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ABSTRACT: 

 

We investigate the potential of combined features of aerial images and high-resolution interferometric SAR (InSAR) data for 

building detection in urban areas. It is shown that completeness and correctness may be increased if we integrate both InSAR 

double-bounce lines and 3D lines of stereo data in addition to building hints of a single optical orthophoto. In order to exploit 

context information, which is crucial for object detection in urban areas, we use a Conditional Random Field approach. It proves to 

be a valuable method for context-based building detection with multi-sensor features. 

 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Building detection in urban areas based on merely a single 

aerial photo is often hard to conduct (Mueller and Zaum, 2005). 

Features of additional data sources may be introduced to 

improve detection completeness and correctness. In addition to 

features derived from an orthophoto we use building hints of 

high-resolution InSAR data and an optical stereo image pair.   

Several works have already dealt with the integration of features 

derived from high-resolution optical and SAR (or InSAR) data 

with the goal of building detection. Xiao et al. (1998) detect and 

reconstruct building blocks combining high-resolution optical 

and InSAR data. They classify both data sets separately within a 

multi-layer neural network followed by morphological 

operations. Finally, rectangles are fit to building hypothesis and 

heights are derived. Hepner et al. (1998) jointly use hyper-

spectral imagery and InSAR data acquired by airborne sensors 

to detect and three-dimensionally reconstruct large buildings in 

urban areas. Tupin and Roux (2003) propose an approach to 

extract footprints of large flat-roofed industrial buildings based 

on line features. In (Tupin and Roux, 2005) the same authors 

represent homogeneous regions of an aerial photo with a region 

adjacency graph. This graph is then used within a Markov 

Random Field framework to regularize building heights 

determined by means of radargrammetry. A discontinuity 

constraint based on the image gradient along segment 

boundaries is introduced into the prior term in order to preserve 

sudden height jumps. Poulain et al. (2009) combine high-

resolution optical and SAR data with vector data in order to 

detect changes. Since no learning step is conducted all 

classification is performed based on prior knowledge. They 

generate features from previously extracted primitives and set 

up a score for each building site using Dempster-Shafer 

evidential theory. Sportouche et al. (2009) detect and three-

dimensionally reconstruct large industrial buildings semi-

automatically. They combine features of high-resolution optical 

satellite imagery (Quickbird) with high-resolution SAR data 

(TerraSAR-X). Building hypothesis of the optical data are 

validated or rejected based on a classification of the SAR image 

making use of roof textures, bright lines, and shadows. Building 

heights are derived simultaneously exploiting the different 

optical and SAR sensor geometries. We recently proposed a 

segment-based approach for building detection (Wegner et al., 

2009). Segments of an orthophoto are classified in combination 

with InSAR double-bounce lines.  

In this paper, we use a Conditional Random Field (CRF) 

framework, which is a probabilistic contextual classification 

framework originally introduced by Lafferty et al. (2001) for 

labelling 1D sequential data and later on extended to images by 

Kumar and Hebert (2003). CRFs have already been successfully 

applied to various computer vision tasks (e.g., Rabinovich et al., 

2007; Korč and Förstner, 2008). Nonetheless, CRFs have only 

rarely been applied to remote sensing data (Zhong and Wang, 

2007). Furthermore, to the authors knowledge only one 

publication exploits CRFs for the analysis of SAR data (He et 

al., 2008).  

Our focus is on the suitability of CRFs for combining multi-

sensor remote sensing data using context with the aim of single 

building detection. Although much more sophisticated features 

could potentially be derived from stereo and InSAR data we use 

rather simple ones in order to transparently assess the entire 

framework. More sophisticated features may then be introduced 

in future work.    

We now first give an overview of the entire processing chain. 

Then, features we utilize are explained, the basic theory of 

CRFs is described, and finally building detection results with 

different feature sets as input are compared. 
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2. PROCESSING CHAIN 

In this section we provide an overview of the proposed 

processing chain (Fig. 1). It can roughly be subdivided into five 

steps: 1) line extraction, 2) projection of all lines to a reference 

coordinate system, 3) extraction of features, 4) training of the 

CRF parameters using ground truth, and 5) classification into 

building and non-building sites. The output is a label image 

showing building and non-building sites. 

First, 3D lines are computed from the optical stereo images 

(section 3.2) and double-bounce lines are segmented in the 

InSAR data (section 3.3). Both line sets are then projected from 

the sensors' coordinate systems to the reference coordinate 

system of the orthophoto. Thereafter, a feature vector is 

computed for each site. In our case, an image site corresponds 

to a square image patch as traditionally used for both computer 

vision (e.g., Kumar and Hebert, 2003) and remote sensing 

applications of CRFs (e.g., Zhong and Wang, 2007). In 

addition, we adapt the idea of Kumar and Hebert (2006) and 

compute those features in three different scales. Then, the 

parameters of the CRF are trained on a subset of the data using 

ground truth. Subsequently, inference is conducted and the test 

data are classified into building sites and non-building sites (see 

CRF details in section 4).  

 

3. FEATURES 

Usually, high-resolution multi-spectral orthophotos are widely 

available and thus we take an orthophoto as the basic source of 

features for building detection. In order to assess the impact of 

height data on the building detection results of the CRF 

framework we also investigate optical stereo imagery. In very 

high-resolution aerial imagery characteristic objects of urban 

areas, particularly buildings, become visible in great detail (Fig. 

2(a)). High-resolution SAR data provides complementary 

information. Double-bounce lines occurring at the position 

where the building wall meets the ground are characteristic 

features (Thiele et al., 2010). Fig. 3(a) compares the sensor 

geometries and the projected lines in ground geometry. 

Disregarding all projection artefacts, the double-bounce line of 

a flat-roofed building (with vertical walls) is located at the same 

position as the stereo line representing the roof edge (neglecting 

overhang). Note that the roof segment of the building in the 

orthophoto we use falls over double-bounce line and stereo line 

since we are not dealing with a true orthophoto (cf. Fig. 3(b,c)). 

 

The focus of this research is neither on particularly 

sophisticated features nor on sophisticated feature selection 

techniques but on the overall suitability assessment of CRFs for 

building detection with multi-sensor data. Therefore, rather 

simple features are selected and feature selection is 

accomplished empirically. 

 

3.1 Orthophoto features 

We test various combinations of features (colour, intensity, and 

gradient) of the orthophoto within the CRF framework and 

choose those that provide the best results. The most suitable 

features are found based on colour, intensity, and gradient. As 

colour features we take mean and standard deviation of red and 

green channel normalized by the length of the RGB vector. 

Mean and standard deviation of the hue channel are found to be 

discriminative, too. Furthermore, variance and skewness of the 

gradient orientation histogram of a patch proved to be good 

features. The images are subdivided into square image patches 

and features are calculated within each patch. Of course, the 

choice of patch size is a trade-off. A small patch size is 

desirable in order to detect buildings in detail. However, too 

small patches lead to instable features resulting in less reliable 

estimates of the probability density distributions. We apply a 

multi-scale approach to mitigate those shortcomings (Kumar 

and Hebert, 2006). Each feature is calculated for different patch 

sizes and all scales are integrated into the same feature vector. 

We follow this approach and test various numbers of scales and 

scale combinations. Three different scales (10x10, 15x15, and 

20x20 pixels) are found to provide good results. Features of 

large patches integrate over bigger areas thus excluding, for 

example forests or agricultural areas whereas the small patches 

provide details. 

 

3.2 Stereo lines 

We extract 3D lines from a pair of aerial images using the pair-

wise line matching approach proposed by Ok et al. (2010). At 

this point we only briefly summarize the algorithm and refer the 

reader to the reference for further details. The entire algorithm 

consists of four main steps: pre-processing, straight line 

extraction, stereo matching of line pairs, and post-processing.  

Pre-processing contains smoothing with a multi-level non-linear 

colour diffusion filter and colour boosting in order to 

exaggerate colour differences in each image. Next, straight lines 

are extracted in each of the stereo images. A colour Canny edge 

detector is applied to the pre-processed images. Thereafter, 

straight edge segments are extracted from the edge images using 

principal component analysis followed by random sampling 

consensus. Subsequently, a new pair-wise stereo line matching 

technique is applied to establish the line to line correspondences 

between the stereo images. The pair matches are assigned after a 

weighted matching similarity score, which is computed over a 

total of eight measures.    
 

 

Figure 1.  Flowchart of the processing chain for building 

detection 
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A post-processing step is accomplished in order to reduce the 

number of mismatches, which occur due to multiple matches of 

individual lines. Finally, the stereo line segments are 

reconstructed exploiting the intersection of the stereo image 

rays. The stereo lines overlaid to a small part of the orthophoto 

are shown in Fig. 3(b) and a sketch showing the mapping 

geometries is given in Fig. 3(a). It can be seen that most of the 

stereo lines are located along the boundaries of the roofs 

particularly in case of flat roofs (see building A). In case of 

gable roofs some parts of the roof ridges are also extracted (see 

building group B).   

In order to derive meaningful and consistent features we 

normalize the heights of the stereo lines. First, the local ground 

height is determined for each training and test image (of 310 m 

x 310 m size) assuming locally flat terrain. This assumption can 

readily be made because the test area is relatively flat. Second, 

the individual ground height of each image was subtracted from 

the heights of the stereo lines. Then, based on the assumption 

that the minimum building height is three meters, all stereo lines 

below this threshold are discarded. Then, we simply check if an 

image patch intersects with a line. In case it does the patch 

value is set to one and all other patches are set to zero (Fig. 

4(c)). We compute this feature in all three scales. 

 

3.3 InSAR features 

Buildings in InSAR data appear differently compared to optical 

data due to the active illumination, the different wavelength, the 

side-looking viewing geometry, and the distance measurement. 

Furthermore, relevant building features occur in both magnitude 

and in phase data. An example is given in Fig. 2. It shows a 

typical magnitude signature of a flat-roofed building in (a) 

dominated by layover, double-bounce scattering, and shadow. A 

more in detail explanation considering different building types 

and illumination directions is provided in Thiele et al. (2010). 

Focusing on the coherence (b) and interferometric height data 

(c), especially the double-bounce line shows characteristic 

distributions. The high coherence value indicates high signal-to-

noise-ratio in the InSAR data of this region. Furthermore, the 

interferometric height distribution at this line enables to 

discriminate between building lines and bright lines due to 

other effects. This double-bounce line is part of the building 

footprint, which is shown in Fig. 3(a). All these attributes make 

the double-bounce lines the most reliable building feature in 

urban areas and thus we extract features based on them.  

First, those double-bounce lines are extracted as proposed by 

Wegner et al. (2009) based on the magnitude image, the 

coherence, and the InSAR heights in slant range. Those lines 

(given in (b), (c), and (d)) are projected from slant to ground 

projection using the local mean interferometric height at the line 

position. A schematic comparison of the extracted building 

hints of orthophoto, stereo images, and InSAR data is given in 

Fig. 3(a). In Fig. 3(c) the double-bounce lines of a flat-roofed 

(A) and a gable-roofed (B) building are superimposed to a small 

part of the orthophoto. 

Again, double-bounce lines may not be introduced in vector 

format directly since we deal with image patches. Thus, we 

apply a segmentation to the orthophoto and overlay segments 

and double-bounce lines. All intersecting segments are set to 

one, all others to zero. Finally, a distance map is generated and 

minimum and maximum values within each patch are 

computed. This feature is only generated for the highest 

resolution (i.e., the smallest patch size) (Fig. 4(d)).  

 

4. CONDITIONAL RANDOM FIELDS 

High-resolution optical and InSAR data provide detailed infor-

mation of urban area objects (see Fig. 2(a) and 2(e)). Single 

trees, gardens, and streets are mapped. Those objects, their typi-

cal spatial distribution and interrelations with buildings can be 

exploited in order to improve classification through context 

integration.  

Conditional Random Fields, similar to Markov Random Fields 

(MRF), provide the possibility to integrate this context know-

 
a 

 
b 

 
c 

 
d 

Figure 2.  (a) flat-roofed building signature in magnitude data of 

InSAR pair (range from left to right), extracted double-bounce 

lines overlaid to (b), the coherence image,  (c) the 

interferometric heights, (d) the magnitude image. 

 
a 

 

 
b 

 
c 

 

Figure 3.  (a) Geometries of orthophoto, optical stereo images, 

and InSAR, (b) Buildings in orthophoto with flat roofs (A) and 

gable roofs (B) overlaid with 3D stereo lines, (c) same region as 

(b) overlaid with InSAR double-bounce lines 
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ledge into a probabilistic classification framework. They belong 

to the family of graphical models and thus facilitate the use of 

well investigated learning and inference techniques. We use 

CRFs instead of MRFs because they allow integrating observa-

tions x and comparisons of labels y globally across the entire 

image as well as the use of observations within the prior term. 

Furthermore, the conditional independence assumption between 

features can be relaxed. Those properties make them a very 

flexible technique for context-based classification.   

CRFs are discriminative models and thus model the posterior 

probabilities P(y|x) of labels y conditioned on observations x 

directly (Eq. 1) (unlike MRFs, which model the joint probabili-

ty P(x,y)). We deal with a simple binary classification task and 

thus we only have two different labels y, building and non-

building. The set of all observations is denoted as observation 

vector x, the label of the patch i that is currently investigated is 

denoted yi, and its adjacent label it is compared to is denoted yi. 

The set of all patches i to be labeled is S and the set of all 

patches j in the neighborhood of patch i is Ni (which naturally is 

a subset of S).  Z(x) is called the partition function (Eq. 2). It is 

a normalization constant (for a given data set) and transforms 

the sum of potentials to probabilities P(y|x).  

 

( | )P y x                                                                              (1) 

 
   

1
exp , , ,

i

i i ij i j

i S i S j N

A y I y y
Z   

 
 

 
 x x

x
 

where 

       exp , , ,
i

i i ij i j

i S i S j N

Z A y I y y
  

 
  

 
  

y

x x x (2) 

 

CRFs basically consist of two main terms (Lafferty et al., 2001), 

the association potential Ai(x,yi) and the interaction potential 

Iij(x,yi,yj). We use a standard approach for both similar to the 

one proposed by Kumar and Hebert (2006) in order to evaluate 

its performance for building detection. We use a generalized 

linear model for Ai(x,yi) (Eq. 3). However, various other clas-

sifiers, for example Maximum Likelihood or Logistic Regres-

sion could equally be used. The association potential Ai(x,yi) 

determines the most likely label yi of a single patch (i.e., node) i 

considering all observations x.  

 

                         , expi i iA y y T

ix w h x                (3)         

 

Thus, all observations of the entire data set could potentially be 

used to label a single patch. In order to limit complexity we do 

not use all feature vectors but only a single feature vector hi(x) 

for each patch i containing the features of three different scales 

described in Section 3. Vector wT contains weights of features 

in hi(x)  that are adjusted during training. In order to generate a 

more accurate non-linear decision surface a quadratic expansion 

of hi(x) is done (p.191, Kumar and Hebert, 2006). Thereafter, 

hi(x) contains all features as described in section 3, their 

squares, and their pair-wise products. 

          

                   , , expij i j i jI y y y y T

ijx v μ x           (4)         

 

The interaction potential Iij(x,yi,yj) (Eq. 4) basically is a smooth-

ing term comparing adjacent labels yi and yj that are either sup-

pressed or supported by features μij(x). Those edge features 

μij(x) again could possibly be based on all observations global-

ly. We simply define μij(x) as the difference μij(x) = hi(x) - hj(x) 

of the expanded single patch feature vector of the current node 

hi(x) and its neighboring nodes hj(x) within a 4-connectivity 

neighborhood.  

We tested various training and inference methods and found the 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) (Liu and Noced-

al, 1989) method and Loopy Belief Propagation (LBP) (Frey 

and MacKay, 1998) to deliver the best results for training and 

inference, respectively.                       

 
a 

 
b 

  
c d 

  
e f 

  
g h 

 

Figure 4.  CRF classification results of one out of four test 

scenes (a) Orthophoto, (b) SAR amplitude image, (c) stereo 

line patches, (d) double-bounce line segments; true positive 

(orange), false positive (red), true negative (white), and 

false negative (blue) building detection results based on 

features of (e) the orthophoto, (f) orthophoto, 3D stereo 

lines, and InSAR, (g) orthophoto and 3D stereo lines, (h) 

orthophoto and InSAR  
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5. RESULTS 

Our test data set consists of one orthophoto, an optical aerial 

image stereo pair (© Geobasisdaten: Land NRW, Bonn, 

2111/2009), and one mono-aspect InSAR image pair of the city 

Dorsten, Germany. The orthophoto was acquired with the 

analogue aerial camera Zeiss RMK and scanned whereas the 

two stereo images were taken with the digital aerial camera Z/I 

Imaging DMC. The single-pass X-band InSAR data (wave 

length  = 3.14 cm) were acquired by the AeS sensor of 

Intermap Technologies (Schwaebisch and Moreira, 1999). 

Spatial data resolution of the original single-look data is 38.5 

cm in range and 18 cm in azimuth with a baseline of 2.4 m. 

Since the different test data were not acquired exactly at the 

same time we selected smaller blocks of 1000 x 1000 pixels size 

without significant changes between acquisitions.  

In order to assess the quality of our results, they are compared 

to reference data, and the completeness and the correctness are 

determined on a per-pixel level. These numbers give a balanced 

estimate of the area that is classified correctly. We also 

determine the completeness of the results on a per-building 

level, using the method based on the area overlap as described 

in (Rutzinger et al., 2009). In this context, a building is 

considered to be a true positive if 70% of its area is covered by 

a building in the reference. The correctness of the results is not 

determined on a per-building label, because in our results most 

of the buildings are merged into a few large building segments, 

which makes a meaningful interpretation of the correctness 

impossible.  

 

5.1 Orthophoto versus multi-sensor feature combination 

We first compare CRF building detection results achieved with 

merely the orthophoto (Fig. 4(e)) to those based on all available 

features described in section three (Fig. 4(f)). Thus, we may 

empirically assess the improvements due to InSAR double-

bounce lines and 3D stereo lines. Table 1 gives the average µ 

and the standard deviation  of both completeness and correct-

ness of this first test on pixel-level. The completeness on a per-

building-level is shown in Table 2. 

 
Orthophoto Orthophoto+Stereo+InSAR 

Completeness Correctness Completeness Correctness 

μ σ μ σ μ σ μ σ 

85% 5% 71% 7% 88% 5% 76% 7% 

 

Table 1. Completeness and correctness on a per-pixel level of 

the CRF building extraction results using only 

orthophoto features vs. the combination of 

orthophoto, stereo line, and InSAR features. µ and  

are the mean and standard deviation of the results 

from four test scenes. 

 
Orthophoto Orthophoto+Stereo+InSAR 

μ σ μ σ 

85% 10% 81% 13% 

 

Table 2.  Completeness on a per-building level of the CRF 

building extraction results using only orthophoto 

features vs. the combination of orthophoto, stereo 

line, and InSAR features. µ and  are the mean and 

standard deviation of the results from four test 

scenes. 

 

On pixel-level, we achieve 85% correctly classified building 

pixels using the features generated from the orthophoto. 

However, the correctness (71%) is very low because small gaps 

between buildings are misclassified. This effect occurs in all 

four tests (see red areas in Fig. 4(e)-(h)) because of the simple 

standard interaction potential, which is basically a smoothing 

term. A combination of orthophoto features with stereo and 

InSAR helps increasing both completeness (88%) and 

Correctness (76%). Nonetheless, the strong smoothing effect 

caused by the smoothing effect of the interaction potential is 

still present.  

 

5.2 Stereo lines versus InSAR lines 

Secondly, we evaluate the impact of stereo lines and InSAR 

double-bounce lines separately on the overall CRF building 

detection performance. Results based on orthophoto features 

and stereo lines (Fig. 4(g)) are compared to those combining 

orthophoto features with InSAR double-bounce lines (Fig. 4h). 

Tables 3 and 4 summarize the evaluation on pixel-level and on 

object-level, respectively.  

 
Orthophoto+Stereo Orthophoto+InSAR 

Completeness Correctness Completeness Correctness 

μ σ μ σ μ σ μ σ 

87% 6% 74% 7% 88% 6% 70% 10% 

 

Table 3.  Completeness and correctness on a per-pixel level of 

the CRF building extraction results using orthophoto 

features plus stereo lines vs. the combination of 

 the 

mean and standard deviation of the results from four 

test sites. 

 
Orthophoto+Stereo TPR Orthophoto+InSAR TPR 

μ σ μ σ 

79% 9% 81% 9% 

 

Table 4.  Completeness on a per-building level of the CRF 

building extraction results using orthophoto features 

plus stereo lines vs. the combination of orthophoto 

and InSAR features. µ and  are the mean and 

standard deviation of the results from four test sites. 

 

The combination of the orthophoto features with the stereo lines 

increases the pixel-based correctness (74%) compared to the 

combination with InSAR double-bounce lines (70%) whereas 

the completeness is on the same level (87% vs. 88%). 

Comparing the completeness on a per-building level given in 

Tables 2 and 4, the best is achieved using only orthophoto 

features because of over-smoothing. This is due to the reasons 

that in all other cases very small buildings are missed if neither 

InSAR lines nor stereo lines occur. They are strong features and 

thus gain high weights during CRF training. Nonetheless, we 

have seen in the pixel-based error analysis that those additional 

features increase the correctness significantly.   

 

6. CONCLUSION AND OUTLOOK 

In this work, first building detection results from combined 

features of an orthophoto, optical stereo images, and InSAR 

data using Conditional Random Fields was presented. CRFs 

proved to be a suitable technique for context-based 

classification. The introduction of very simple features derived 

from stereo lines and InSAR double-bounce lines helped 

increasing completeness and correctness on per-pixel level 

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

243



 

 

although only slightly. This is due to, first, the very simple 

features derived from stereo and InSAR data and, second, the 

standard approach of the interaction potential, which basically 

is a smoothing term. Context is only modelled implicitly by 

either supporting or suppressing the label comparison yiyj with 

the observations. This method works well if large single objects 

occur in an image as for instance shown by Kumar and Hebert 

(2006) and Korč and Förstner (2008). Our task of building 

detection in urban areas shows a different characteristic. Many 

relatively small objects are distributed over a large part of the 

scene with sometimes very small gaps between them. Therefore, 

our next step will be the introduction of an explicit 

discontinuity constraint similar to the one proposed by Tupin 

and Roux (2005). High gradients, double-bounce lines, and 

stereo lines at roof edges located between two patches could 

possibly be a hint for discontinuities.  

Nonetheless, those discontinuity constraints and the context of 

the scene may only be exploited to their full extent if we also 

replace the regular patch grid by an irregular segmentation. We 

are currently working on setting up the CRF graph on 

irregularly distributed segments obtained with Normalized Cuts. 

In the long term we will also have to fine tune the features we 

use in order to optimize building detection results. 
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