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Abstract: Functioning ecosystems offer multiple services for human well-being (e.g., food, 

freshwater, fiber). Agriculture provides several of these services but also can cause 

negative impacts. Thus, it is essential to derive up-to-date information about agricultural 

land use and its change. This paper describes the multi-temporal classification of 

agricultural land use based on high resolution spotlight TerraSAR-X images. A stack of l4 

dual-polarized radar images taken during the vegetation season have been used for two 

different study areas (North of Germany and Southeast Poland). They represent extremely 

diverse regions with regard to their population density, agricultural management, as well as 

geological and geomorphological conditions. Thereby, the transferability of the 

classification method for different regions is tested. The Maximum Likelihood 

classification is based on a high amount of ground truth samples. Classification accuracies 

differ in both regions. Overall accuracy for all classes for the German area is 61.78% and 

39.25% for the Polish region. Accuracies improved notably for both regions (about 90%) 

when single vegetation classes were merged into groups of classes. Such regular land use 

classifications, applicable for different European agricultural sites, can serve as basis for 

monitoring systems for agricultural land use and its related ecosystems.  
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1. Introduction 

Human land use causes transformations of the earth surface. Humans profit from land use because 

different goods are provided from ecosystems, e.g., food, freshwater, timber and fiber [1-4]. The 

intensity of human land use increased rapidly in the twentieth century [1,5]. This refers especially to 

forest-covered and agricultural areas [2]. Today, most area in Europe is occupied by agriculture [4]. 

These areas are beneficial for crop production and simultaneously provide various other important 

ecosystem functions like e.g., water purification or habitat conservation for different species [4,6]. 

Although land use practices are important for human well-being and closely linked to functioning 

civilizations, they also can lead to negative impacts. For example, the expansion of croplands and their 

intensification allow for higher yields in food production, but also cause rapid and irreversible changes 

in landscape structure, biodiversity, and soil- and water quality [3-5,7].  

Up-to-date information about land use and its change is essential to assess status and development 

of land use and to explore the resulting effects [1,8]. Satellite-based remote sensing is well-suited for 

land cover and change detection because of its regular revisit intervals, a wide regional coverage, and a 

high availability [8]. There are numerous examples for land use classifications based on  

satellite-image data on global, regional and local scale. Prior systems with lower ground resolution like 

the LANDSAT series, SPOT 1–3 or ENVISAT were used for classifications on large scale with coarse 

resolution as the Global Land Cover 2000 or the CORINE project that generated land use information 

for world-wide scale and for the European continent [9,10]. In recent years new  

satellite-based multi-spectral scanners enabled a higher ground resolution. Land use classification 

derived from these satellite data allows for a better spatial and substantial distinction between different 

land use classes. This is shown in different studies, where land use classification derived from 

e.g., QuickBird or IKONOS-2 data is used for different applications, e.g., agricultural, environmental 

or soil erosion topics [11-13]. Nevertheless, multi-spectral scanners are restricted by lower data 

availability due to haze or clouds, especially when based on a satellite system. This fact is documented 

in many studies where lower classification accuracies result from insufficient input data [14-17].  

Since 2008, new satellite based radar images acquired by e.g., RADARSAT-2 or TerraSAR-X are 

available to generate multi-polarized radar images with a high ground resolution (Figure 1) [18,19]. 

Since, in contrary to passive systems, synthetic aperture radar (SAR) systems are not dependent  

on atmospheric influences or weather conditions, they are especially suitable for multi-temporal 

classification approaches. The basic idea of this approach is to use a stack of radar images within a 

vegetation period to classify time series. The phenology of different crop types and other agricultural 

vegetation structures leads to different conditions of their appearance and thus provides a higher 

content of information. Studies with previous systems like ERS-2 or ENVISAT-ASAR in general 

demonstrate the feasibility of this approach [20-23]. The results can improve, when decision tree based 

classifiers are used [24] or when a mix of optical and SAR data is applied [25]. Although there are 

various investigations with older SAR-apertures, there is lack of knowledge about possibilities of land 

use classifications with the new high resolution radar systems. 

The objective of this study is to test possibilities for multi-temporal land use classification in 

European agricultural areas on small scale with high resolution TerraSAR-X radar data. Because 
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agricultural areas can vary strongly in different regions, two highly differentiated study areas have been 

chosen for investigations.  

Figure 1. TerraSAR-X High Resolution Spotlight Image in HH and VV polarization. 

(© German Aerospace Center (DLR) 2009). 

 

2. Methodology 

2.1. Study Areas 

Two European study areas have been chosen for land use classification, one in Germany and one in 

Poland. The German area (Fuhrberger Feld) is situated in North Germany close to Hanover (52.56°N, 

9.84°E). The Polish area (Gorajec) is located in the very Southeast of Poland (50.68°N, 22.85°E) 

(Figure 2). Agriculture is the dominating land use in both regions but they differ strongly in their 

social, ecological, economic, and geomorphological conditions. The German area is characterized by 

intensive agriculture and modern production methods. Large fields with a low rate of field margin 

strips, hedgerows and other habitat structures dominate. Furthermore the terrain is flat. As a water 

protection area, it provides ground water as drinking water for the region of Hanover. 

The Polish study area belongs to one of the least developed regions in Europe [26]. Here traditional 

production methods are applied and the technical and agrochemical equipment standard is low. 

According to this, the landscape structure is dominated by a mosaic of habitat structures, and the size 

of fields is exceptionally small. The Gorajec area is prone to soil erosion due to steep slopes and loess  

soils [27]. The two regions are chosen to test the robustness and transferability of the classification 

method under varying conditions. 
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Figure 2. Location of study areas. (© ESRI online resources [28]). 

 

2.2. Data Sets 

During the growing season of the year 2009 (March to October) TerraSAR-X images for both study 

areas were acquired in High Resolution Spotlight Mode (HS) (Table 1). The images were taken in dual 

polarization VV and HH and delivered as ground range products (MGD or EEC) with equidistant pixel 

spacing in azimuth and ground range direction [29]. Eight images are available for the Gorajec area. 

For the Fuhrberger Feld region no images could be ordered in August and September, thus only six 

images are available. The incidence angles varied (cf. Table 1). Ground range resolution for Fuhrberg 

site is 2.1 m (3.4 m for May) and 2.3 m (2.0 m) for Gorajec. Resolution in azimuth direction is 2.9 m 

for May in Fuhrberg area and 2.4 m for all other acquisitions. The extent of the scenes is 5 km in 

azimuth and 10 km in ground range according to the HS-Mode. 

Table 1. Availability and incidence angle of TerraSAR-X images in the year 2009. 

Study area 
Day of 

acquisition 
Incidence angle [°] 

Resolution 

ground range [m] azimuth [m] 

Fuhrberg 11 March 2009 34,75 2,1 2,4 

Gorajec 14 March 2009 31,72 2,3 2,4 

Fuhrberg 13 April 2009 34,75 2,1 2,4 

Gorajec 27 April 2009 31,72 2,3 2,4 

Fuhrberg 22 May 2009 43,65 3,4 2,9 

Gorajec 13 May 2009 21 2 2,4 

Fuhrberg 18 June 2009 34,75 2,1 2,4 

Gorajec 10 June 2009 31,72 2,3 2,4 
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Table 1. Cont. 

Study area Day of acquisition Incidence angle [°] 
Resolution 

ground range [m] azimuth [m] 

Fuhrberg 10 July 2009 34,75 2,1 2,4 

Gorajec 13 July 2009 31,72 2,3 2,4 

Fuhrberg no data for August 2009    

Gorajec 04 August 2009 31,72 2,3 2,4 

Fuhrberg no data for September 2009    

Gorajec 06 September 2009 31,72 2,3 2,4 

Fuhrberg 17 October 2009 34,75 2,1 2,4 

Gorajec 9 October 2009 31,72 2,3 2,4 

2.3. Ground Truth 

In 2009, vegetation mapping (arable land, grasslands) was conducted to generate ground-truth 

information (Figure 3). In the Fuhrberg region, vegetation mapping was conducted simultaneously to 

the image date; 152 fields were visited regularly on each acquisition date and 46 fields once in July. 

This results in a total number of 198 test fields for the Fuhrberg region.  

Figure 3. Location of ground truth areas collected in 2009. 

 

In the Gorajec area, ground truth information on fields was collected on three dates during the 

vegetation period in 2009 matching the acquisition dates in April, August and October. A total of  

135 fields were mapped in the Polish study area.  
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The size of the investigated fields differs considerably between both study areas. The mean size of 

the fields in the Fuhrberg region is 5.27 ha, the maximum area is 24.36 ha and the smallest field has a 

size of 0.37 ha. The fields average size in the Gorajec is 0.70 ha (max. size 3.12 ha, min size 0.03 ha). 

As listed in Table 2, 15 different crop types were sampled in each study area. The differences of 

both study areas lead to different characteristics of crops with regard to cultivation practices and 

different cultivars. This is reflected by the comparison of the ground truth results. 

Table 2. Land cover type and number of plots in the study areas. 

Fuhrberg (Germany) Gorajec (Poland) 

Crop type No. of fields Crop type No. of fields 

grasslands 43 grasslands 4 

oat 4 Oat 7 

rye 33 Rye 12 

barley 20 Barley 24 

maize 13 Maize 5 

spelt * 1 grain mixture 21 

wheat 9 wheat 25 

winter rape 8 turnip rape * 2 

sugar beets 18 sugar beets * 3 

potatoes 24 Potatoes 6 

fallow land 2 fallow land 4 

strawberries * 3 black currant 5 

asparagus* 12 Tobacco 13 

beans* 1 beans * 4 

Lolium perenne (ryegras) 4 Trefoil 4 

* crops excluded from classification (see Section 2.5). 

In the Fuhrberg area, the presence of weeds is low in most fields because of inputs of fertilizer and 

pesticides. In Gorajec crops are less developed and the amount of weeds is higher than in Fuhrberg. 

Most fields contain different kinds of weeds or suffer from a disease—a hint to a possibly low 

pesticide input. There is also a huge number of fields with a mixture of different types of grains 

(barley, wheat and oat; wheat and rye) in the Gorajec area. This is not found in the Fuhrberg area. 

During the field campaigns several parameters were recorded for each investigated field in a  

check list:  

 Local situation of crop type and its phenological stage, according to the BBCH—scale for the 

description of growth stages of mono- and dicotyledonous plants [30]; 

 Cultivation practices; 

 Other relevant observations (e.g., weed content, crop residues). 

Additionally, GPS-referenced pictures of all ground truth areas were taken and the local weather 

conditions and moisture of surface area (caused by haze or rain) were recorded for each acquisition date.  
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In addition to this, during the year 2010 ground truth of hedges, ruderal sites and grasslands were 

taken in both study areas. This vegetation does not change considerably within a time period of two 

years; we assumed that the 2010 ground truth data were also valid for 2009. 

In the Fuhrberg area, a total number of 115 hedges with an area of 27.9 ha and 18 ruderal areas  

(2.5 ha) were mapped. Moreover, ground truth information and the position of 21 hedges with an 

overall area of 5.5 ha were taken in the Gorajec area. Additive information about grassland and ruderal 

vegetation was gained from squares with a size of 8 × 8 m (72 for grasslands and 40 for ruderal areas). 

2.4. Image Pre-Processing 

Images which were ordered as MGD products were georeferenced by use of EEC product types. 

After co-registration of the images, the multi-temporal DeGrandi filter was applied for data sets of both 

areas. The described procedures were performed with ENVI SARSCAPE Software.  

For radiometric calibration a procedure was written in IDL (Interactive Data Language) by use of a 

formula according to INFOTERRA [31]:  

σ
0

[dB]=10 log10(CalFact DN
2
) + 10 log10(Sinθloc) (1)  

where:  σ
0

dB = Calibrated pixel value in decibel  

CalFact = Calibration and processor scaling factor  

  DN = Pixel intensity value  

θloc = Local incident angle (angle between the radar beam and the normal to reflecting 

surface).  

2.5. Image Classification 

For image classification the Maximum-Likelihood Classifier (ML) is chosen which represents a 

common classification approach. Its feasibility for land use classification with multiple datasets is 

described in different studies [25,32]. About 50% of ground truth fields per class have been chosen 

randomly to train the classifier and the rest is used to test exterior accuracies of classification results.  

For the Fuhrberg region 12 vegetation classes are selected. Four vegetation classes (fallow land, 

strawberries, beans, spelt) are excluded due to a too limited amount of ground truth. Asparagus is 

masked out because of strong inhomogenity in the measured signal due to a strong impact of plants‘ 

row direction and height. In the Gorajec area, 14 vegetation classes are identified. In this region the 

quantity of ground truth areas for sugar beet, turnip rape and beans is not sufficient to create own  

crop-classes. Urban regions and forests are also masked to be excluded from the classification process. 

The ML-classifications are realized using all available images, but separately for HH, VV and both 

(HH and VV) polarizations. 

2.6. Assessment of Accuracies  

Accuracy assessment was done by comparing the mean backscatter signal values per class. They 

showed a difference in backscatter for broad- and fine-leaved vegetation types. Crops with broad 

leaves cause a high backscatter of radar signal after full development of canopy structure, whereas 

those with fine leaves show low backscatter values (Figure 4) [33]. Furthermore there is a 
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characteristic low backscatter signal during spring time for fine-leaved vegetation that is not ploughed 

during the year, e.g., grasslands and hedges, while ploughed soils and winter grain generally cause 

higher backscatter (Figure 5) [33].  

Figure 4. Mean backscatter values per field in June 2009 for VV polarization in the 

Fuhrberg area. 

 

Figure 5. Mean backscatter values per field in March 2009 for VV polarization in the 

Fuhrberg area. 

 

The different backscatter characteristics of broad and fine-leaved canopy structures and between 

ploughed and unploughed soils promise high classification accuracies for these groups of vegetation 

types (class groups). According to this knowledge, the accuracies of classification results were tested 

for the class groups and additionally for spring and winter grain (Figure 6). The advantage of this 
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approach is a significant improvement of land use information accuracy for aggregated land use 

classes. Thus, after calculation of the accuracies for each single class, the ability of distinction between 

the two class groups ‗broad-leaved‘ and ‗fine-leaved‘ was tested in a second accuracy assessment. In a 

third working step, the group of fine-leaved classes was tested for the accuracies between ploughed and 

whole year cover vegetation classes (unploughed). This is equivalent to a differentiation between grain 

and no grain because grain is the only crop group within this class-group which needs ploughed soil. In 

the last step, the differentiation between winter and spring grain within the grain class was checked.  

Figure 6. Definition of class groups for accuracy assessment (schematically). 

 

Table 3 assigns the crop types (single classes) of the study areas to the class groups. Crops that 

create a homogeneous horizontally closed canopy of broad leaves (e.g., potatoes, sugar beet or rape) 

are clumped into the broad-leaved class group. Vegetation types with mainly fine leave canopy 

structure like grain or grasslands belong to the fine-leaved group. Ruderal areas and hedges, which 

mainly contain fine-leaved plants or bushes, are also part of the fine-leaved class group. This is also true 

for blackcurrant bushes in the Polish area where the ground is covered by dense grass and weed. Rye is 

cultivated as winter grain in both study areas; and in the Polish area some of the wheat fields are 

cultivated with winter wheat. All other cultivated grain in both areas are drilled in spring (spring grain). 
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Table 3. Distribution of single classes within class groups. 

Class group Fuhrberg Gorajec 

broad-leaved maize; potato; rape; sugar beets maize; potato; tobacco 

fine-leaved 

grasslands; ruderal;  

hedges; Lolium perenne (ryegras);  

oat; barley; wheat; rye 

grasslands; ruderal;  

hedges; black currant; trefoil; oat;  

barley; spring wheat; winter wheat; 

rye; grain mixture 

no grain (unploughed) 
grasslands; ruderal;  

hedges; Lolium perenne (ryegras) 

grasslands; ruderal; hedges; black 

currant; trefoil 

grain (ploughed) oat; barley; wheat; rye 
oat; barley; spring wheat; winter 

wheat; rye; grain mixture 

winter grain rye rye; winter wheat 

spring grain oat; barley; wheat; 
oat; barley; spring wheat;  

grain mixture 

3. Accuracies of Classification Results 

3.1. Classification Accuracies for Fuhrberg Area 

Overall classification accuracy for all classes is highest (61.78%) when both polarizations were 

considered. It is lower when only one polarization (HH 52.9% or VV 55.48%) is used for classification 

process. Accordingly, the Kappa coefficient is highest for both polarizations with 0.57 (0.48 for HH 

and 0.5 for VV).  

The trend of highest accuracies for classification with both polarization is also recognizable 

regarding producer‘s and user‘s accuracies for each of the 12 vegetation classes (Figure 7). Very few 

classes show slightly higher accuracies for just one polarization, e.g., the producer‘s accuracy for oat 

and wheat. But for most classes producer‘s or user‘s accuracies of at least one polarization are very 

close to the ones of both polarizations and in some cases even higher. Therefore in some cases it is 

feasible to use one polarization to achieve better results. Rape crops have highest accuracies of above 

90% whether viewed from the user‘s or from the producer‘s perspective. Oat and grasslands also 

achieve user‘s accuracies of above 90% but have lower producer‘s accuracies of about 70%. Most of 

the other classes have producer‘s accuracies of above 50% for at least one polarization state. The user‘s 

accuracies show higher values for sugar beets and rye when compared to producer‘s accuracies, but 

most classes have decisively lower user‘s accuracies. It is remarkable that there is a very low user‘s 

accuracy rate for ruderal areas. This is due to the fact that test areas of the classes ‗grasslands‘ and 

‗hedges‘ have been misclassified as ruderal at a high quota. A very similar effect can be observed for 

hedges, where many pixels are misclassified as ruderal. 
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Figure 7. Producer‘s and user‘s accuracies for single classes in the Fuhrberg region. 

 

There is a significantly higher accuracy for the classification of class groups in comparison to single 

classes (Figure 8). The differentiation between broad-leaved and fine-leaved vegetation is possible at a 

very high overall accuracy rate of 95.87% (Kappa coefficient 0.92) for both polarizations and has 

similar high values for classification with use of just one polarization. The achieved producer‘s 

accuracies for the broad-leaved class group are above 90%. The fine-leaved class group is classified by 

producer‘s accuracies higher than 95%. The user‘s accuracies for both class groups are similarly high 

with rounded 94/95%. 

The overall accuracy of discrimination between grain and no grain (for unploughed, see Section 2.6) 

within the fine-leaved group and the broad-leaved is 91.36% for both polarizations (Kappa coefficient 

0.88). The values for VV polarization are similar (88.46%, 0.84) and lower for HH polarization 

(82.99%, 0.78). Producer‘s accuracies reach values nearly or above 90% except of the HH polarization 

results for both groups (grain and no grain). User‘s accuracy is very high for grain with 97.49% 

accuracy for both polarizations (91.3% for HH and 95.99 for VV). The class group of ―fine-leaved but 

no grain‖ is characterized by lower user‘s accuracies of 75.73% for both polarization (60.88% HH, 

70.33 % VV). This is due to a relatively high misclassification quota of the classes ‗ryegrass‘ (Lolium 

perenne) and ‗hedges‘ as ‗rye‘. This fact is also responsible for the lower producer‘s accuracy of the 

rye class. 
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Figure 8. Classification accuracies for class groups in the Fuhrberg study area (a) Overall 

accuracy for HH + VV polarization is 95.87% (Kappa coefficient is 0.92). For HH 

polarization values are 93.89% (0.89) and for VV polarization 94.41% (0.89).  

(b) HH + VV: 91.36% (0.88), HH: 82.99% (0.78), VV 88.46% (0.89) (c) HH + VV: 

82.06% (0.77), HH: 72.5% (0.66), VV: 77.89% (0.73). 
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An additional differentiation of winter and spring grain enables overall accuracies of 82.06% with a 

Kappa coefficient of 0.77 with both polarizations and distinction of the class groups broad-leaved, no 

grain, winter grain and spring grain. Values for VV polarization are slightly lower (77.89%, 0.73) and 

about 10% (Kappa 0.66) lower for HH polarization. Regarding the producer‘s and user‘s accuracy, it is 

recognizable that accuracy values are 70% and more for both polarizations, with exception of producer‘s 

accuracy for winter grain (55.42%). That is because a high quota of test areas for rye has been classified 

as spring grain. The VV and especially HH polarization show lower accuracies in all cases.  

3.2. Classification Accuracies for Gorajec Area 

Overall accuracy for all classes and polarizations is very low (39.25%, Kappa coefficient 0.32). 

Accuracy for VV polarization classification is almost equal (38.44%) but lower at above 10% for HH 

polarization (28.59%, 0.21). 

Accuracies of VV and HH+VV are also very similar with regard to producer‘s and user‘s accuracies 

(Figure 9). VV classified producer‘s accuracies are clearly higher for trefoil, spring wheat and rye. The 

ones of both polarizations are higher for hedges. That is the only class where producer‘s accuracies of 

HH are higher than for VV. Maize and tobacco exhibit high accuracies from user‘s and producer‘s 

view, whereas potatoes and blackcurrant have high producer‘s but lower user‘s accuracies. Winter 

wheat is the only grain with user‘s accuracies of above 50% but producer‘s accuracies are lower. 

Compared to accuracies of classification for Fuhrberg region, results for the class grasslands are 

obviously less reliable for Gorajec. 

Figure 9. Producer‘s and user‘s accuracies for single classes in the Gorajec region. 
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Overall accuracies rise up to 94.77% with a Kappa coefficient of 0.84 (HH + VV) for classification 

of the class groups broad-leaved and fine-leaved (Figure 10). The values remain on a high level when 

just VV polarization is considered for classification (93.87%, 0.81) and show lower accuracies for HH 

polarization (85.7%, 0.66). Producer‘s accuracy for both class groups is above 90% when both 

polarizations are considered and slightly lower for VV polarization. Classification with only HH 

polarization results in clearly lower accuracy values for broad-leaved. While user accuracies remain on 

a high level for fine-leaved, there is a decline for the broad-leaved group user‘s accuracy. A similar 

effect is recognizable for the group of not ploughed fine-leaved whereas user‘s accuracies are lower 

than producer‘s. This effect can be explained by the fact that there is a much higher quota of test fields 

for grain. Nevertheless, producer‘s accuracies exhibit high values for the class of no grain and  

broad-leaved. A classification for the class groups broad-leaved, fine-leaved, not ploughed  

(fine-leaved), spring grain and winter grain results in an overall accuracy of 76.22% and a Kappa 

coefficient of 0.71 (for HH 67.7%, 0.62, for VV 74.95%, 0.7). Classification of the same class groups 

is close to the accuracies for the Fuhrberg area (HH + VV 82.06%, 0.77) although the overall 

accuracies for single classes are clearly lower in Gorajec. 

4. Discussion 

We proved in this study the capability of high resolution TerraSAR-X data for classification of 

agricultural land use class groups in two different regions. The classification results are validated 

against a great quantity of ground truth data regularly collected on numerous fields (198 for Fuhrberg 

and 135 for Gorajec). The spatial resolution of the system is sufficient to classify also narrow and small 

land use patterns. This is shown especially by the results of the Polish test area. The robustness of 

classification is also remarkable since accuracies of class groups are comparable for both study areas.  

The presented results show that classification accuracies become clearly better when single classes are 

merged into class groups. Thus the reliability of land use information becomes significantly higher but 

with a coarser class differentiation. McNairn et al. [25] already remarked that merging of single grain 

classes after classification produced higher accuracies for one single grain class than the use of merged 

grain for classification process. The results of our study approved this statement. Merging of classes 

after classification increased the accuracies for both study areas to a comparable high level despite very 

different conditions in both regions. On the contrary, classification results for single classes vary 

strongly between the study areas and are lower than for the merged class groups in general. Accuracies 

for single classes in Fuhrberg area are clearly higher than for Gorajec where most classes have 

accuracies lower than 50%. Nevertheless, in Fuhrberg most classes do not exceed an accuracy rate of 

70% with the exception of rape which is correctly classified by over 90%. 

It is noticeable that some classes have highest accuracies in Fuhrberg but lowest in Gorajec. For 

example grasslands have third highest producer‘s accuracy of all Fuhrberg classes but lowest in 

Gorajec. This effect is caused by different agricultural practices in both regions which is a good 

example of the dependency of classification quality on political, social and economic conditions on 

regional scale resulting in differences in agricultural land use. Grasslands in Fuhrberg are intensively 

used on a large scale with a regular swathe to get highest yields. Gorajec is known for extensive land 

use [26]. Grasslands are sprinkled in small patterns with different intensity of use or abandonment. 
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Figure 10. Classification accuracies for class groups in the Gorajec study area. (a) Overall 

accuracy for HH + VV polarization is 94.77% (Kappa coefficient is 0.84). For HH 

polarization values are 85.7% (0.66) and for VV polarization 93.87%, (0.81).  

(b) HH + VV: 89.69% (0.82), HH: 78.57% (0.68), VV: 87.93% (0.79) (c) HH + VV: 

76.22% (0.71), HH: 67.7% (0.62), VV: 74.95% (0.7). 
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A more subtle differentiation within the class groups would increase classification quality. This can 

be realized by different approaches that will be tested in a next step. In preliminary classification tests, 

the accuracies for grasslands in the Gorajec region could be improved by a factor of 3. That was 

possible when no grain class group was classified a second time based on two selected images at 

specific dates. This is because single classes exhibit high variations in backscatter signal at certain 

dates of acquisition. The selection of these dates is not possible when all classes are considered but 

much easier for the few classes within a class group. Another approach to improve results is to use 

object based classification for the group of fine-leaved but not ploughed (no grain). By this, linear 

structures at the crops edges (e.g., hedges, field margins) can be determined by their characteristic 

linear shapes. 

As the described classifications for VV polarized images show better results than the one of  

HH-polarized images, and the acquisition of data with just one polarization increases ground  

resolution [29], the use of VV polarized data might improve classification in fine structured regions. 

Furthermore, a combination with optical data might be powerful for higher classification accuracies [25]. 

Land use classification with TerraSAR-X data as presented in this study opens numerous 

possibilities to derive knowledge about impacts caused by agricultural land use and its change. The 

intensity of land use strongly affects ecosystem and causes e.g., soil erosion, loss of biodiversity or water 

pollution [4,34]. The applicability of remote sensing land use data for the assessment of soil erosion is 

attested in different studies [13,35,36]. The high accuracy of land use classification as presented in this 

study is able to improve results for soil erosion assessments or other applications based on accurate 

land cover classification. With regard to biodiversity, knowledge about field sizes, the quantity of crop 

edge structures (e.g., hedges, field margin strips and other ruderal vegetation structures) and the 

amount of weeds within crops is essential. As mentioned, these parameters vary strongly between both 

study areas and thus our classification results are well suited to demonstrate assessment and monitoring 

of different indices in agricultural regions. 

5. Conclusions 

Results of this study underline the robustness of multi-temporal classification approach with high 

resolution TerraSAR-X spotlight data. It is not only robust in availability of data, independent of 

atmospheric conditions, but also in its applicability for strongly diverse regions in terms of agricultural 

management and geology. That allows for automatic and consistent land use classifications with 

accuracies of about 90% for defined class groups. The approach offers possibilities to generate 

important basic land use information for monitoring of different agriculture related systems and 

ecosystems that serve for human well-being. In the future, further investigations will focus on object 

based approaches or Random Forest classifiers for better classification results of single classes instead 

of class groups. 
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