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Abstract
In this paper, we present an electrode geometry for themanipulation of ultracold, rovibrational
ground stateNaKmolecules. The electrode system allows to induce a dipolemoment in trapped
diatomicNaKmolecules with amagnitude up to 68%of their internal dipolemoment along any
direction in a given two-dimensional plane. The strength, the sign and the direction of the induced
dipolemoment is therefore fully tunable. Themaximal relative variation of the electric field over the
trapping volume is below 10−6. At the desired electricfield value of 10 kV cm−1 this corresponds to a
deviation of 0.01 V cm−1. Furthermore, the possibility to create strong electricfield gradients provides
the opportunity to addressmolecules in single layers of an optical lattice. The electrode structure is
made of transparent indium tin oxide and combines large optical access for sophisticated optical
dipole traps and optical lattice configurations with the possibility to create versatile electric field
configurations.

1. Introduction

Atomtronics heads for the development of novel, technological devices based on quantum systems of cold and
ultracold atoms and is expected to have an impact on future technology comparable to the invention of solid-
state transistors in the 60’. Recent remarkable progress in this youngfield includes the realization of atomic
circuits implemented eitherwith planar electronics circuits, so-called ‘atom-chips’ [1], or by ‘painting’ light
potentials on demand [2]. The different pathways for the realization of atomtronics devices are object of intense
research and continuous progress and are discussed in this focus issue.

While the name atomtronics suggests that these future devices will be realized based on atomic quantum
objects, the use ofmolecular quantum systems [3]with unique propertiesmight open additional opportunities.
Thefield of ultracold quantumgases ofmolecules has recently seen tremendous progress opening newprospects
for fundamental research and technological applications. Polarmolecules promise to be an excellent test ground for
fundamental laws of nature [4], few andmany-bodyphenomena [5] andnovel quantumcomputing schemes [6].
Ensembles of ultracold, polar, diatomicmolecules are considered to be one of themost promising candidates for
the investigation of strongly correlated quantummany-body systems due to strong, long-range and anisotropic
dipole–dipole interactions [5, 7, 8].

Thewealth of opportunities with ultracoldmolecules is due to the complexmolecular structure with
rovibrational quantumdegrees of freedom,which, at the same time, represents a severe hurdle in the
implementation of efficient cooling, preparation and control schemes for ultracoldmolecular quantumobjects.
Several extended review papers have recently been published, focusing in particular on the issue ofmolecular
cooling andwe refer to them for a detailed discussion of differentmethods and techniques [9–12].

Another very demanding aspect in the control of ultracoldmolecules is the generation of stable and highly
controllable electricfields on the order of 10 kV cm−1 to induce and control themolecular dipolemoment. The
flexible and precise tuning of the strength and the angle of the induced dipolemoment is a stringent requirement
that, when achieved, will open theway for the realization of exciting theoretical proposal onmolecular dynamics
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and novel quantum phases, as for example [13–16]. Several groups currently work to obtain ultracold samples of
polarmolecules. Some of themwere already able to obtain ground-statemolecules (KRb [7], LiCs [17],
RbCs [18, 19], NaK [20], NaRb [21]). For all of these groups the control of the electric field, polarizing the
molecules, will be an important technical topic to solve.

In this paper, we discuss the design and realization of an electrode system for themanipulation and control
of ultracoldNaKmolecules. Ultracold samples of polar, rovibrational ground stateNaKmolecules will be
prepared in our experiment through the association of ultracoldNa andK atoms [22, 23] and are potential
candidates formolecular dipolar quantumobjects in future technological atomtronics devices.

The presented electrode systemmeets the requirements regarding versatility, stability and large optical
accessmentioned above. It allows the application of strong, tunable, homogeneous electric fields, up to
10 kV cm−1, along any direction in a given two-dimensional plane. The strength and the direction of the
induced dipolemoment is therefore fully tunable. At 10 kV cm−1 the induced dipolemoment ofNaK ground
statemolecules corresponds to 68%of their internal dipolemoment. In addition the electrode system can be
used to create strong electric field gradients, providing the opportunity to addressmolecules in single layers of an
optical lattice.

In section 2we review the principle of the induced dipolemoment in the rigid rotormodel and present some
estimates on the experimental requirements. In section 3, we discuss the critical influence of inhomogeneous
electric fields on trappedmolecules discussing in particular field gradients and curvatures. Section 4 reviews our
numerical simulations on different electrode geometries and describes in detail our chosen experimental system.
Finally, we summarize ourfindings and outlook the possibility to extend our system to themanipulation of
molecules in on-chip systems.

2.Molecules in electricfields

In this section, we review the basic formalism to describe the effect of electricfields on so-called rigid rotor
molecules such as bi-alkalimolecules [24]. Neglecting e.g. the electric quadrupole effect, we assume that the rigid
rotor fully describes amolecule in its vibrational ground state. TheHamiltonianH0 of themolecule is given by:

d~ +H B N N 1 . 1ij i i ij
0 · ( ) ( )

Here,H0
ij is given in the basis of its eigenfunctions ñN m,i Ni

∣ , which are the spherical harmonics.B is the rotational
constant of themolecule and δij is the Kronecker delta. The quantumnumbers specify the rotationNi and its
projection mNi

. As ñN m,i Ni
∣ are parity eigenstates, amolecule prepared in a specific rovibrational quantum state

ñN m,i Ni
∣ cannot have an electric dipolemoment in a space-fixed reference frame.

Themolecular dipolemoment onlymanifests in a space-fixed framewhen applying an external field, which

breaks the spatial isotropy ofH0. The coupling between an applied electric DC field 

and themolecule’s

internal dipolemoment

d mixes ñN m,i Ni

∣ of different parity. The new eigenstates are associatedwith afinite
dipolemoment in the laboratory frame and are obtained by diagonalizing theHamiltonian

d~ + - á ñ
 

H B N N N m d N m1 , , . 2ij i i ij i N j Ni j· [ ( )] ∣ · ∣ ( )

Aligning the electricfield along the vertical coordinate z, 

and


d enclose the polar angle θ.

RewritingHij in dimensionless quantities leads to:

d q~ + - á ñH N N E N m N m1 , cos , . 3ij i i ij i N j Ni j[ ( )] ∣ ∣ ( )

In this representation energies are inunits ofB and electricfields inunits ofB/d. Thedimensionless electricfieldE
thus gives a directmeasure of the coupling between rotational states. ForNaK, the dipolemoment of the
vibrational ground statemanifold is d= 2.76 Debye [25] and the rotational constantB is h× 2.83GHz, which
results in a characteristic electric field ofB/d= 2.04 kV cm−1. Here, h is the Planck constant.

The new ground state of themolecule ñA∣ converges to ñ0, 0∣ for E 0 and its energy is given by
= á ñU E A H AA ( ) ∣ ∣ . The induced dipolemoment of gñA ,∣ , lines upwith the quantization axis z, which is

defined by the direction of 

, and is given by the first derivative ofUAwith respect toE:

g = -
¶
¶
U

E
. 4A ( )

Infigure 1we plot the induced dipolemoment γ, in units of d, as a function ofE, up to 6.0 B/d. The quantity γ
rises linearly for smallE, but saturates at a value of one for  ¥E where the electric field dominates all energies
in equation (3). In the intermediate region the coupling of ñ0, 0∣ to higher rotational states provides a smooth
transition between both regimes. At =E B d5.0( ), which corresponds to 10 kV cm−1 in the case of aNaK
ground statemolecule, an induced dipolemoment of 0.68 (d), corresponding to approximately 1.9 Debye, is
reached.When giving numeric values for the dimensionless variables, like ‘E= 5.0 (B/d)’, the corresponding

2

New J. Phys. 18 (2016) 045017 MWGempel et al



conversion to SI units is indicated in brackets. Numeric values of the electric field given in SI units (like
‘10 kV cm−1

’) always refer toNaK.
The next sectionwill focus on the effects of spatial variations inE on the trapping of amolecule.

3. The effect of electricfields on trappedmolecules

Due to the Stark shift, the energy of a ground statemolecule is strongly affected by temporal and spatial changes
of =E U U E, A A ( ). These changes can either create excitations or deform the overall spatial potentialUtot of a
molecule, which can even lead to a loss ofmolecules from the trap. In our experiment the overall spatial
confinement ofNaK is obtained by two red detuned, far off-resonant, horizontal, crossed optical dipole trap
beams, see figure 2. In the same figure, the electrodes are depicted as rods extending in the y direction. The
direction of the electric field resulting from the applied potentials can be inferred from the direction of the
induced dipolemoments of themolecules (arrows in picture). A vertical one-dimensional optical lattice can be
added to the trap. It creates a stack of layers inwhich themolecules are confined in a quasi two-dimensional
potential. Further lattice beams along the directions of the optical dipole trap can imprint a full three-
dimensional lattice (not depicted here).

When being exposed to an applied electric field, an optically trapped polarmolecule experiences a position
dependent potential energy shift given by

= +U U U . 5tot dip el ( )

whereUdip andUel are the energy shifts from the confining potential and theDCStark shift, respectively. For
simplicity we limit the following considerations regardingUtot to the horizontal direction x. The treatment in the
other two directions is analogous. The confinement, provided by the optical dipole trap, can be parametrized as a
Gaussian profile (see figure 3(A))

Figure 1. Induced dipolemoment and itsfirst derivative. Solid line: Induced dipolemoment γ as a function ofE. Dashed line:α, is the
second derivative of UA∣ ∣. Themolecular energy follows a quadratic and a linear Stark effect in the limit of low and high electric field,
respectively.

Figure 2.Three-dimensional view of the horizontally crossed optical dipole trapwith one-dimensional optical lattice in the vertical
direction. The twodipole trap beams, propagating in the x and y direction are sketched in red, the vertical optical lattice in blue. Two
layers of the optical lattice are indicated. The gray rods indicate the electrodes extending in the y direction, which create the electric
fields in the x-z plane to polarize themolecules. The arrows indicate the induced dipolemoments of themolecules.
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= - = -- -U U e U e 6x w x
dip dip,0

2
dip,0

20
2 2 ( )( ) ˜

with amaximum trap depthUdip,0, in units ofB. The spatial dimension =x x

w0
˜ is normalized to thewaistw0 of

the optical dipole trap, which is 100 μmin our setup. For amolecule in its rovibrational ground state the
potential created by the electric field is given by

=U U E x . 7el A ( ( ˜)) ( )

Therefore, spatial variations δE of the electric field lead to perturbations of themolecules’ confinement. In the
worst case the change of the electric field over the optical dipole trap can lead to a deconfinement of the
molecules. As such perturbations aremost severe at high polarization, i.e. electric field, we assume

g d d= - +U U E EE Eel A
2

0 0
∣ ∣ ( ).

3.1.Different contributions of the electricfield
The influence of the electric field on the trapping of themolecules can bemost easily describedwhen expanding
the spatial dependence of E x( ˜) in a Taylor series of x̃ around the symmetry center of the electrode geometry at
=x 0˜ :

= + + +E x E E x E x x , 80 1 2
2 3( ˜) ˜ ˜ ( ˜ ) ( )

where = ¶
¶ =

E E

x x
1

0˜ ˜
and = ¶

¶ =
E E

x x
2 2 0

2

2˜ ˜
are the gradient and curvature of the electric field, respectively. For

electrode geometries, whose characteristic length scale l ismuch larger thanw0, truncating x3( ˜ ) is a good
approximation, as terms of the order xn˜ scalewith w

l

n
0( ) . In our setup, the electrode geometry has a characteristic

length scale of 10 mm » 0.01w

l
0( ) and terms of higher orders in x̃ are naturally suppressed. By using x̃ instead

of x, the gradient E1 and curvature E2 correspond to the absolute field change over the length scale of the optical
dipole trap.Hence E1 andE2 can be compared directly to the spatially uniform termE0. To obtain the actual
gradient and curvature, E1 andE2must be divided byw0 and w0

2 respectively. The total potential, with electric
field terms up to the second order spatial deviations in the electricfield is given by

= - + + + +-U U e U E E x E x ... 9x
tot dip,0

2
A 0 1 2

22 ( [ ˜ ˜ ] ) ( )˜

g» - + - + - +-U e U E x E x E x E x . 10x
E Edip,0

2
A 1 2

2
1 2

2 22

0 0∣ ∣ [ ˜ ˜ ] ([ ˜ ˜ ] ) ( )˜

As illustrated infigure 3(B), the gradient termE1 tilts the confining potentialUtot. The curvature of the electric
field E2 reduces the trap depth and the trap frequency in at least one spatial direction [26], as can be seen in
figure 3(C). In the following sections, wewill discuss these effects quantitatively andwewill deduce requirements
on the electrode system.

3.1.1. Homogeneous fields
The constant term E0 does not change the shape ofUtot. However, when considering temporal variations of the
electric field, it can lead to excitations ofmolecules to higher rotational states. But excitations will only occur
when [27]

¶
¶

E

t

B

h
12 . 110 ( )

This corresponds to an electricfield noise of 100 kV cm−1×GHzor a change in the electricfield of 10 kV cm−1

in 0.1 ns forNaK— a ramping speed far frombeing experimentally relevant.

3.1.2. Higher orders in x
The overall potential including the effect of an electric field gradient is

g» - --U U e E x . 12x
Etot dip,0

2
1

2

0∣ [ ˜] ( )˜

Figure 3.Deformation ofUtot due to electricfields. (A) shows the cross section of an unperturbed optical dipole trap potentialUdip. (B)
visualizes the effect of an additional potential gradient along the x direction, (C) shows the effect of an electricfieldwith curvature on
the confining potential. The arrows indicate the trapping depth of the resulting potential.
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Theminimumof such a potential, shown in figure 3(B), exists only for an electric field gradientE1 smaller than:

g
=E

e

U2
. 13

E
1,lim

dip,0

0∣
( )

This limiting value disregards losses due to tunneling across the barrier at the open side of the tilted potential,
which is indicated by the black arrow infigure 3(B). Those tunneling events become, however, only relevant for
E1≈ E1,lim and can be neglected for the derivation ofE1,lim.

The effect of the electric field curvature E2 on the potential is illustrated infigure 3(C) and gives

g» - --U U e E x . 14x
Etot dip,0

2
2

22

0∣ [ ˜ ] ( )˜

In this case the trapping is only possible for curvatures smaller than

g
=E

U2
. 15

E
2,lim

dip,0

0∣
( )

Table 1 summarizes ourfindings forE1,lim andE2,lim and gives typical values for theNaKmolecules, forwhich
we consider a dipole trap depth ofUdip,0 ·B= kB× 10μKandan induced dipolemoment of 68%of the internal
dipolemoment. In this case the spatial variation of thefield across thedimension of the optical dipole trap givenby
w0 has to be lower than10

−4E0 thatmeans four orders ofmagnitude lower than thefield required topolarize.
When using an optical lattice along the direction of the gradient (or curvature) the lattice spacing takes the

role ofw0. In the case of a retro-reflected l = 1064 nm lattice the spacing is 532 nmand orders ofmagnitude
smaller thanw0. Accordingly, losses due to the deformation and the resulting ‘opening’ of the trapping potential,
as shown infigure 3 for the optical dipole trap, can be strongly suppressed by applying an optical lattice.Here we
have focused our attention on the constraint tomaintain a highly constant electric field. In the samemanner one
can consider the use of electric field gradients to investigate newphysics, similar to experiments performed in the
recent years in tilted optical lattices, e.g in [28–30]

Until nowwe assumed the symmetry center of the electric field to coincidewith the center of the optical
dipole trap. In a systemwith electric field curvature, it is also necessary to consider a displacement x0˜ between
the electricfield and the dipole trap center. In this case, the total confining potential is given by:

g» - - --U U e E x x 16x
E xtot dip,0

2
2, 0

22

0 0∣ [ ( ˜ ˜ ) ] ( )˜

In the case of x 00˜ , we recover the curvature limit found above. However, forfinite x E, x0 2, ,lim0
˜ can be

approximated1 by

g
=

+
E

U

e x

1

0.5
. 17x

E
2, ,lim

dip,0

0
0

0∣ · ˜
( )

3.2. Addressing single layers using electricfield gradients
In our experiments, we also aim to selectively addressmolecules in single layers of a stacked one-dimensional
optical lattice as the one shown infigure 2. This can be realized by applying a strong electric field gradient along
the lattice. The Stark shift then introduces a layer dependent transition energy for the excitation from the ground
state ñA∣ to thefirst rotationally excited state ñB∣ , which goes to ñ1, 0∣ for E 0. By choosing a specific
microwave frequency, it is thus possible to selectively drive the transition in a specific layer, similarly towhat has
been demonstrated for atoms bymeans ofmagnetic field gradients [31].

This can e.g. be useful in a bilayer system, when themolecules of one layer have to be prepared in a different
rotational state than themolecules in the other layer, a situation envisioned e.g. in [32].When, however,
considering amicrowave pulsewith afinite bandwidthσ′, the transition can only be selectively driven in one of
the layers when it is energetically detuned bymuchmore thanσ′ in the neighboring layer. In our experiment,

Table 1.Column 1 and 2: E1, lim andE2, lim as
given in the text. Column 3: experimentally rele-
vant example forNaK as explained in the text.

Coefficient Limit NaK68%

E1,lim ge

U2 dip,0 -2.7 10
w

4 kV

cm

1

0
·

E2,lim g
2

Udip,0 -4.5 10
w

4 kV

cm

1

0
2·

1
The given formula is an approximation. It deviates by atmost 20% from the correct value given

by h z z= - = + - = - + - +
g

h h
z

-E e x x x x x1 , with 2 and 8 3 81 48 27x
U x

2, ,lim
2

9

4
0 0

3
0
2

0
4

0
E0

dip,0

0

2 1
18

2 0
2

3( ) ˜ ˜ ˜ ˜ ˜
∣

˜
.
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with a layer spacing of 532 nm,we typically choose a bandwidth ofσ′= 20 kHz. To selectively address one of the
layers, will require an applied gradientmuch greater than B dw0.97 0( )when E0= 0. In the case ofNaK, this
corresponds to 2.0 · 102 kV cm−2, a gradient which is very hard to achieve in our setup.

However, as shown infigure 4 the splitting of the transition between different layers not only increases with
the electricfield gradient E1 (y-axis), but alsowith an homogeneous backgroundfieldE0 (x-axis), because the the
molecules enter the regime of the linear Stark effect2. At =E B d0.500 ( ) the gradient required for a splitting of
20 kHz has already reduced to - B dw5.2 10 3

0· ( ). In the case ofNaK this corresponds to 1.1 kV cm−2, which is
a realistic value for experimental realization (see section 2).

4.Design of an electrode configuration for the creation of versatile electricfields

After outlining the requirements on the electric field, the next step is the design of the electrode geometry.
Figure 5 shows a cross section of our vacuum chamber for the creation andmanipulation of polarmolecules. In
the center of the chamber (indicated by the sketch of a polarmolecule) all preparation steps formolecule
creation take place. This includesmagneto-optical trapping of sodium and potassium, trapping of the two
atomic species in amagnetic trap and evaporative cooling to quantumdegeneracy,magneto-association of the
two atomic species to Feshbachmolecules and subsequent transfer of themolecules to the rovibrational ground

Figure 4.Contours of constant splittingσ of themicrowave driven transition from ñA∣ to ñB∣ , inNaK. The contours indicate the
splittingσ of the transition from ñA∣ to ñB∣ between two layers of an optical lattice with 532 nm spacing, when applying a certain
electric field gradient E1 (y-axis) and background fieldE0 (x-axis). A splitting of s = 20 kHz, corresponding to a typical bandwidth of
amicrowave pulse, is indicated by the dashed, red line. The upper x-axis gives the polarization γ corresponding to the electric field
given on the lower x-axis.

Figure 5.Cross section of the vacuum chamberwith coils and high resolution imaging lens. The solenoids creating themagnetic fields
are shown in pink. The gray structures indicate theflanges inwhich the vacuumwindows aremounted. The twomainwindows
themselves are shown in blue. They are spaced by 22mm. In the center of the upper solenoid the first lens of the high resolution
imaging system is depicted. The sketch of a polarmolecule in the center indicates the location of the trapping region.

2
At a certain E0 this increase of the splitting reverses as á ñB H B∣ ∣ is repelled by energetically higher states.
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state. To provide enough space for obtaining high atomnumbers in themagneto-optical trap (MOT)we
separated the two opposingmainwindows of the chamber by 22 mm.Thewindows have a large diameter of
160 mm,which provides enough space to recess the solenoids creatingmagnetic fields and provides large optical
access for high resolution imaging.

To preserve the optical access, the electrodes creating the external electric fields formanipulatingmolecules
are implemented as an indium tin oxide (ITO) coating, of 167 nm thickness, on the two opposingmain
windows. ITO is electrically conducting and at the same time transparent in a broad range of the visible
spectrum. The coating is deposited on the vacuum side of the thewindows to reduce charged particle deposition
on the glass surfaces. Themeasured transmission of a single window at the sodiumD2 line (589 nm) is>99% in
the regionswithout ITO and>92% in the regionswith ITO. As the transmission of ITO in the infrared is less
favorable, the coatingmust have a gap in the center where infrared vertical beams, e.g. for an optical lattice, are
supposed to pass. This gap provides a transmission ofmore than 99. 9%at awavelength of 1064 nm.

Coating the electrode structure on themainwindows allows for arbitrary electrode configurations in the
two-dimensional plane given by thewindow surface. However, in the experiment, we aim for the simplest
possible electrode configuration fulfilling our requirements on the creation of homogeneous fields and
gradients, and on the compensation of curvature as discussed above. In the following, we therefore start our
discussionwith parallel plate capacitors, then extend the discussion to a four-rod-like system and finally present
our eight-rod-like geometry.

4.1. Plate capacitors
A systemof parallel plate capacitors is the simplest possible geometry to consider. It has the advantage to create
very uniform fields at its geometric center but the direction of the electric field can only be changed by either
physically turning the plates, or by adding a second parallel plate capacitor. In principle, two orthogonal
capacitors can then create electric fields along any directionwithin a two-dimensional plane. Considering two
orthogonal capacitors with a plate spacing of 22 mm the dimensions of a plate in our setupwould be limited to
136× 15 mm2, to avoid discharging. The curvature tomagnitude ratio resulting from this geometry is
E2/E0= 2.4 · 10−5. Atfield amplitudes ofE0= 10 kV cm−1 this already reaches the order ofmagnitude of the
critical value of the curvature derived in table 1.

4.2. Four rods
In the following, we discuss a rectangular configuration of several infinitely long, parallelmetallic rods,
extending in y direction [33], which allows to create electricfields in an arbitrary direction in the x-z plane (see
figure 6). The rods are rectangularly arranged in the x-z planewith a horizontal and vertical spacing of 2 l1 and
2 l2, respectively. In the simulation, we apply potentials of±V to the four rods as shown infigure 6.

Infigure 6, we show the ratio of curvature tomagnitude,E2,v/E0,v, of a vertical electric field at the symmetry
center of the electrodes as a function of the geometry of the four rod configuration parametrized by l1 and l2. To
compare different electrode spacings we renormalized the length scale byw0. The dashed line is the
corresponding ratio E2,h/E0,h for horizontal fields.

Analytic solutions presented infigure 6 clearly show that there is no possible ratio l1 / l2 at which the absolute
values of the two curvatures of the vertical and horizontal field, respectively, are simultaneouslyminimized.
At l1/l2= 0.58 the curvature of the vertical field crosses zero, the same happens for horizontal fields at
l1/l2= 1/0.58= 1.7. The curvature of an electricfield pointing in the vertical direction can thus be canceled
when spacing the electrodes by l1/l2= 0.58. Still, for horizontalfields the same configuration results in a
curvature-to-amplitude ratio ofE2,h/E0,h=−1.50.

In the symmetric case, l1= l2= l, the two ratios are equal inmagnitude but opposite in sign

E2,v/E0,v=−E2, h/E0, h= 0.5 . For l= 11 mmwe expect a curvature-to-amplitude ratio of =E E 0.412 0
1

cm2∣ ∣ .

AtE0= 10 kV cm−1 this is very close to the limit given in table 1 and therefore excludes the possibility to use a
simple four rod system in our experiment.

Note that the above calculation has been done using analyticalmethods.When going on tomore
complicated electrode geometries this is no longer possible.We therefore use the four rod geometry as a
benchmark system to estimate possible errors arising from anumerical calculation relying on afinite volume
system. This is summarized infigure 6(B), which shows a comparison between the analytical solution for the
four rod system and the numerical simulations performedwithCOMSOLMultiphysics. As expected, with
increasing height and consequently volume of the space inwhich the electric field is calculated, the values are
converging to the analytical solution. For the next section, the volume has been adapted according to this result.
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4.3. Final configuration of eight rods
In the previous sectionwe have shown that a four rod system is not sufficient to cancel the curvature of both
horizontal and vertical fields. A combination of four ‘inner’ and four ‘outer’ electrodes can, however,mutually
compensate curvatures. If the spacing ratios of inner and outer electrodes fulfill l1/l2< 0.58 and l1/l2> 1/ 0.58,
respectively, the curvatures for vertical and horizontal fields can be canceled. The insets A, B andCoffigure 7
illustrate how the desiredfields are created. Infigure 7(A) a vertical field is created by applying positive electric
potentials to the lower and negative potentials to the upper electrodes. For horizontalfields, as shown in
figure 7(B), the roles of inner and outer electrodes are exchanged. The outer electrodes’ spacing ratio is

<l l 0.582 1 and its curvature can be compensated by the inner electrodes with l2/l1> 0.58. Gradients in the
vertical direction, as shown in inset C, are obtained by adding an additional potential+Vgrad to the outer
electrodes. The superposition principle allows to create arbitrary fieldmagnitudes and turning angles as linear
combinations of the shownpotentials.

Figure 6. (A)E2/E0 of four infinite rods as a function of the electrode spacing ratio l1/l2. The two insets show the arrangement of the
four infinitely long rods, as a cross sections through the x-z plane. The horizontal and vertical spacing for the electrodes are 2l1 and 2l2.
The signs of the electric potentials, necessary to obtain the different field directions, are indicated as ‘+’ or ‘−’. The insets depict
situations for which the curvature of a vertical or horizontal electric field vanishes, at =l l 0.581 2 and l1/l2= 1.7. The blue line in the
detail view (B) on the right is the analytic solution ofE2/E0 for l1= l2= 11 mm. The red circles are the results of COMSOL
simulations, plotted as a function of the height of the volumewhichwas used for the simulation. The diameter of the volumewas
160mm. The rods had a length of 133mm. For the single dark red triangle the diameter of the volumewas changed to 200 mm.

Figure 7. Final layout of the ITO electrodes (D). The inner (outer) electrodes are colored yellow (blue), the corner patches gray. The
insets (A), (B) and (C) are cross sections through rod-like electrodes, like in figure 2. The outer (inner) circles correspond to the outer
(inner) electrodes. Three examples how the electrodes can be charged are shown. (A): for a uniformfield in the z direction. (B): for a
uniform field in the x direction. (C): configuration for vertical field as in (A)with a superimposed gradient in the z direction. (D): the
separation of the electrodes on the upper and lower vacuumwindow is 22mm, their diameter 138mm. The zoomed region of the
electrode on the right shows the distances used to optimized the layout.
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The implementation of the eight rods, asfinally realized on the two opposingmainwindows, is shown in
figure 7(D). The upper and lowerwindow each carry eight ITO areas. A color code indicates how themost
central of those areas correspond to inner and outer rods. The four corner areas of the coating, colored light gray
area, can be used to compensate unwanted gradients.

The free parameters a, b, c, d, q shown in the detailed view offigure 7 define the geometry. They have to be
determined by numerical simulations considering one constraint on the distance between any two electrodes.
We have tomaintain aminimal distance between neighboring electrodes on the same surface of at least 7mmat
assumed potential differences of 10 kV to avoid discharging issues. Theminimal distance has been determined
by test experiments on air. Discharging properties depend on surface conditioning, but a distance of 7 mm
represents a conservative value, whichwe decided tomaintain for the final setup. The parameter a is therefore
restricted to a� 3.5 mm.Note that the central gap in the ITO coating, described by a, also facilitates the use of
infrared lasers in the vertical direction.

With the dimension a fixed, themost crucial distance for the overall performance is b. As the electrodes’
mirror symmetry excludes gradients in the electric fieldmagnitude, themajor goal is tominimize the curvature-
to-amplitude ratio E2/E0 for vertical as well as horizontal electric fields.

For the simulations of the electricfield, we imported the electrode designs with variable parameters b, c, d
and q in COMSOLMultiphysics and themagnitudes of the electric fields generated by the outer and the inner
electrodes were computed independently. The direction of the electric field generated by inner and outer
electrodes only slightly differs over the assumed dipole trap volume. This justifies to use the electric field
magnitudes instead of the electricfield vectors. Up tow0= 0.1 mmaway from the symmetry center vertical fields
created by the inner or the outer electrodes deviate by less than 10−4 from the z direction. These small deviations
of the direction enter in the fieldmagnitude quadratically and result in an error below 10−8.

In afirst step, we consider the eight rod geometry with applied potentials as indicated in figure 8 for the
special case where Vin∣ ∣= Vout∣ ∣. The goal is to optimize parameter b forminimal total curvature

= +E E E2 2,in 2,out, ideally E2= 0, which is equivalent to a ratio E2,in/E2,out=−1. Figure 8 showsE2,in/E2,out as
a function of b for the vertical and horizontal field, respectively. For the vertical field, the ratio E2,in/E2,out is close
to−1 over a large range of values of b. Only for very large b the curvature ratio is going to zero, as the inner
electrodes extend far in the regionwith a ratio l1/l2> 0.58 and compensate their field curvature themselves.
When switching the potentials to obtain horizontalfields, inner and outer electrodes change roles andwe obtain
a ratio E E2,in 2,out as shownby the green line infigure 8. E E2,in 2,out∣ ∣ isminimal at b≈ 9 mmandwefix b to this
value.

Tofinally cancel the curvature for both vertical and horizontalfields in the eight rod system, the potential
ratioVin/Vout of the electrode systems has to be tuned to the inverse of the curvature ratio E2,in/E2,out. For
b= 9 mmcurvature can be exactly canceled by applying the potentials with a ratioVin/Vout= 1/0.86 for
vertical fields andVin/Vout= 1/4.4 for horizontalfields. Note that, in the case of vertical electric fields, the inner
electrode contribution to themagnitude of the electric field is 11 times larger when compared to the
contribution of the outer ones, which aremainly acting to cancel the curvature generated by the inner ones.

The same analysis can be performed for the other geometrical parameters. As the desired spacing between
electrodes is 7 mm, c cannot become smaller than c= b+ 7 mm= 16. 0 mm. Furthermore, we observe that the

Figure 8.Curvature ratio E2,in/E2,out as a function of the distance b. The data for the curvature ratios of vertical and horizontal fields
are represented by empty circles and full squares, respectively. The dotted line indicates the desired value of−1 for vertical fields. The
insets indicate for which configurations the ratioswhere taken.
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results depend only slightly on thewidth of the outer electrode determined by d. To enhance the effect of the
corner patches we have consequently chosen d and also q small. Themain goal of the corner patches is to
compensate unforeseen imperfections inmanufacturing like a relative tilt of the vacuumwindows. The patches
are capable of counterbalancing a gradient of 2.2 · 10−2 kV cm−2 when themolecular sample is polarized to
68%. This gradient would appear for a vacuumwindow tilt of about 0.29°, which is far larger than themeasured
one of 0.024 0.042( )◦.

In summary the parameters of the electrodes presently installed on our vacuum chamber are:
= = = = =a b c d q3.5 mm, 9.0 mm, 16.0 mm, 19.0 mm, 20.0 mm. A gradient allowing to address

transitions between rotational states in single layers as considered in section 3.2 can be applied by adding a
potentialVgrad to the outer electrodes. For example, by adding = +V 8.46 kVgrad to all outer electrodes results in
a gradient of 3 kV cm−2.

5. Conclusion

In this paper, we discussed and presented a sophisticated electrode system for themanipulation and control of
ultracold polarNaKmolecules. Particular care has been taken to realize largely homogeneous fields with low
curvature to keep perturbations of the optical trapping potentials as low as possible. Furthermore, the final
electrode configuration allows to realize strong electric field gradients across an optical lattice for single site
addressing ofmolecules. Thefinal eight rod geometry is realized by a thin ITO coating on themain vacuum
windows to allow for large optical access and the realization of versatile optical trapping potentials for the
simulation of dipolar quantummany-body physics.

In the future, the designed ITObased electrode geometry could be scaled down to smaller sized electrodes
and could potentially be realized in an ‘atom-chip’ like design [34, 35]. An integrated design bymeans of ITO
coated atom-chipswould allow for complete optical access to themolecules even frombelow the surface of the
chip. Due to the small length scales of the chip, particular care would have to be taken to cancel gradients, but
required electric potentials would be lower by several orders ofmagnitudes allowing for fast and versatile control
of the electricfields.
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