut. k. LRIM1-GFP,OpIE2-pac larva showing GFP expression in the fat body,

alongside a control (wt) larva. l. Larva expressing APL1C-GFP, 3xP3-CFP showing GFP expression in the fat body (white

arrows) and CFP transgenesis marker expression (red arrows, tm) in the nervous system (delineated with a thin line) m.

APL1C-GFP,3xP3-CFP pupa expressing GFP in the fat body (white arrows) and CFP transgenesis marker in the eyes (tm, red

arrow). n. TEP1-GFP (1) and APL1C-GFP (3) adult females with intense reporter expression in the fat body, visible through the

Transgenic Expression of Anti-malarial Factor TEP1
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TEP1-GFP reporter expression varies greatly among individual

mosquitoes

Larvae and adults of the transgenic TEP1-GFP reporter line express GFP at strikingly variable

levels (S1d and S1e Fig). We followed the levels of GFP during larval development (S2 Fig) and

found an increase in GFP levels in time, most fourth instar larvae having reached a maximum

level of GFP expression, though striking differences from larva to larva persist until pupation.

Newly eclosed adult mosquitoes also exhibit variable levels of GFP expression (S1e Fig), proba-

bly reflecting a high variability in TEP1 expression that contrasts with the highly reproducible

expression level of the Lp-RFP reporter. We hypothesized that the variability in GFP expres-

sion reflected TEP1 induction by immune pathways [35] upon encounter with various micro-

organisms, which may differ from larva to larva. We tested whether there is a correlation

between the level of GFP in adult mosquitoes and intensity of P. berghei infection. Adult

cuticle, alongside a control female (2). Images a-h, j-m were acquired on a Zeiss Axiovert 200M microscope using a 5x or 10x

objective. Images i and n were acquired on a Nikon SMZ18 binocular fluorescence microscope. Scale bar = 500μm except for

d-h, l-m: 200 μm.

doi:10.1371/journal.ppat.1006113.g001

Fig 2. TEP1 expression in fat body cells. a. Dissected carcass of TEP1-GFP,3xP3-RFP and Lp-RFP,

3xP3-CFP mosquito exposing the fat body that shows GFP and RFP expression. Merged image shows co-

expression of Lp and TEP1 reporters in the fat body. Scale bar = 200 μm. b-c. Stained carcasses of wild type (b)

and mosquitoes treated with dsTEP1 (TEP1KD (c)) showing TEP1 antibody staining (green) in Lp-expressing

fat body cells. Note reduction in TEP1 staining in TEP1KD carcasses. Dapi stained cell nuclei (blue). Shown are

z-projections of confocal images, scale bar = 10μm. Images were collected on a Zeiss LSM 710 confocal

microscope.

doi:10.1371/journal.ppat.1006113.g002
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mosquitoes were scored for GFP expression prior to infectious blood feeding and grouped

according to weak or strong reporter expression level. Mosquitoes were infected and oocysts

were counted 7 days post infection. S1 Table summarizes the result of 5 independent experi-

ments, showing no significant differences in oocysts loads between the high and low GFP

expressing mosquitoes in 4 out of 5 experiments.

Transgenic expression of TEP1 in the fat body

Given the localization of GFP expression under control of the TEP1 promoter, we decided to

express the TEP1 transgene in adult fat body tissue. To avoid unnaturally high TEP1 expres-

sion throughout development, we used the blood-meal inducible Vg promoter. Vg is induced

at high levels after blood feeding [36] peaking 24h after blood meal, at the time when P. berghei
ookinetes reach the basal lamina and encounter circulating TEP1. This experimental design

aimed at achieving high levels of TEP1 simultaneously to Plasmodium infection.

Since the TEP1r allele is associated with refractoriness to P. berghei infection and shown to

be more potent in Plasmodium killing, we based our construct on the TEP1r allele. TEP1r
cDNA was cloned under the Vg promoter and injected into the TEP1s-containing X1 docking

line [34], to create the Vg-TEP1r,3xP3-RFP transgenic line (henceforth referred to as Vg-
TEP1r). Analysis of TEP1rmRNA in the transgenic mosquitoes (S3a Fig) showed blood meal

induction of TEP1r similar to induction of Vg [37]. Like VgmRNA, TEP1rmRNA levels moni-

tored with TEP1r-specific primers peaked 24h after blood meal and dropped gradually in the

following days. However, Western blot analysis of the transgenically expressed TEP1r protein

in the TEP1s background did not reveal a notable increase in TEP1 protein levels in the trans-

genic mosquitoes 24h after blood feeding (S3b Fig), suggesting tight post-transcriptional con-

trol of hemolymph TEP1 protein levels.

In order to verify expression from the Vg-TEP1r transgene, we introduced it into two differ-

ent TEP1 null mutant lines [27]. The TEP1Δct2mutant has a nonsense mutation causing a pre-

mature stop codon and loss of the entire C-terminus. The TEP1ΔTmutant has a deletion of a

threonine located 16 amino acids before the thioester cysteine. Both mutants lack detectable

TEP1 protein in the hemolymph at 24h after blood feeding, but low levels of mutated TEP1

become detectable in old TEP1ΔTmosquitoes only. Samples from TEP1Δct2; Vg-TEP1rmos-

quitoes analyzed by polyclonal anti TEP1 antibodies showed the presence of both forms of

TEP1, namely TEP1-full and TEP1-cut in the hemolymph expressed from the transgene (Fig

3a). In contrast, hemolymph samples from TEP1ΔT; Vg-TEP1r showed only the TEP1-full

form (Fig 3b), suggesting that traces of the mutant TEP1ΔT protein inhibit maturation of

wild-type TEP1 expressed from the transgene. In addition, TEP1ΔT (but not TEP1Δct2) mos-

quitoes show reduced levels of LRIM1 and APL1C (Fig 3a–3c and 3e). Unlike LRIM1 and

APL1C depletion by RNAi silencing [21], this decrease does not result in massive TEP1-cut

deposition on tissue (Fig 3d). Thus, traces of the mutant TEP1ΔT protein appear to downregu-

late both the endogenous LRIM1/APL1C complex and the cleavage of transgenic TEP1-full.

It has been previously demonstrated that injection of bacteria into mosquitoes promotes

TEP1 maturation and activates TEP1 transcription [20]. Furthermore, shortly after bacteria

injection, TEP1-cut binds to bacterial surfaces and acts as a convertase to recruit the full-length

protein [38,39]. The recruited TEP1-full is then cleaved close to bacterial surfaces and

increases bacterial opsonization, thus marking bacteria for phagocytosis by hemocytes [40].

We tested whether injection of bacteria induced formation of the TEP1-cut form in the

TEP1ΔT;Vg-TEP1rmosquitoes (Fig 3e). While the positive control TEP1rmosquitoes showed

an increase in both TEP1-full and TEP1-cut after bacterial injection, transgenic TEP1-full in

the TEP1ΔT;Vg-TEP1rmosquitoes’ hemolymph still failed to be converted to TEP1-cut.

Transgenic Expression of Anti-malarial Factor TEP1
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Infection of TEP1r transgenic mosquitoes with P. berghei

In order to verify that the TEP1r transgene was functional, we infected TEP1mutant mosqui-

toes complemented with the Vg-TEP1r transgene. The TEP1Δct2;Vg-TEP1rmosquitoes resem-

ble the L3-5 line in that they express only the TEP1r allele. However, an important difference

from the L3-5 line is that TEP1r is expressed exclusively in the fat body and only after a blood

meal. In the TEP1ΔT;Vg-TEP1r line, only the full form of TEP1 is detectable in the

Fig 3. Transgenic expression of TEP1r under the Vg promoter. a. Western blot analysis of hemolymph

from Plasmodium infected wild type (TEP1s), mutant (TEP1Δct2) and mutant mosquitoes ectopically

expressing TEP1r (TEP1Δct2;TEP1r;) showing full (TEP1-full) and cleaved (TEP1-cut) TEP1 forms, LRIM1

and APL1C protein, 25 and 48h after infectious blood feeding. PPO2 is used as a loading control b. Western

blot analysis of hemolymph from Plasmodium infected mosquitoes of the TEP1ΔT mutant background

(TEP1ΔT), ectopically expressing TEP1r (TEP1ΔT; TEP1r) and wild type L3-5 mosquitoes expressing only the

endogenous TEP1r allele (TEP1r). 3–4 day old mosquitoes were blood fed to induce the Vg promoter.

Samples were collected 24h after blood meal. The membrane was probed with the indicated antibodies,

including anti-Vg to confirm proper induction of the Vg promoter. Two independent samples were loaded for

each condition to account for variability. c. Western blot analysis of hemolymph from control and TEP1 mutant

mosquitoes showing the levels of APL1C and LRIM1. PPO2 is used as a loading control. Note the specific

reduction of the two LRR proteins only in TEP1ΔT mosquitoes in which TEP1 lacks a single threonin.

TEP1Δct1 and TEP1Δct2 are two different mutants lacking the entire C-terminus [27]. d. Western blot

analysis of carcasses from mosquitoes 48h after blood feeding showing the levels of TEP1-full and -cut in the

indicated genotypes. Two independent samples of each genotype are shown to represent variability. Actin

(upper band of the doublet) used as loading control. e. Western blot analysis of hemolymph from mosquitoes

injected with heat-killed E. coli 24h after blood feeding comparing TEP1 levels in injected and non-injected

mosquitoes of the indicated genotypes. Note the absence of transgenic TEP1r cleavage and reduced LRIM1

in the TEP1ΔT mutation background regardless of bacterial injection. PPO2 was used as a loading control.

doi:10.1371/journal.ppat.1006113.g003
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hemolymph, which offers an opportunity to examine the activity of the TEP1-full form in the

absence of detectable TEP1-cut.

P. berghei infection of TEP1Δct2;Vg-TEP1rwas strikingly reduced compared to mutant

controls, with some live oocysts and mostly melanized parasites (Fig 4a), indicating that the

introduced TEP1r is fully functional and sufficient to kill parasites. Infection prevalence (S2

Table) in the transgenic is also significantly lower than in control Vg-GFPmosquitoes that

express TEP1s only. P. berghei infection of TEP1ΔT;Vg-TEP1r, in which only the full form of

TEP1 is detected, also resulted in a significant reduction in live oocyst numbers and in the

concomitant appearance of high numbers of melanized parasites in some midguts compared

Fig 4. P. berghei infections of mosquitoes expressing TEP1r under the Vg promoter. a. P. berghei

infection of TEP1Δct2 mutant mosquitoes rescued with transgenic TEP1r. Shown are the number of live

parasites (green circles) and melanized parasites (black circles) in the midguts of mosquitoes 7 days after

infection. Control mosquitoes are TEP1 mutant alone (TEP1Δct2) and transgenic mosquitoes expressing GFP

instead of TEP1r (Vg-GFP). b. P. berghei infection of TEP1ΔT mutant mosquitoes compared to TEP1ΔT

rescued with transgenic TEP1r (TEP1ΔT;Vg-TEP1r). c. P. berghei infection of transgenic mosquitoes

expressing TEP1r in a wild type TEP1s background. Live (green circles) and melanized (black circles)

parasites are compared in wild type (TEP1s) and transgenic (TEP1s;Vg-TEP1r) mosquitoes. d. P. berghei

infection of transgenic TEP1r mosquitoes in wild type TEP1s background after TEP1 allele-specific

knockdown. Compared are transgenic mosquitoes treated with dsLacZ, dsTEP1s and dsTEP1r, 3 days prior

to infection. For all P. berghei infections, experiments were performed at least 3 times, representative

experiments are shown. The raw numbers of parasites and calculated p values for all infections are provided

in S2 Table.

doi:10.1371/journal.ppat.1006113.g004
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to the non-rescued mutant (Fig 4b). High levels of melanization are reminiscent of the L3-5

infection phenotype, where complete refractoriness is achieved by TEP1r-mediated parasite

killing followed by parasite melanization [19,33]. However, contrary to L3-5 that are

completely refractory to the parasite, the rescued mutant lines which derive from the suscep-

tible G3 background are not fully refractory to P. berghei infection, with about 70% of

infected midguts containing live oocysts 7 days after infection (S2 Table) and infection

intensities comparable to wild-type control G3 mosquitoes. In fact, expression of TEP1r in

mutant backgrounds rescued the mutant at least to the level of the wild-type TEP1s-carrying

G3 line in terms of prevalence and intensity, and further conferred a gain-of-function phe-

notype (melanization) (Fig 4a). In the TEP1ΔT;Vg-TEP1r line, it is striking that transgenic

TEP1r appears to be functional in spite of its impaired maturation into the TEP1-cut form.

These results imply either that TEP1 cleavage may be dispensable for some of its functions,

or that low levels of TEP1-cut that we could not detect in the hemolymph (Fig 3b and 3e) or

on parasites (Fig 5) may be sufficient for function. The formation of TEP1-cut at foreign sur-

faces is dependent on a convertase complex controlled by SPCLIP1 [39]. To test if matura-

tion of TEP1-full into TEP1-cut is required for the observed phenotype, we silenced

SPCLIP1 by dsRNA injection in TEP1ΔT;Vg-TEP1rmosquitoes (S1 File). This fully abol-

ished melanization and tended to increase parasite numbers, suggesting that some TEP1r

cleavage by the convertase complex, though undetectable, must be required for activity of

the TEP1r transgene.

Importantly, transgenic expression of TEP1r exclusively in the fat body using the Vg pro-

moter rescued the TEP1 loss-of-function mutations (Fig 4a and 4b), showing that TEP1 pro-

duced in the fat body and secreted into the hemolymph is sufficient for parasite killing.

We tested whether expressing TEP1r in a wild type background where TEP1s is present

could also reduce parasite loads after P. berghei infection. Oocyst counts revealed no difference

in live oocyst numbers between the parental TEP1s line and the TEP1s;Vg-TEP1r transgenic

line (Fig 4c, left panel). However, the number of melanized parasites was significantly elevated

in these mosquitoes (Fig 4c, right panel). We verified that the increase in melanized parasites

was attributable to the TEP1r transgene using allele specific RNAi. When transgenic TEP1r,
but not endogenous TEP1s, was knocked down in the TEP1s;Vg-TEP1r transgenic line, the

number of melanized parasites reverted to a level similar to control dsLacZ-injected mosqui-

toes (Fig 4d).

In the TEP1s;Vg-TEP1r line, transgenic TEP1r is induced to a peak level about 24 hours

after a blood meal, possibly too late to efficiently fight parasite invasion. To induce TEP1
expression prior to the infectious blood meal and attempt to increase TEP1 concentration in

the hemolymph, we offered a non-infectious blood meal and infected mosquitoes three days

later, before the Vg promoter had returned to its off state. The results of such an experiment

(S4 Fig) show no difference in infection levels between mosquitoes that were pre-induced by

blood meal and naïve mosquitoes.

Binding of TEP1 to parasites

We verified that transgenic TEP1r binds to parasites in the TEP1Δct2;Vg-TEP1r line (S5 Fig)

and asked whether this was also the case in TEP1ΔT;Vg-TEP1rmosquitoes in which formation

of the mature TEP1-cut form is inhibited. To this end, we performed immuno-histochemical

staining of TEP1ΔT;Vg-TEP1rmidguts 24h after infection using TEP1 specific antibodies (Fig

5). Results show that in the presence of TEP1ΔT, transgenic TEP1r protein is not detectable on

ookinete surfaces, despite its observed, SPCLIP1 dependent, anti-parasitic and melanization

activity.

Transgenic Expression of Anti-malarial Factor TEP1

PLOS Pathogens | DOI:10.1371/journal.ppat.1006113 January 17, 2017 10 / 26



We tested whether the fat body-expressed, full length TEP1r in the TEP1ΔT;Vg-TEP1r line

can enter hemocytes after bacterial injection. To this end we examined TEP1 staining in car-

casses of blood fed mosquitoes, injected with heat killed E. coli, 24h after blood meal (Fig 6).

Results show that in blood-fed TEP1ΔT;Vg-TEP1rmosquitoes, TEP1r artificially induced in

Fig 5. Binding of transgenically expressed TEP1 to ookinetes. TEP1 antibody staining (red) of dissected

midguts 24 h after infection with GFP-expressing P. berghei. Shown are wild type mosquitoes expressing the TEP1s

allele (TEP1s), wild type L3-5 mosquitoes expressing the TEP1r allele (TEP1r), mosquitoes transgenically

expressing TEP1r in a wild type TEP1s background (TEP1s;Vg-TEP1r), mutant TEP1 mosquitoes (TEP1ΔT), and

mutant mosquitoes transgenically expressing TEP1r (TEP1ΔT;Vg-TEP1r). Ookinetes express GFP (green) and

nuclei are stained with Dapi (blue). Images are stacks of confocal z-sections, scale bar = 20 μm

doi:10.1371/journal.ppat.1006113.g005
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the fat body by the blood meal accumulated in the hemocytes only when mosquitoes were

injected with E. coli. Control wild type mosquitoes showed that TEP1 accumulation in hemo-

cytes depended on bacterial injection, regardless of blood feeding. The TEP1ΔTmutant line,

used here to control for the specificity of antibodies for TEP1, showed no TEP1 staining in

hemocytes under any condition. These results show that TEP1 detection in hemocytes can

result from uptake of what is most likely TEP1-labeled bacteria.

Optimization of synthetic transcription factors to over-express

endogenous TEP1

Since transgenic expression of TEP1r in a wild-type TEP1s background failed to produce

refractory mosquitoes, we asked whether artificially elevating the levels of the endogenous

TEP1s allele may lead to increased immunity against Plasmodium. To this aim, we stimulated

expression of the endogenous TEP1 gene using synthetic transcription factors designed to

bind specific promoter sequences.

Transcription Activator Like Effectors (TALEs) are transcription-activating proteins

derived from Xanthomonas bacteria, containing a DNA-binding domain composed of nucleo-

tide-binding repeats that can be arranged in the desired order to bind chosen DNA sequences

[41,42,43]. In order to trigger over-expression of the endogenous TEP1 gene, we designed

TALE proteins that bind specific DNA sequences in the promoter region of TEP1. To find the

best potential binding position for a TALE, we first analyzed the 3 kb promoter region of TEP1
(S6 Fig). Using a luciferase reporter assay in Drosophila S2 cells and nested promoter deletions,

Fig 6. Fat body expressed transgenic TEP1 enters hemocytes. TEP1 antibody staining (red) of dissected

mosquito carcasses after injection of heat killed E.coli. Nuclei are stained with Dapi (blue). Shown are wild

type (TEP1s), TEP1s mutant (TEP1ΔT) and mutants complemented with transgenic TEP1r under control of

the Vg promoter (TEP1ΔT;Vg-TEP1r). Compared are blood fed non injected (+BF), non blood fed injected (+E.

coli) and blood fed, E. coli injected mosquitoes (+BF+ E. coli). scale bar = 20 μm.

doi:10.1371/journal.ppat.1006113.g006
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we found that a 250 bp fragment of the promoter was sufficient to induce reporter activity.

The minimal promoter sequence, harboring a potential NF-κB binding site, responded to the

addition of bacteria to the culture medium by increased luciferase activity (S7 Fig). Mutating

this NF-κB binding site abolished the reporter response to bacterial challenge (S8 Fig). This

suggests that the NF-κB pathway of S2 cells can activate the mosquito TEP1 promoter, in

agreement with the known activation of native TEP1 transcription by the mosquito NF-κB

pathway [35]. We used this minimal promoter to test several transcriptional activation

domains for reporter activation by TALEs, namely those of yeast Gal4, Drosophila Heat Shock

Factor 1 and Herpes virus VP16, and found that the VP16 activation domain fused to a TALE

DNA-binding domain leads to highest reporter induction (S9 Fig). The VP16 domain was

thus chosen as the activation domain for all further designed TALEs. TALEs without an activa-

tion domain did not increase TEP1 expression and served as negative controls.

We constructed five TALEs that bind at different positions along the TEP1minimal pro-

moter sequence (Fig 7a and S6 Fig) and tested their effect on reporter transcription in S2 cells

(Fig 7b). Results show that TAL3 binding the closest to the transcription start site had no effect

on reporter activity, while the other TALEs had a modest effect, increasing activity by about

1.5–2 fold. However, TAL6, binding the furthest from the transcriptional start site and just

upstream of a sequence resembling a TATA box, triggered a strong, 20 fold increase in

reporter activity. TAL6 was thus chosen to create transgenic mosquitoes with the aim of over-

expressing endogenous TEP1.

In plants, natural and artificial TALEs induce target gene expression from alternative,

TALE-specific transcription start sites [44,45]. We investigated whether TALEs triggered TEP1
expression through an alternative transcription site when transfected with the luciferase

reporter in S2 cells. PCR products from the 5’ RACE assay were sequenced and revealed that

unlike in plants, both TAL0 and TAL6 preserved the normal transcriptional start site of the

mRNA which remained located 43 bp upstream of the ATG (S6 Fig).

Transgenic mosquitoes expressing TALEs to drive endogenous TEP1

expression

We generated several transgenic lines that express TALEs designed to bind and activate the

TEP1 promoter. Our first choice of promoter for the expression of the synthetic transcription

factor itself was the inducible fat body specific Vg promoter, in order to increase endogenous

TEP1 levels after a blood meal, concomitant with Plasmodium parasite invasion. TAL6 fused to

a VP16 (TAL6
vp16) activation domain was chosen due to its high activity in S2 cells. A control

transgenic line was created with the same TAL6 lacking an activation domain (TAL6
ΔAD).

Analysis of mRNA after blood feeding revealed that in both transgenic lines TALEs are

induced by a blood meal, more efficiently in the case of Vg-TAL6
vp16 (Fig 7c). Furthermore,

TAL6
vp16, but not TAL6

ΔAD, induced a two-fold elevation in TEP1mRNA levels. This elevation

in the endogenous levels of TEP1mRNA is modest compared to the 20-fold average elevation

of the reporter in the cell line.

Since the Vg promoter triggers a pulse of transcription after a blood meal, TALEs may acti-

vate TEP1 too transiently to achieve a significant effect. Therefore, we also tested if a constitu-

tive fat-body promoter would durably induce high levels of endogenous TEP1. For this,

TAL6
vp16 and TAL0

vp16 were placed under the control of the Lp promoter, constitutively

expressed in the fat body in larvae, pupae and adults. We included TAL0
vp16 in addition to

TAL6
vp16 despite its modest effect in S2 cells (~1.5 fold increase, Fig 7b) because of its unique

binding position on the NF-κB binding site. TAL0
vp16 was designed to bind and activate not

only the promoter of TEP1, but also similar sequences found in the promoters of APL1C and
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Fig 7. Synthetic TALE transcription factors targeting the TEP1 promoter. a. Schematic representation of the

~3Kb TEP1 promoter (not to scale). Shown are potential NF-κB sites (GGGRNNYYCC) (light grey boxes) and

potential TATA boxes (dark grey boxes). The minimal promoter (MP) shown to be active in cells is indicated by a

black line. Numbers on the promoter indicate the distance from the ATG. White boxes represent the binding position

of each designed TALE. b. Luciferase assay in S2 cells showing the effect of TALEs on the minimal TEP1 promoter.

Different TALE constructs all carrying a VP16 activation domain and placed under the Drosophila actin5c promoter

were co-transfected into S2 cells together with a firefly luciferase reporter gene under control of the minimal TEP1

promoter. A plasmid carrying GFP placed under the same promoter as TALEs was used as reference for basal

promoter activity. The TEP1 promoter was further induced by addition of heat killed E. coli to the cells. Luciferase

activity was normalized to the basal promoter activity without TALEs. c. qRT-PCR to assess the level of TALE and

TEP1 mRNA in transgenic mosquitoes expressing Vg-TAL6 comparing functional TALE with VP16 activation

domain (Vg-TAL6
vp16) and control line expressing the same TALE without activation domain (Vg-TAL6

ΔAD), with or

without induction of the Vg promoter by a blood meal 24h prior to mRNA extraction. d. qRT-PCR of transgenic

Transgenic Expression of Anti-malarial Factor TEP1
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LRIM1, two proteins that are known to bind TEP1 and contribute to its activity (See

Methods).

Analysis of TEP1mRNA in transgenic mosquitoes that constitutively express TAL6
vp16

and/or TAL0
vp16 (Fig 7d) revealed a maximum of 2-fold induction of endogenous TEP1

mRNA in mosquitoes that expressed both TALES simultaneously (progeny of a cross between

the two lines). Western blot analysis of TEP1 in these mosquitoes (Fig 7e) confirmed a 3–4

fold increase in TEP1 protein levels circulating in the hemolymph (Fig 7f). We thus proceeded

to test whether this elevation in TEP1 levels in the hemolymph had any effect on parasite loads

after Plasmodium infection.

Infection of the blood meal inducible Vg-TAL6vp16 transgenic line did not result in any sig-

nificant change in parasite loads (Fig 7g). Likewise, analysis of parasite loads after infection of

the constitutively expressing Lp-TAL6vp16 and Lp-TAL0vp16 lines did not show any significant

difference in oocyst numbers between transgenic and control lines (Fig 7h).

Discussion

TEP1 pathway genes are expressed mainly in the fat body

TEP1 is a secreted protein that circulates in the hemolymph of mosquitoes at all developmental

stages starting from larval stages [20]. Previous observations suggested that TEP1 is produced

by hemocytes and secreted from these cells as a full-length protein which is then cleaved in the

hemolymph [20]. Evidence to support this model included immuno-histochemical staining of

mosquito tissues that showed TEP1 accumulation inside hemocytes, particularly after bacterial

challenge and 24-48h after infection with P. berghei [22,35,46]. However, these results may also

be explained by uptake of TEP1 protein, or TEP1-labeled particles, by hemocytes. In addition,

analysis of RNA expressed by hemocytes using microarrays has shown that TEP1 transcript is

present in these cells, but not enriched compared to whole female tissues, and is not further

induced by infection [47]. TEP1 did not emerge as a hemocyte transcript in the hemocyte tran-

scriptomics study of Pinto et al. [48]. Of note, it is technically challenging to acquire a pure

population of hemocytes without contamination by fat body cells that detach into the hemo-

lymph during sample collection [49]. Here we obtain evidence that TEP1, LRIM1 and APL1C
are expressed primarily in the fat body. This is similar to the expression pattern of many insect

anti-microbial peptides [50,51] and to that of some Drosophila TEP family member genes as

determined by in situ hybridization [52]. In mammals, complement proteins phylogenetically

and functionally homologous to TEP1 are expressed and secreted from the liver ([53],reviewed

in [54]). Interestingly, some of the functions of the liver are performed by the fat body in

insects.

We crossed the TEP1-GFP reporter mosquitoes to our hemocyte-specific PPO6-RFP line,

and observed that the DsRed-positive hemocytes were GFP negative. We note that this result

does not rule out that sub-populations of hemocytes not expressing the PPO6 promoter may

mosquitoes constitutively expressing Lp-TAL6 or Lp-TAL0 or both, showing the level of TEP1 mRNA. Levels of

mRNA in each sample are normalized to wt and to the housekeeping reference gene RPL19. e Western blot

analysis of transgenic mosquitoes constitutively expressing Lp-TAL6 or Lp-TAL0 or both. Wild type mosquitoes are

used as controls. Shown are the bands for the full length and the cleaved forms of TEP1 as well as PPO2 as loading

control. 2 samples for each mosquito line are presented to show sample variation. f. Quantification by densitometry

of the TEP1 bands in (e). g. P. berghei infection of Vg-TALvp16 transgenic mosquitoes. h. P. berghei Infection of

transgenic mosquitoes constitutively expressing TAL0, TAL6 or both under the Lp promoter. In all infections, the

empty docking line (wtX1) serves as control. Live oocysts (green circles) in each midgut are counted 7 days after

infection. Number of oocysts and infection data are in S3 Table.

doi:10.1371/journal.ppat.1006113.g007
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also express TEP1; fine transcriptomic analyses will be required to quantitatively determine

the contribution of each tissue to the global pool of circulating TEP1.

Our transgenic reporter lines also reveal that TEP1, but not APL1 and LRIM1, is also

expressed in the proventriculus of adult mosquitoes. Interestingly, the proventriculus was

found to be a site of immune gene expression in A. gambiae [55] and in other insects such as

tsetse flies [56]. In A. gambiae, mRNA transcripts of antimicrobial peptides Defensin 1, Cecro-
pins, Gambicin, as well as TEP1, are enriched in the proventriculus [55]. TEP1 is also expressed

in the neighboring gastric caeca during larval stages [57]. Future studies may clarify whether

proventriculus-expressed TEP1 has a function that bypasses the requirement for LRM1 and

APL1-C, perhaps in the lumen of the digestive tract where TEP1 could interact with the gut

microbiota.

TEP1-GFP reporter expression does not reflect immune status

Variation in GFP levels among individual mosquitoes led us to test whether GFP fluorescence

intensity correlates with infection outcome. We found no such correlation and concluded that

GFP expression either did not reflect TEP1 levels in the mosquitoes at the time of P. berghei
infection, or that TEP1 level variations do not correlate with resistance to the parasite. The

lack of correlation between GFP levels and immune status may be due to the remarkable stabil-

ity of GFP protein, which persists throughout mosquito life in the fat body after a blood feed-

ing-induced pulse of expression in the Vg-GFP line [34] compared to the highly dynamic

turnover of TEP1 protein, which disappears by 24h after RNAi silencing [37].

Transgenic expression of TEP1 in the fat body

Lysis of ookinetes at the basal lamina is associated with binding of TEP1 directly to the ooki-

nete surface [19]. However, TEP1 does not induce direct lysis of bound pathogens, and the

molecular mechanism of killing remains unknown. It has been previously shown that TEP1-

cut is the major form that binds ookinetes [21,22]. Binding of circulating TEP1-cut to patho-

gen surface triggers the recruitment of a convertase complex that requires the serine protease

homologue SPCLIP1 and that cleaves circulating TEP1-full leading to further accumulation of

TEP1-cut at the pathogen surface [38,39]. We expressed the TEP1r allele in two different TEP1
mutant backgrounds: TEP1ΔT carries a single threonine deletion that appears to destabilize

the protein, as mutant TEP1ΔT protein becomes faintly detectable only in aged mosquitoes

[27]. TEP1Δct2 lacks the C-terminal third of the protein and is likely to be a complete null. In

these two mutant backgrounds, transgenic TEP1r produced in the fat body and secreted into

the hemolymph was sufficient to rescue parasite killing, and to trigger parasite melanization.

Interestingly, in the TEP1ΔT background, but not in the TEP1Δct2 background, maturation of

transgenic TEP1r-full to TEP1-cut appeared to be inhibited as we never detected circulating

TEP1-cut in the hemolymph, even after bacterial injection. This suggests that very low

amounts of the non-functional TEP1ΔT protein inhibit maturation of TEP1-full, perhaps by

blocking the enzyme responsible for TEP1 cleavage in the hemolymph. Possibly related to this,

LRIM1/APL1C levels are reduced in the TEP1ΔT, but not in the TEP1Δct2mutant. In the

TEP1ΔT;VgTEP1rmosquitoes, TEP1 binding is not detectable by antibody staining on ooki-

nete surfaces, consistent with the lack of detectable circulating TEP1-cut form. Yet, both

mutants rescued with TEP1r showed an increase in parasite melanization. We initially hypoth-

esized that contrary to current views, processing of TEP1-full to TEP1-cut by the SPCLIP1-de-

pendent convertase and accumulation of TEP1-cut at the parasite surface may be dispensable

for parasite melanization in some contexts. However, disabling the TEP1 convertase complex

through silencing SPCLIP1 in TEP1ΔT;VgTEP1rmosquitoes abolishes melanization and, to

Transgenic Expression of Anti-malarial Factor TEP1

PLOS Pathogens | DOI:10.1371/journal.ppat.1006113 January 17, 2017 16 / 26



some extent, increases parasite numbers. Therefore, conversion of TEP1-full to TEP1-cut

seems to be a prerequisite for parasite killing and melanization even in TEP1ΔT;VgTEP1rmos-

quitoes, but a large accumulation of TEP1-cut at the surface of parasites may not be necessary

to trigger killing and melanization.

Another function of TEP1 in the hemolymph is the opsonization of bacteria [20,39,58,59],

marking them for phagocytosis by hemocytes. Shortly after the injection of bacteria, TEP1 pro-

tein can be detected inside the hemocytes that are attached to dissected mosquito carcasses.

The appearance of TEP1 inside these cells may be due to induced expression of TEP1within

hemocytes, presumably aimed at replenishing TEP1 levels in the hemolymph, or due to phago-

cytosis of TEP1-covered bacteria by hemocytes. We observed that in a TEP1 null mutant back-

ground, TEP1r expressed from a transgene in the fat-body could enter hemocytes. Our results

suggest that TEP1 detected in hemocytes after bacterial challenge comes at least in part from

uptake of circulating TEP1 protein.

TEP1r could be a candidate gene for creating malaria resistant mosquitoes by driving the

gene into the wild mosquito population, for example using CRISPR-Cas9 gene drive [14,15].

This should not be achieved by replacement of endogenous TEP1s alleles with the more active

TEP1r, as a few failed gene conversion events could result in Cas9-induced TEP1s loss-of-func-

tion mutations that would generate hyper-susceptible mosquitoes. Instead, the anti-parasitic

factor should be driven into an independent neutral genomic locus. We thus tested whether

over-expression of TEP1r in wild type background affects infection outcome. We found that

transgenic TEP1r is indeed expressed in the presence of endogenous TEP1s, but fails to

enhance parasite killing, while still able to stimulate melanization. Using allele specific knock-

down we showed that the allelic difference between TEP1r and TEP1s is sufficient to explain

the different intensities of the melanization reaction. In addition, silencing endogenous TEP1s
in the same mosquitoes restored the ability of transgenic TEP1r to kill parasites and further ele-

vated melanization (Fig 4d), as observed when transgenic TEP1rwas expressed in a mutant

background. This indicates that although less efficient than TEP1r for parasite killing, endoge-

nous TEP1s protein is able to outcompete transgenic TEP1r for the parasite killing function.

This is reminiscent of the apparent recessivity of TEP1r in TEP1s x TEP1r genetic crosses [25].

Therefore, simple transgenic expression of TEP1r in a wild type background where TEP1s is

the most frequent allele would not be sufficient to render a mosquito population refractory to

Plasmodium infection.

Over-expressing endogenous TEP1

Since transgenic expression of TEP1r in a wild-type TEP1s background failed to produce

refractory mosquitoes, we asked whether artificially elevating the levels of the endogenous

TEP1s allele may lead to increased immunity against Plasmodium. To this aim, we stimulated

expression of the endogenous TEP1 gene using synthetic transcription factors designed to

bind specific sites in the TEP1 promoter.

We designed a luciferase reporter for TEP1 promoter activity and tested it in Drosophila S2

cells. The promoter contained an NF-κB binding site, which mediated elevation of reporter

activity when S2 cells were treated with heat-killed bacteria. Thus, the cloned TEP1 promoter

fragment is activated by the S2 cell NF-κB pathway, consistent with TEP1 activation by the

mosquito NF-κB pathway [35].

Once we determined the optimal TALE sequence for binding TEP1 promoter, we created

several transgenic mosquitoes lines that expressed TALEs either under an inducible promoter

(Vg) or a constitutive fat body promoter (Lp). In all cases, the increase in endogenous TEP1
expression was very modest both at mRNA and protein levels, indicating that cell culture
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assays are poor predictors of TALE activity in vivo. TEP1mRNA levels may be tightly regulated

in vivo, or may depend on regulatory features that were absent or inactive in the S2 cells assays.

In wild type mosquitoes, some parasites are bound by TEP1 and killed, while others evade

TEP1 binding. If the quantity of circulating TEP1 were the rate-limiting factor in parasite

binding, we expected that even a modest 2-fold increase in TEP1 expression would yield

increased resistance to Plasmodium. However, infection assays with mosquitoes that expressed

TALEs and showed a 2 to 3-fold elevation in TEP1 levels did not show any increase in resis-

tance. This is similar to the lack of increased parasite killing in mosquitoes expressing trans-

genic TEP1r in addition to endogenous TEP1s, and suggests that the survival of some parasites

is not due to a lack of TEP1. The absence of effect of the TALE-mediated over-expression of

TEP1s contrasts with the elevated melanization obtained by transgenic expression of TEP1r in

mosquitoes carrying endogenous TEP1s, again confirming that enhancing melanization is an

allelic property of TEP1r.
To conclude, our results indicate that simply augmenting the level of a given anti-parasitic

factor may not be sufficient to achieve greater resistance levels, and biotechnological

approaches aiming at rendering the mosquitoes resistant to malaria will need to integrate the

full complexity of molecular interactions between immune factors.

Methods

Mosquito rearing and P. berghei infection

A. gambiae mosquitoes were maintained in standard conditions (28˚C, 75–80% humidity,

12-hr/12-hr light/dark cycle). Larvae were raised in deionized water and fed finely ground Tet-

raMin fish food. Adults were fed on 10% sucrose ad libitum and females were blood-fed on

anaesthetized mice. For infection, mosquitoes were fed on CD1 mice infected with the P. ber-
gheiGFP-con 259cl2 clone (ANKA strain) that constitutively expresses GFP [60]. Mice

infected with Plasmodium berghei were sacrificed before they developed malaria symptoms by

cervical dislocation. Mice used to blood feed and infect mosquitoes were anesthetized with a

mix of xylazine and ketamine. Infected mosquitoes were maintained at 21˚C, unfed mosqui-

toes were removed 24h post feeding. Seven days after infection, live midguts were mounted on

microscope slides in PBS, photographed under fluorescent light, and parasites were counted

on the pictures. Statistical significance of differences in parasite counts was evaluated with a

Mann-Whitney non-parametric test.

Mosquito transgenesis

Transgenic mosquitoes were created in the A. gambiae X1 attP docking line using the pDSA

R/T/G/Y/P and pattB-RfB2 transgenesis vectors as described [34]. The following plasmids

were constructed by Goldengate cloning to generate transgenic mosquitoes: pDSAP-
LRIM1-GFP, pDSAT-APL1-GFP. In the case of the TEP1-GFP,3xP3-RFP reporter and of the

Vg-TEP1r,3xP3-YFP constructs, plasmids were assembled using Gateway cloning into

pattB-RfB2 [34]. Vg-TALE and Lp-TALE constructs were assembled by Goldengate cloning in

pDSAR, pDSAT or pDSAG as described for TALEs [42]. Plasmid sequences, as well as pro-

moter and TALE modules are provided in supplementary file S1 Text. In the case of TAL0, we

exploited the TAL repeat “NS” di-residue binding ambiguous bases to allow simultaneous tar-

geting of the TEP1, LRIM1 and APL1C promoters by TAL0 (target sites indicated in S4 Table).

Transgenic lines PPO6-RFP,3xP3-YFP and Lp-RFP,3xP3-GFP and Vg-GFP,3xP3-RFPwere pre-

viously described [34]. Promoters and genes were amplified from genomic DNA or cDNA by

PCR with primers containing appropriate sites for Goldengate or Gateway cloning. All con-

structs were verified by sequencing.
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To introduce the TEP1r,3xP3-YFP transgene in the background of the TEP1ΔT and TEP1Δct2

mutations [27], the transgenic line was backcrossed three times to the mutant line. After each

backcross, YFP-positive progeny larvae were purified with the COPAS flow cytometer [61] to

retain the transgene. After the last backcross, one leg from 48 male and 48 female mosquitoes

kept alive in individual tubes was analyzed by PCR as described [27] using the Phire Direct

Tissue PCR kit (Thermofisher). Mosquitoes showing homozygosity for the TEP1mutation

were pooled to establish a homozygous mutant and heterozygous transgenic line. For experi-

ments, COPAS sorting of this line was used to generate cultures containing 50% non-trans-

genic mutant control and 50% transgenic mutant mosquitoes. In some cases, non-mutant

control mosquitoes with RFP eye fluorescence (such as Vg-GFP,3xP3-RFP) were added to the

same culture. On the day of dissection, transgenic and non-transgenic mosquitoes were sepa-

rated under a fluorescence microscope based on the eye fluorescence of the transgenesis mark-

ers. This process ensured identical exposures of all mosquito genotypes to the same growth

and environmental conditions.

Knockdown of TEP1 by dsRNA

Allele specific knockdown of TEP1was performed by injection of dsRNA targeted specifically

against TEP1r or TEP1s as previously described [25]. dsRNA was injected into the thorax of

one day old female mosquitoes, three days prior to infection. Allele specific knockdown was

verified by qRT-PCR. SPCLIP1 RNAi knockdown was performed as described [39][62].

Immuno-histochemistry

Mosquitoes were dissected in PBS, fixed in paraformaldehyde for 20 min, permeabilized in

PBS containing 0.1% triton (PBST) for 10 min, blocked in PBST containing 1%BSA (PBSTB)

for one hour. Mosquito tissues were incubated with primary antibody (rabbit anti TEP, mouse

anti Lipophorin) for at least two hours, washed 3 times and incubated with fluorescent second-

ary antibody (Alexa488, or Cy3) in PBSTB containing 1μg/μl DAPI. Tissues were washed three

times in PBST and mounted on a slide with a drop of Aqua/poly mount (Polysciences). For fat

body analysis, mosquitoes were dissected and treated as previously described [63]. Images

were collected under a Zeiss LSM 710 confocal microscope.

RT-PCR

RNA for RT PCR was extracted from groups of 5–10 mosquitoes. Mosquitoes were collected

on ice into 300 μl RNAzol RT (MRC), homogenized with a Precellys homogenizer, with 2

pulses of 20 seconds. RNA was purified on DirectZol RNA columns (Zymo Research) follow-

ing manufacturer’s instructions. RNA was treated with RNAse-free DNAse I (ThermoFisher).

Reverse transcription was performed using iScript cDNA Synthesis Kit (Bio-Rad) using 500 μg

of RNA. SYBR Green PCR Master Mix, (Applied Biosystems) qPCR reactions were set up on

96 well plates with three technical and three biological repetitions and were run on 7500 Real-

time PCR machine (Applied Biosystems).

Western blot analysis

Mosquito hemolymph from 10 mosquitoes was collected by proboscis clipping directly into

20 μl of Laemmli buffer. Samples were heated at 90˚C for 2–5 minutes and 2 to 8 μl (depending

on the experiment) were loaded on polyacrylamide gels. Rabbit polyclonal antibodies against

TEP1, APL1C, LRIM1, PPO2 and Vg were used. Secondary HRP conjugated antibodies were

used at 1:15000 dilution. Images were collected on Fusion FX7 scanner (Vilber Lourmat).
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Luciferase assay in S2 cells

S2 cells were grown at 23˚C in Schneider’s medium (Biowest) supplemented with 10% FCS

(Invitrogen) and 1% Penicillin/Streptomycin solution (Sigma). Cells were seeded in 24 well

plates (Starsted) at 50,000 cells/well one day prior to transfection. Constructs expressing both

firefly luciferase and Renilla luciferase were used as reporters. TEP1 promoter was cloned

upstream of firefly luciferase. Renilla luciferase under the constitutive actin5c promoter was

used as transfection control. Cells were transfected using Effectene (Qiagen) according to man-

ufacturer’s instructions. Cells were collected three days after transfection for luciferase activity

analysis. Luciferase assay was performed using the Dual-Luciferase Reporter Assay System (Pro-

mega) according to manufacturer’s instructions. Luciferase activity is depicted as Firefly activity

divided by Renilla activity, averaged on three wells transfected with a set of given plasmids.

5’RACE in S2 cells

RNA from S2 cells was extracted using RNAzol RT (MRC) and purified on DirectZol RNA

columns (Zymo Research). 5’ RACE was performed using First Choice RLM-Race kit

(Ambion) according to manufacturer’s instructions. Briefly, ligation of specific primers to 5’

and 3’ ends of the RNA allows the amplification of a PCR product that corresponds to the tran-

scription start site of gene of interest. The resulting PCR product was cloned into CloneJet

PCR Cloning Kit (ThermoFisher Scientific) followed by sequencing of several clones.

Ethics Statement

This project was approved by the French Ministry for Research (agreement #555.01) upon

review by its Ethics Committee for Animal Research CREMEAS #35, which approved the

research. Experiments were carried out in conformity with the 2010/63/UE European animal

bioethics legislation. Our animal care facility received agreement #F67-482-2 from the veterinary

services of the region Bas-Rhin (Direction Départementale de la Protection des Populations).

Supporting Information

S1 Table. Summary of infections of TEP1-GFP reporter with P. berghei. Control mosquitoes

and TEP1-GFP transgenic mosquitoes were grown together as larvae. Immediately prior to

infectious blood feeding mosquitoes were selected according to their GFP expression level sep-

arating into two groups with low or high expression. 7 days after infection, oocysts were

counted and compared between the three groups. n is the number of analyzed midguts in each

condition. p values were calculated for the difference in oocyst numbers between low and high

GFP expressing groups, using the non parametric Mann-Whitney t test.

(XLSX)

S2 Table. Infection data for Fig 4. n is the number of analyzed midguts, Prevalence of infection

is the number of midguts with at least one parasite out of the total number of midguts. Oocysts

and melanized parasites were counted 7 days after infection. p values are from the non paramet-

ric Mann-Whitney t-test. Compared groups are marked in bold and are indicated in Fig 4.

(XLSX)

S3 Table. Infection data for Fig 7. n is the number of analyzed midguts, prevalence of infec-

tion is the number of midguts with at least one parasite out of the total number of midguts.

Oocysts were counted 7 days after infection. P values were calculated using non parametric

Mann-Whitney t-test analysis.

(XLSX)
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S4 Table. Designed TALES and their Repeat-variable di-residues (RVDs). Taking advantage

of the ambiguous recognition of nucleotides by the RVD NS, TAL0 was designed to target

TRWSRSBRGGRAWTCCCS, thus targeting the following promoter sites: TGAGGGCAGGG

AATCCCC (TEP1), TATCAGGAGGAAATCCCC (LRIM1) and TATCACTGGGAATT

CCCG (APL1C).

(XLSX)

S1 Fig. Expression of GFP in TEP1-GFP,3xP3-RFP reporter mosquitoes. a. GFP expression

in the proventriculus of a blood fed female. b. GFP expression in proventriculus of a male. c.

GFP expression in a blood fed female showing expression in Malpighian tubules (mt) and

ovarian duct (od) of a blood fed female 24h after blood feeding. Right panel shows GFP expres-

sion in boxed ovary. d. Two transgenic larvae expressing GFP under the TEP1 promoter. Note

the strikingly different levels of GFP expression. GFP expression is in green, transgenic marker

in red. e. Two live transgenic TEP1-GFPmosquito abdomens showing variable GFP expres-

sion.

(TIF)

S2 Fig. Variability in GFP levels in transgenic TEP1-GFP larvae. 100 larvae were analyzed

on each indicated day and the level of GFP expression was noted, ranging from no GFP to +++

(highest GFP expression). Shown are 4 independent experiments analyzing four different gen-

erations.

(TIF)

S3 Fig. TEP1 levels in transgenic TEP1s;Vg-TEP1r. a. qPCR analysis of TEP1rmRNA in

TEP1s;Vg-TEP1r transgenic mosquitoes expressing TEP1r under control of the Vg promoter.

Mosquito RNA was analyzed at different time points after a blood feeding. Expression is rela-

tive to RPL19mRNA in each sample and normalized to time point zero hours after blood feed-

ing. b. Western blot analysis of mosquito whole body (carcasses) and hemolymph showing

that there is no increase in TEP1 protein levels in TEP1s;Vg-TEP1rmosquitoes. Control mos-

quitoes expressed GFP under the Vg promoter (TEP1s;Vg-GFP). PPO2 and actin were used as

loading control for hemolymph and carcasses.

(TIF)

S4 Fig. Binding of transgenic TEP1r to ookinetes. Control mosquitoes expressing TEP1r (left

panel), show TEP1 binding (red) to the majority of GFP expressing P. berghei parasites

(green). In TEP1mutant mosquitoes (middle panel) TEP1 does not bind to ookinetes and in

mutants over-expressing TEP1r (right panel), transgenic TEP1 is bound to some of the para-

sites.

(TIF)

S5 Fig. P. berghei infection of mosquitoes expressing transgenic TEP1r in wt background

following prior induction by blood feeding. Compared are transgenic mosquitoes expressing

TEP1r or GFP under the Vg promoter. For each mosquito group the un-induced (no prior

blood meal) and the induced (blood fed on a non infected mouse 3 days before infection) are

compared. Shown are live parasites (green circles) and melanized parasites (black circles) in

the midguts of blood fed mosquitoes 7 days after infection. Infection data is given in S2 Table.

(TIF)

S6 Fig. TEP1 promoter architecture. a. Schematic representation of the 3 kb promoter frag-

ment, indicating the position of potential TATA boxes (yellow), potential NF-κB binding sites

(blue) and TALE binding sites (red). Drawing not to scale. b. Four TEP1 promoter fragments

fused to a luciferase reporter gene. The position of potential TATA boxes (yellow), potential
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NF-κB binding sites (blue), TALE binding sites (red), Luciferase gene (light blue) and SV40

term (green) is shown. c. Sequence of the 251bp minimal promoter with TALE binding sites

(red) and transcription start site (determined by 5’RACE) indicated by an arrow and 5’UTR.

The GGGAATCCC NF-κB binding site is in the TAL0 recognition site indicated by Italic.

(TIF)

S7 Fig. Analysis of the activity of successive truncations of the TEP1 promoter region in S2

cells. Four different luciferase constructs (described in S3b Fig) were transfected into S2 cells

and analyzed for Luciferase activity. For each condition, induction of the NF-κB pathway was

triggered by addition of heat killed bacteria to cell medium. Depicted is luciferase activity in

non-induced (white) and E. coli challenged (grey) cells. Luciferase activity is normalized to the

activity in cells transfected with the full length promoter and uninduced. Shown is the average

of three independent experiments. Transfected construct carries firefly luciferase under the

control of TEP1 as well as Renilla luciferase under a constitutive promoter which serves as

control. Luciferase activity is expressed as firefly luciferase activity divided by Renilla luciferase

activity.

(TIF)

S8 Fig. Determining the best activation domain for TALES. TALEs with the same DNA

binding domain (TAL0) but different activation domains were co-transfected into S2 cells

together with the Luciferase reporter under the control of the minimal TEP1 promoter frag-

ment. Control (no TAL) were transfected with GFP, TALΔAD has no activation domain and

serves as control, yeast GAL4, heat shock factor 1 transcription (HSF) and Herpes virus VP-16

domains were tested. Depicted is luciferase activity in uninduced (white) and induced (grey)

cells. Luciferase activity is normalized to the activity in cells transfected with GFP and unin-

duced. Shown is a representative of at least 3 independent experiments. Error bars depict stan-

dard deviation from the mean of three biological repetitions.

(TIF)

S9 Fig. Mutating the NF-κB binding site in the TEP1 promoter abolishes induction by E.

coli. S2 cells were transfected with two different reporters, one with a 250bp fragment of TEP1

promoter carrying an NF-κB binding site, or with the same promoter fragment where the NF-

κB binding site was mutated (GGGAATCCCC to CGGAATACCG). Together with the

reporter, cells were transfected either with a plasmid encoding GFP (no TAL) or a TAL6-VP16

construct. Depicted is luciferase activity with (grey) or without (white) E. coli challenge. Lucif-

erase activity is normalized to relative to the activity in cells transfected with GFP and without

E. coli. Shown is a representative of at least 3 independent experiments. Error bars depict stan-

dard deviation from the mean of three biological repetitions.

(TIF)

S1 File. SPCLIP1 silencing abolishes P. berghei melanization in TEP1ΔT; Vg-TEP1r mos-

quitoes.

(DOCX)

S1 Text. Sequences. Complete sequences of plasmids, as well as promoters and TALE domains

that were used in this study.

(PDF)
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