
INVARIANT DESCRIPTOR LEARNING USING A SIAMESE CONVOLUTIONAL

NEURAL NETWORK

L. Chen *, F. Rottensteiner, C. Heipke

Institute of Photogrammetry and GeoInformation, Leibniz Universität Hannover, Germany -

(chen, rottensteiner, heipke)@ipi.uni-hannover.de

Commission III, WG III/1

KEY WORDS: Descriptor Learning, CNN, Siamese Architecture, Nesterov's Gradient Descent, Patch Comparison

ABSTRACT:

In this paper we describe learning of a descriptor based on the Siamese Convolutional Neural Network (CNN) architecture and

evaluate our results on a standard patch comparison dataset. The descriptor learning architecture is composed of an input module, a

Siamese CNN descriptor module and a cost computation module that is based on the L2 Norm. The cost function we use pulls the

descriptors of matching patches close to each other in feature space while pushing the descriptors for non-matching pairs away from

each other. Compared to related work, we optimize the training parameters by combining a moving average strategy for gradients

and Nesterov's Accelerated Gradient. Experiments show that our learned descriptor reaches a good performance and achieves state-

of-art results in terms of the false positive rate at a 95% recall rate on standard benchmark datasets.

* Corresponding author

1. INTRODUCTION

Feature based matching for finding pairs of homologous points

in two different images is a fundamental problem in computer

vision and photogrammetry, required for different tasks such as

automatic relative orientation, image mosaicking and image

retrieval. In general, for a feature based matching algorithm one

needs to define a feature detector, a feature descriptor and a

matching strategy. Each of these three modules is relatively

independent of the others, therefore a combination of different

detectors, descriptors and matching strategies is always possible

and a good combination might adapt to some specific data

configurations or applications. The key problem of image

matching is to achieve invariance against possible photometric

and geometric transformations between images. The list of

photometric transformations that affects the matching

performance comprises illumination change, different

reflections and the use of different spectral bands in the two

images. Geometric transformations comprise translation,

rotation and scaling as well as affine and perspective

transformation; besides, the matching performance may also be

affected by occlusion caused by a viewpoint change. In most

cases, features for matching are extracted locally in the image,

and a feature vector (descriptor) used to represent the local

image structure is generated from a relatively small local image

patch centred at each feature. Consequently, it is usually suf-

ficient to design a matching strategy that is invariant to affine

distortion, because a global perspective transformation can be

approximated well by an affine transformation locally. Such

distortions are likely to occur in case of large changes of the

view points and the viewing directions.

Classical descriptors, like SIFT (Lowe, 2004) and SURF (Bay

et al., 2008) are designed manually; they are invariant to shift,

scale and rotation, but not to affine distortions. Some authors

(Mikolajczyk and Schmid, 2005; Moreels and Perona, 2007;

Aanæs et al., 2012) have evaluated the performance of detectors

and descriptors against different types of transformations in

planar and 3D scenes, using recall and matching precision as

the main evaluation criteria (Mikolajczyk and Schmid, 2005).

As discussed in (Moreels and Perona, 2007), their results show

that the performance of classical detectors and descriptors drops

sharply when the viewpoint change becomes large, because the

local patches vary severely in appearance, so that the tolerance

of classical feature detectors and descriptors is exceeded.

One strategy to improve the invariance of descriptors to view

point changes is to convert the descriptor design and descriptor

matching into a pattern classification problem. By collecting the

patches of the same feature in different images, one can capture

the real differences between these patches. The process of

designing invariant feature descriptors is equal to finding a

mapping of those patches into a proper feature space where they

are located more closely to the descriptors of the homologous

features. By using an appropriate machine learning model, a

loss based on the similarity of the learned descriptors is

designed. In this case, decreasing the loss by learning helps to

achieve a higher level of invariance.

In this paper, we present a new method for defining descriptors

based on machine learning. It extends our previous descriptor

learning work on Convolutional Neural Networks (CNN; Chen

et al., 2015). As a CNN has a natural "deep" architecture, we

expect this architecture to have a stronger modelling ability

which can be used to produce invariance against more

challenging transformations, which classical manually designed

descriptors cannot cope with. By conducting the training in a

mini-batch manner, using a moving average strategy on

gradients and a momentum term as well as Nesterov's

Accelerated Gradient, we optimize the training parameters and

achieve our trained descriptor. The main contribution of this

paper is that we first introduce this training algorithm into

descriptor learning tasks based on Siamese CNN.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

11

2. RELATED WORK

A substantial body of classical descriptors are designed in a

manual manner, for instance SIFT (Lowe, 2004) or SURF (Bay

et al., 2008). More recent manually designed methods like

DAISY (Tola et al., 2010) introduced a more complex pattern

of pooling operations. These descriptors have been considered

to be a standard for quite some time. However, they cannot deal

with large viewpoint changes. This is why affine-invariant

frameworks for feature based matching have been proposed, e.g.

ASIFT (Morel and Yu, 2009). By using an affine view-sphere

simulation strategy, ASIFT transforms the two original images

to many affine versions, then features and descriptors are

computed based on those images. Afterwards the descriptors

from affine distorted versions of the two original images are

matched. As each feature has many different descriptors that are

built on simulated affine views, ASIFT can cope with affine

distortions better than other matching algorithms that only run

on original images. However, ASIFT is computationally

expensive and benefits from the view-sphere simulation

matching scheme rather than from any improvements on

viewpoint invariance of the feature descriptor.

An alternative to using hand-crafted features and strategies such

as sampling many potential viewpoints synthetically is

descriptor learning (Bengio et al., 2013). To test if machine

learning approaches can achieve better results, Brown et al.

(2011) proposed a descriptor learning framework, in which a

descriptor is composed of four different modules: 1) Gaussian

smoothing; 2) non-linear transformation; 3) spatial pooling or

embedding; 4) normalization. New descriptors can be derived

by optimizing the configuration of the second and the third

modules. An extension of their work which allows convex

optimization in the training process is given in (Simonyan et al.,

2012; 2014). In (Trzcinski et al., 2012; 2015), a descriptor

learning architecture based on the combination of weak learners

by boosting is designed, in which the weak learners rely on

comparisons of simple features. In the training process, the

optimal features for the weak learners are determined along with

the optimal matching score function. The resulting descriptor

outperforms SIFT under nearly every type of transformation on

the benchmark data set of Mikolajczyk and Schmid (2005).

Another category of descriptor learning frameworks is built on

CNN. CNN consists of multiple convolutional layers (LeCun et

al. 1998). Invariant feature representation learning based on a

so-called Siamese CNN has originally been proposed in

(Bromley et al., 1993) to extract feature representations for

signature verification, where the signatures from one person

may change in complex ways, which are nearly impossible to

capture with explicit models. The term Siamese refers to the fact

that the same CNN architecture and the same parameters are

applied to two input data sets with complex relative distortions.

In (Hadsell et al., 2006), the Siamese CNN architecture was

used to learn feature representations for digit recognition; as the

same digit written by different people varies considerably, a

Siamese CNN architecture is used to find an invariant feature

representation that can map the high dimensional input data into

a more discriminative feature space where "similar" digits are

located more closely to each other. This feature space is defined

by the output of the final convonlutional layer of the CNN. The

use of multiple layers (i.e., the deep architecture) is the reason

for the strong modelling ability of CNNs. This property fits well

with the requirements for learning descriptors that are invariant

against various types of transformations. Consequently, CNN

have been used to train descriptors for patch comparison.

The first patch comparison work based on the Siamese CNN

was presented in (Jahrer et al., 2008). Jahrer et al. (2008) used

the Siamese CNN to train the descriptor and compare the

patches, but the training data was generated from image warps

and dependent on input images, which makes this method less

practical, because it always needs a prior simulation and

training before image matching. In (Osendorfer et al., 2013), a

Siamese CNN is used to train a descriptor; the paper focuses on

the comparison of four different types of loss functions. More

recently, the Siamese architecture was used to train patch

descriptors to cope with dynamic lighting conditions

(Carlevaris-Bianco and Eustice, 2014), feeding patches with

severe illumination change into a Siamese CNN; illumination

invariance that exceeds any hand-crafted descriptors is

achieved. In (Lin et al., 2015), images taken from aerial and

terrestrial views are fed into a Siamese CNN network, followed

by applying a similarity function that indicates whether the two

images contain identical scenes. Using this model, aerial and

terrestrial view are linked, which can be used to generate a

relation graph. However, the descriptor is applied to the whole

image, not to patches centred around feature points, therefore it

can only build rough connections on the level of complete

images, and it cannot find precise point correspondence.

Our work is closely linked to the work in (Han et al., 2015;

Zagoruyko and Komodakis, 2015; Zbontar and Lecun, 2015).

Han et al. (2015) and Zagoruyko and Komodakis (2015) did not

only train the descriptor, but also a classifier to determine the

matching label, which is called the metric network (Han et al.,

2015) and decision layer (Zagoruyko and Komodakis, 2015).

This makes their model more complicated than ours. Zbontar

and LeCun (2015) also calculate four extra layers of the metric

network, but apply them to wide baseline dense stereo matching

rather than to feature based matching for orientation. They

currently achieve the best result on the KITTI benchmark.

If one trained a metric function for pairs of patches, then every

pair of feature patches should be fed into the network with

metric layers when this descriptor is applied in real image

matching or large scale image retrieval. In this case, the highly

efficient search strategies such as Best Bin First (Beis and

Lowe, 1997) in a KD tree cannot be used and the matching

speed is seriously influenced. This reduces the practical value of

a learned descriptor in feature based image matching. In

contrast to those works, we therefore train a descriptor without

a metric function for the two patches.

3. METHODOLOGY

In this section the Siamese descriptor learning architecture is

described first. Then, details of the CNN used in this

architecture are presented. Finally, we describe the method used

to learn the parameters of the CNN.

3.1 Siamese Descriptor Learning: Architecture

In order to learn the CNN-based descriptor, we need pairs of

training patches of which we know whether they represent

homologous image features or not. In this context, it is

important that the set of positive examples (the pairs that

correspond to homologous key points) contains transformations

that the learned descriptor should be tolerant to. The basic idea

of the Siamese architecture for descriptor learning is to apply

the same type of CNN using the same set of parameters  to

each of the patches that should be checked for correspondence

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

12

and determine these parameters  by optimising a loss function

of the L2 norm of the differences of the resultant descriptors.

That is, by adjusting the parameters so that the L2 norm is as

discriminative as possible in separating correct from incorrect

matches we obtain a descriptor that should be tolerant to the

type of geometric distortions that occur between positive

examples in the training data; refer to Figure 1 for an

illustration of the whole architecture. In the following section,

the parameters are explained in detail.

Figure 1. The architecture for Siamese CNN descriptor learning

used in this paper. Green: input patches; Red: a CNN as

depicted in figure 3; Dl, Dr: descriptors for the right and the left

image patch, respectively. Blue: loss function. The two CNNs

share the learned parameters  (orange).

In the training process, the following loss function based on the

L2 norm of the differences of the CNN descriptors of training

patch pairs is minimised:

 

2

2

2
2

2
2

1

max 0,

1 max 0,

N
L

pull
i

push

l ry D D l
i i i

l ry l D D s
i i i





  
      

 
 

       
  

 (1)

where N = number of training samples

 i = index of a training sample

 yi = label for a patch pair: 1 for matching training

 pairs, 0 for unmatched pairs.

 Di
k = CNN descriptors for patch k, with k  {l, r}

 indicating the left or right patch, respectively

 || Di
l- Di

r ||2 = L2 norm of the differences between

 the descriptors of the two patches

 lpull = Pull radius for similar pairs

 lpush = Push radius for dissimilar pairs

 ||  ||2
2 = squared L2 norm of the parameters 

 s = weight of the regularisation term

In Eq. 1, the last term corresponds to a regularisation with

weight s, required to decrease the risk of over-fitting. The loss

function creates a margin between matching and non-matching

pairs. For matching pairs, a distance larger than a “pull radius”

lpull is penalised, whereas for non-matching pairs (the negative

training examples), penalisation occurs for distances smaller

than a “push radius” lpush. This type of loss function has been

shown to be suitable for descriptor learning by Osendorfer et al.

(2013). The two radii are parameters that have to be set by the

user. The CNN parameters are initialised at random, so that

initially the distances of descriptors from matching pairs cannot

be expected to be small. The learning procedure then tries to

find parameters  of the CNN that push the descriptors of

unmatched pairs away from each other in feature space, while

pulling the descriptors of matching pairs closer to each other.

An illustration of this idea is shown in Figure 2. Before

learning, the descriptors are distributed randomly in feature

space, while after learning the descriptors from patches

corresponding to homologous points lie close to each other.

Figure 2. Descriptor learning. In the top part, each coloured dot

represents a descriptor; identical colours indicate homologous

patches from multi-view images. In the lower part, the radius of

the inner concentric circle is lpull and the radius of the outer one

is lpush.

3.2 CNN Descriptor

The concept of CNNs was proposed by (LeCun et al. 1998); it

is a multi layer neural network. A CNN may have one or several

stages consisting of a convolution layer, a nonlinear layer and a

feature pooling layer each. Compared to general multi layer

neural networks, there are two main differences:

1) In the convolution layer, the neurons of the input layer are

not fully connected to those of the next layer and weights

are shared, so that the same weights are repeatedly used

across the different position of the input layer. This is the

reason for using the term "convolutional" network. The

weight sharing strategy dramatically decreases the number

of parameters and makes deep architectures consisting of

larger numbers of stages trainable.

2) The network decreases the layer size in successive stages by

pooling layers. Therefore, the input can be compressed into

a meaningful feature representation, which reduces the

dimension of the original data considerably.

In essence, a CNN can be seen as a nonlinear mapping function,

transforming the input (a given image patch) to a higher-level

but lower dimensional feature representation.

In this paper, we use a CNN architecture consisting of three

stages to learn feature descriptors (cf. figure 3). Details about

the architecture and the learning parameters are listed in table 1.

The input patch size is 32 by 32 pixels. The CNN contains three

stages. The first two stages have a [convolution - nonlinear -

pooling] structure, whereas the third one only contains a

convolution layer. For each stage k with k  {1, 2, 3}, the

parameters to be determined are the convolution kernel wk and

the bias term bk, which, thus, constitute the parameters  shared

by the two CNNs in the Siamese architecture. For brevity, it is

also written as parameters wk and bk in the remain text. Whereas

in the first convolution layer we train five 2D kernels of size 5 x

5 to produce five feature maps, in the subsequent stages we

determine the parameters of 3D kernels (25 5 x 5 x 5 kernels in

stage 2; 125 5 x 5 x 25 kernels in stage 3). The nonlinearity is

Before Learning

Feature Space

After Learning

lpull

lpush

L2 Norm Distance

Loss L

θ

l

D

CNN

Left

Patch

Right

Patch

CNN CNN

r

D

Feature Space

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

13

Figure 3. The CNN used in this paper to learn the descriptor

 Input Convolution

kernels

Nonlinear Pooling Output Learning parameters

Stage 1 32 x 32 5 x 5 x 5 sigmoid max (2 x 2) 14 x 14 x 5 w1 , b1

Stage 2 14 x 14 x5 25 x 5 x 5 x 5 sigmoid max (2 x 2) 5 x 5 x 25 w2 , b2

Stage 3 5 x 5 x 25 125 x 5 x 5 x 25 ~ ~ 1 x 1 x 125 w3 , b3

Table 1. Detailed architecture and learning parameters for the CNN used in this paper. The numbers indicate pixel numbers.

based on the sigmoid function and we use max pooling (without

overlap, i.e. stride = 2), preserving the largest value in a 2 x 2

neighbourhood as the output. The final output of our CNN is a

125 dimensional vector. This 125 dimensional vector is the

learned descriptor that is used to represent the content of a local

image patch surrounding a feature.

The CNN architecture used in this paper is different from (Han

et al., 2015; Zagoruyko and Komodakis, 2015). First, a smaller

input window with only 32 x 32 pixels (instead of 64 x 64

pixels, which were used in the reported work), is employed.

When processing wide baselines images, the appearance of

patches surrounding feature points changes more severely than

in narrow baseline situations. By using of smaller context

window, the proposed descriptor can potentially cope with

larger deformations in a better way. Additionally, the sigmoid

function is applied to achieve nonlinearity because we found it

to perform better than the Rectified Linear Unit (ReLU).

Finally, compared to the related work, we use a more advanced

training algorithm (see section 3.3).

3.3 Training of the Siamese CNN

Training of the CNN is based on gradient descent to find the

optimum of the loss function. In this context, the well-known

back propagation algorithm (Rumelhart et al., 1986) can be

used to determine derivatives of the loss with respect to the

parameters. In our network, back-propagation is a little more

complicated than usual, because the gradients are influenced by

both subnets in the Siamese CNN. In Section 3.3.1 the online

gradient training procedure is described, whereas Section 3.3.2

contains details about the way in which gradients are computed.

3.3.1 Mini-batch Gradient Descent: In general, after

calculating the gradient of the loss function with respect to the

parameters to be learned, the parameters are updated according

to the gradient, taking into account a learning rate . In the

literature one can find methods using all training samples to

compute the gradients (batch training) and online methods,

using only one training sample at a time (Bishop., 2006). The

first variant can be very slow in the presence of many training

samples. On the other hand, online gradient descent can be

unstable because of sampling errors when computing the

gradient only from one sample. As a compromise we use mini-

batch gradient descent, updating the parameters on the basis of

gradients computed from relatively small groups of training

samples in each iteration. Each group (mini-batch) typically

contains hundreds or several thousands of training samples. The

gradients used to update the parameters are average gradients

over all samples in the group currently considered.

One way of gradient descent is to consider a fixed learning rate

 and update the parameters according to t+1 = t - ∙ g'(t),

where g'(t) is the gradient of loss function with respect to

parameters  and the suffix t indicates the iteration step.

However, the selection of the learning rate is problematic: a

small learning rate leads to a rather slow decrease of our loss

function, whereas a large value leads to oscillations. This can be

considered by starting the iteration with a relatively large

learning rate 0 and decreasing the learning rate in each

iteration according to t+1 = t ∙ decrease with 0 < decrease < 1.

However, this has been found not to solve the problem

completely. A better way of coping with this problem is given

by the momentum method, which updates the parameters

according to t+1 = t - vt+1, where the velocity vt+1 is based on

the accumulated gradients of the previous steps:

 vt+1 = β∙ vt + t∙ g'(t) (2)

where the gradient is calculated at the current position g'(t) and

β with 0 <  < 1 is the momentum term. At the beginning of the

iteration process, the velocity is assumed to be zero (v0 = 0).

The top part of Figure 4 illustrates the update rule of the

standard momentum gradient descent. The blue vector

represents the direction to adjust the parameters.

Assuming that the accumulated velocity β∙ vt will result in a

move that reduces the value of the function to be optimized, it

would seem to be a better choice to determine the gradients

after applying the accumulated velocity. That is, one determines

new parameter values by t+1/2  t - β∙ vt , and then uses the

gradient at position t+1/2, g'(t+1/2) rather than g'(t) for the final

update. This is Nesterov's Accelerated Gradient (NAG,

Nesterov, 1983) method, where the velocity vt+1 is determined

according to:

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

14

vt+1 = β∙ vt + t∙ g't - β∙ vt) (3)

This update rule is indicated by the lower part of Figure 4. The

NAG method has been shown to be suitable for determining the

parameters of deep neural networks in (Sutskever et al., 2013).

Figure 4. (Top) Momentum method and (Bottom) Nesterov's

Accelerated Gradient (NAG) (Sutskever et al., 2013).

An alternative to avoid oscillating behaviour of gradient descent

is given by the rmsprop method (Hinton et al., 2016), in which

the gradient is normalised by the average gradient magnitude.

This leads to

1 ()t

t t

t

v g
r



  (4)

Where rt is the average square gradient accumulated in the

previous iterations:

 rt = (1- γ)∙ g'(t)
2 γ∙ rt-1. (5)

In equation 5, γ with 0 < γ < 1 is a weight that modulates the

impact of the accumulated magnitude squares relative to the

new one. Similar to (BRML, 2013), we combine the rmsprop

method with the NAG momentum method in order to achieve

an improved convergence behaviour.

The training data are randomly divided into a training and a

cross validation set. The weights are initialised by random

values; both r0 and v0 are set to 0, and the learning rate is set to

an initial value 0. Training is carried out in epochs. In each

epoch, the training data are randomly divided into M non-

overlapping subsets (the mini-batches), and each mini-batch is

used to update the parameters once per epoch. In each epoch m,

the learning rate m remains unchanged; that is, we use t = m.

As soon as epoch m is finished, the learning rate is updated

according to m+1 = m ∙ decrease, and a new random division of

the training data into mini-batches is carried out, which serves

as the basis for the next epoch. In each epoch, the parameters

are updated M times using the following steps:

1) For the current position t, apply the momentum by t+1/2 =

t - β∙ vt and calculate the gradient g'(t+1/2).

2) Compute rt and vt+1 according to:

 rt = (1- γ)∙ g'(t+1/2)
2 γ∙ rt-1

1 1 / 2

()
t t t

t

t
v v g

r


 

 

    (6)

3) Update the current parameters according to t+1 =t - vt+1.

Note that the iteration counter t is incremented after processing

each mini-batch, but it is not reset to 0 when a new epoch starts.

The learning algorithm in this paper is different from standard

gradient decent because it starts with a guess by moving the

current parameter to a new position t+1/2 with the accumulated

gradients and momentum, followed by a correction (gradient

calculation) at t+1/2 and an update according to that gradient.

We also evaluate the loss on the validation set after each

training epoch. If the loss does not decrease for three

subsequent epochs, we stop the training process and record the

parameters in the current epoch as optimized parameters. A

performance comparison of the method in our paper and other

training methods is present in section 4.2.

3.3.2 Gradient computation: The loss function is calculated

based on the distances of the descriptors, as described by

equation 1. The derivative of the loss with respect to the

distance di = || Di
l - Di

r||2 is calculated by:

() ()

(1) () ()

i pull i pull

i push i push

i

L
y d l d l

d

y d l d l






     



    

 (7)

where (.) is an indicator function; it equals to 1 if the argument

is true and 0 otherwise. The derivatives of the distance di with

respect to the descriptors Di
l and Di

r are:

2()

2()

r l

i i

l r

i i

i

r

i

i

l

i

d
D D

D

d
D D

D


 




 



 (8)

The derivatives of Di
l and Di

r with respect to the parameters wk

and bk with k  {1, 2, 3} are calculated by normal back

propagation. Since both subnets contribute to the loss, the

derivatives of the loss function with respect to each parameter

must be summed over the two subnets:

1

1

[

[

1

1

()]

()]

k

k k k

k

k k k

l rN
i i i i

l r
i i i i i

l rN
i i i i

l r
i i i i i

d D d DL L L
s w

w d D w d D w

d D d DL L L
s b

b d D b d D b

N

N





     
  

      

     
  

      

    

    




(9)

4. EXPERIMENTS

In this section we first introduce the experimental data and

setup. After that, we compare the training algorithm described

in this paper and to other common training methods, which is

followed by an evaluation of our descriptor. Finally, we

compare our method to other state-of-art descriptor learning

techniques.

4.1 Experimental Data and Setup

Our experiments are based on the Brown dataset (Brown et al.,

2011) is used. This dataset is widely used in descriptor learning

studies, e.g. (Trzcinski et al., 2012; 2015; Han et al., 2015;

Zagoruyko and Komodakis, 2015). The dataset contains three

separate subsets - Notre Dame (ND), Yosemite (Yos) and Statue

of Liberty (Lib). All patches were extracted in the vicinity of

Difference of Gaussian (DoG) feature points on real multi-view

t

t

βvt

βvt

t+

1

t+

1

g'(t+ βvt)

g'(t)

vt+1

vt+1

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

15

images. Thus, real viewpoint changes are contained in those

datasets. The original patch size is 64 x 64 pixels. The resize

these patches to 32 x 32 pixels with anti-aliasing since the input

of our model is designed as 32 x 32 pixels. Figure 5 gives some

examples of the training pairs from the Notre Dame dataset

(Brown et al., 2011).

Figure 5. Examples for training pairs. The left three columns are

positive (matching) training pairs and the right three columns

are negative (non-matching) training pairs.

The hyper-parameters for training were chosen empirically. In

detail, we trained in 30 epochs and 450 mini-batches are used

for training. Other parameters used here are β = 0.9, γ = 0.9, α =

0.003, αdecrease = 0.9, lpull = 5, lpush = 10. Each mini-batch

contains 500 positive and 500 negative training samples.

4.2 Convergence Behaviour

In this section we compare the convergence behaviour of our

training method to standard gradient decent, gradient decent

with momentum and to gradient decent with Nesterov's

momentum. In this comparison, the same 50000 positive and

50000 negative training samples from the Notre Dame dataset

were used for all four training methods in 10 epochs. The

learning rate and the momentum term were set to the values

described in section 4.1. The results are presented in Figure 6.

The figure shows that the decrease of loss does not benefit too

much from using only gradient descent or gradient descent with

momentum; however, the training benefits distinctly from

moving average gradients combined with the NAG (green curve

in Figure 6), which obviously leads to a much faster decrease of

the loss function.

1 2 3 4 5 6 7 8 9 10
3

4

5

6

7

8

9

Epoch Number

A
v
e
ra

g
e
 L

o
s
s

Standard Gradient Descent

Standard Gradient Descent with Momentum

Nesterov Momentum Method

Method in Our Paper

Figure 6. Results of loss function for standard gradient descent,

standard gradient descent with momentum, NAG and the

method suggested in this paper.

4.3 Results and evaluation

In the set of experiments reported in this section, the descriptor

is trained using one of the three datasets, whereas the other two

datasets are used as for testing. This experiment was repeated

three times, so that each dataset was used for training once.

Each dataset contains 250,000 positive and 250,000 negative

training pairs. The cross validation set consisted of 25,000

matching pairs and 25,000 non-matching pairs that were

randomly selected from the dataset. Thus, the number of patch

pairs used for gradient descent was 450,000 in each experiment.

The cross validation set was used to determine the loss after

each epoch in order to evaluate the stopping criterion: When the

loss measured did not improve for three subsequent epochs, the

training process was stopped.

To implement the whole architecture building and learning

algorithm explained in section 3, we used the matconvnet

software1 (Vedaldi and Lenc, 2014) to conduct the convolution,

pooling, sigmoid and back-propagation of the basic CNN

layers. The overall training procedure of the Siamese model is

based on our own implementation. It runs on a 8-core 3.40Ghz

CPU; training for one dataset takes about 11 hours.

For each training dataset, the performance test is evaluated on

the other two datasets, which is a standard evaluation rule, also

suggested in (Brown et al., 2011). In each test dataset, all the

positive and negative examples are used as evaluation dataset.

The evaluation criterion is the false positive rate at 95% recall

rate. A lower false positive rate at 95% recall rate means better

performance.

After training, the descriptors for each patch in the test datasets

are determined using the parameters learned with the CNN.

Then, the L2 Norm of the two descriptors of each test pair is

computed as the similarity measure of the patch pair. A patch

pair with an L2 Norm below a threshold h is classified to be a

match, otherwise it is judged as a non-match. Thus, in essence,

the learned descriptor can be considered to be a direct

replacement of SIFT. As the true labels (match or non-match) of

all patch pairs are known, the true positive and false positive

rate can be calculated. By varying the threshold h a ROC curve

is generated. The vl_roc function in the vlfeat2 software is used

to obtain the ROC curve of the false positive rate against the

true positive rate.

Table 2 lists the results of our work, comparing them to several

state-of-art methods. None of the methods compared in the table

contains a decision layer, i.e., a classifier to determine the

matching label (matched or unmatched). The list constitutes a

comparison of current state-of-art methods for descriptor

learning. In the method SIM (Simonyan et al., 2014), learning is

based on a convex optimization strategy. The learning

procedure is an extension of method BR (Brown et al., 2011),

which is a benchmark in descriptor learning. For method TRC

(Trzcinski et al., 2015), we chose their best performing

descriptor variant for our comparison, which is the floating

point version with 64 bits. In method OS (Osendorfer et al.,

2013), a descriptor learning architecture based on a Siamese

CNN similar to our work was used, but the authors concentrated

more on the comparison of different forms of loss functions and

their model is trained by standard gradient descent. Finally,

SIFT (Lowe, 2004) is used as a general baseline for the

1 http://www.vlfeat.org/matconvnet/ (accessed 05 April 2016)
2
 http://www.vlfeat.org/ (accessed 05 April 2016)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

16

descriptor matching, because it is widely acknowledged as a

good descriptor in a feature engineering manner.

Among the six combinations of training and test dataset cases,

our method and (Simonyan et al., 2014) achieve the best results

in three cases each. For the mean error rate at 95% recall, our

method is slightly worse but compatible with (Simonyan et al.,

2014). Our method exceeds the best descriptor variant in

(Trzcinski et al., 2015), namely FPBoost512-{64}, in terms of

error rate at 95% recall in all training and test data combinations

and a performance improvement of nearly 7.1% is achieved. To

the best of our knowledge, Osendorfer et al. (2013) published

the best results for a method for descriptor learning based on

Siamese CNN architecture without classifier so far; it is the

method most similar to ours in our comparison. Compared to

this method, we achieved a performance improvement of 3.5%.

Compared to SIFT, our method, as well as the other machine

learning based descriptors, shows a distinct improvement in

terms of the error rate at 95% recall.

Some of the randomly selected true positive, false positive, true

negative and false negative patch pairs are shown in figure 7. To

pick those patch pairs, the parameters are trained from the

Statue of Liberty training data and the selected results are all

from the Notre Dame dataset.

True Positive Pairs

True Negative Pairs

False Positive Pairs

False Negative Pairs

Figure 7. Some results of test on Notre Dame dataset.

5. CONCLUSIONS

In this paper we describe training of a descriptor based on a

Siamese CNN architecture. In comparison to other work based

on Siamese CNN, we use a more advanced gradient descent

training algorithm and take a smaller input patch size. Our work

demonstrates that with advanced training strategies, descriptors

based on Siamese CNN achieve state-of-art performance on the

Brown dataset.

When applied to real image matching or image retrieval, a

feature descriptor needs to be matched against thousands of

others. Therefore, as an extension of our work we will adapt the

method by adjusting the proportion of positive and negative

training samples that the model sees during training. Another

extension includes applying this architecture to train descriptors

that are able to cope with specific situations like oblique aerial

images which contain more complex geometric transformations.

ACKNOWLEDGEMENTS

The author Lin Chen would like to thank the China Scholarship

Council (CSC) for financially supporting his PhD study at

Leibniz Universität Hannover, Germany.

REFERENCES

Aanæs, H., Dahl, A. L., Pedersen, K. S., 2012. Interesting

interest points. International Journal of Computer Vision,

97(1), pp. 18-35.

Bay, H., Ess, A., Tuytelaars, T., et al., 2008. Speeded-up robust

features (SURF). Computer Vision and Image Understanding,

110(3), pp. 346-359.

Beis, J. S., Lowe, D. G., 1997. Shape indexing using

approximate nearest-neighbour search in high-dimensional

spaces. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1000-1006.

Bengio, Y., Courville, A., Vincent, P., 2013. Representation

learning: A review and new perspectives. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(8), pp. 1798-

1828.

Bishop, C. M., 2006. Pattern recognition and machine

learning. Springer, New York, pp. 241-245.

BMRL (Biomimetic Robotics and Machine Learning Group,

TU Munich, Germany), 2013. rmsprop.

https://climin.readthedocs.org/en/latest/rmsprop.html (accessed

05 April 2016)

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y.,

Moore, C., & Shah, R., 1993. Signature verification using a

“Siamese” time delay neural network. International Journal of

Training Test Ours SIM BR TRC OS SIFT

ND Yos 11.6 10.1 13.6 15.9 15.3 29.2

ND Lib 11.6 12.4 16.9 17.9 14.6 36.3

Lib ND 6.4 7.2 - 14.7 10.1 28.1

Lib Yos 11.3 11.2 - 20.9 17.6 29.2

Yos ND 8.4 6.8 18.3 14.8 9.5 28.1

Yos Lib 14.4 14.6 12.0 22.4 17.6 36.3

Mean 10.6 10.4 15.2 17.8 14.1 31.2

Table 2. False positive rate [%] at 95% recall rate for the different methods being compared in this work using different

training and test data subset combinations (ND: Notre Dame, Lib: Statue of Liberty, Yos: Yosimite). Compared methods: SIM

(Simonyan et al., 2014); BR (Brown et al., 2011); TRZ (Trzcinski et al., 2015); OS (Osendorfer et al., 2013), SIFT (Lowe,

2004).

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

17

Pattern Recognition and Artificial Intelligence, 7(04), pp., 669-

688.

Brown, M., Hua, G., Winder, S., 2011. Discriminative learning

of local image descriptors. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 33(1), pp. 43-57.

Chen L., Rottensteiner F., Heipke, C., 2015. Feature descriptor

by convolution and pooling autoencoders. In: The International

Archives of Photogrammetry, Remote Sensing and Spatial

Information Science, 40(3), pp. 31-38.

Carlevaris-Bianco, N., Eustice, R. M., 2014. Learning visual

feature descriptors for dynamic lighting conditions. In

International Conference on Intelligent Robots and Systems

(IROS 2014), pp. 2769-2776.

Hadsell, R., Chopra, S., LeCun, Y., 2006. Dimensionality

reduction by learning an invariant mapping. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, Vol. 2, pp. 1735-1742.

Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A. C., 2015.

MatchNet: Unifying Feature and Metric Learning for Patch-

Based Matching. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. pp. 3279-3286.

Hinton, G., Srivastava, N., Swersky, K., 2016. Neural networks

for machine learning - Lecture 6e: rmsprop.

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_

lec6.pdf (accessed 05 April 2016)

Jahrer, M., Grabner, M., and Bischof, H., 2008. Learned local

descriptors for recognition and matching. In Computer Vision

Winter Workshop. Vol. 2. Moravske Toplice, Slovenia.

LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., 1998. Gradient-

based learning applied to document recognition. Proceedings of

the IEEE, 86(11), 2278-2324.

Lin, T. Y., Cui, Y., Belongie, S., Hays, J., Tech, C., 2015.

Learning Deep Representations for Ground-to-Aerial

Geolocalization. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5007-5015.

Lowe, D. G., 2004. Distinctive image features from scale-

invariant keypoints. International Journal of Computer Vision,

60(2), pp. 91-110.

Nesterov, Y., 1983. A method of solving a convex

programming problem with convergence rate O (1/k2). In Soviet

Mathematics Doklady, 27(2), pp. 372-376.

Mikolajczyk, K., Schmid, C., 2005. A performance evaluation

of local descriptors. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 27(10), pp. 1615-1630.

Moreels, P., & Perona, P., 2007. Evaluation of features

detectors and descriptors based on 3d objects. International

Journal of Computer Vision, 73(3), 263-284.

Morel, J. M., & Yu, G., 2009. ASIFT: A new framework for

fully affine invariant image comparison. SIAM Journal on

Imaging Sciences, 2(2), 438-469.

Osendorfer, C., Bayer, J., Urban, S., van der Smagt, P., 2013.

Convolutional Neural Networks learn compact local image

descriptors. In Neural Information Processing, Springer Berlin

Heidelberg, vol. 8228, pp. 624-630.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986. Learning

representations by back-propagating errors. NATURE, 323(9),

pp. 533-536.

Simonyan, K., Vedaldi, A., Zisserman, A., 2012. Descriptor

learning using convex optimisation. In: European Conference

on Computer Vision, pp. 243-256.

Simonyan, K., Vedaldi, A., Zisserman, A., 2014. Learning local

feature descriptors using convex optimisation. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

36(8), 1573-1585.

Sutskever, I., Martens, J., Dahl, G., Hinton, G., 2013. On the

importance of initialization and momentum in deep learning. In

Proceedings of the 30th international conference on machine

learning (ICML-13), pp. 1139-1147.

Tola, E., Vincent, L., Fua, P., 2010. Daisy: An efficient dense

descriptor applied to wide-baseline stereo. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 32(5), pp. 815-

830.

Trzcinski, T., Christoudias, M., Lepetit, V. and Fua, P., 2012.

Learning image descriptors with the boosting-trick. Advances in

neural information processing systems, In Advances in neural

information processing systems, pp. 269-277.

Trzcinski, T., Christoudias, M., Lepetit, V., 2015. Learning

image descriptors with boosting. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 37(3) pp. 597-610.

Vedaldi, A., Lenc, K.. 2015. MatConvNet-convolutional neural

networks for MATLAB. In Proceedings of the 23rd Annual

ACM Conference on Multimedia Conference, pp. 689-692.

Zagoruyko, S., Komodakis, N., 2015. Learning to compare

Image Patches via Convolutional Neural Networks. In

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 4353-4361.

Zbontar, J., LeCun, Y., 2015. Computing the stereo matching

cost with a Convolutional Neural Network. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1592-1599.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-3, 2016
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
doi:10.5194/isprsannals-III-3-11-2016

18

