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ABSTRACT:

The stereo matching method semi-global matching (SGM) relies on consistency constraints during the cost aggregation which are
enforced by so-called penalty terms. This paper proposes new and evaluates four penalty functions for SGM. Due to mutual depen-
dencies, two types of matching cost calculation, census and rank transform, are considered. Performance is measured using original
and degenerated images exhibiting radiometric changes and noise from the Middlebury benchmark. The two best performing penalty
functions are inversely proportional and negatively linear to the intensity gradient and perform equally with 6.05 % and 5.91 % average
error, respectively. The experiments also show that adaptive penalty terms are mandatory when dealing with difficult imaging condi-
tions. Consequently, for highest algorithmic performance in real-world systems, selection of a suitable penalty function and thorough
parametrization with respect to the expected image quality is essential.

1 INTRODUCTION

Calculating depth information by stereo matching (disparity esti-
mation) is a common image processing task in many remote sens-
ing applications. Typical applications of range cameras based
on stereo imaging include advanced driver assistance systems,
robotics, and keyhole surgery assistance systems. Crucial aspects
for real-world suitability is accuracy and density of the depth
map, which are especially difficult to achieve at in untextured
areas. These requirements are further impacted by noise and dif-
ficult lighting conditions. Naturally, all of these effects occur in
real-world scenarios.

The semi-global matching algorithm (SGM) (Hirschmüller, 2008)
is among the top-performing algorithms in the ongoing Middle-
bury benchmark (Scharstein and Szeliski, 2012). The benchmark
originated from the studies in (Scharstein and Szeliski, 2002)
comparing state-of-the-art stereo methods using a controlled set
of test images with complex scene structure and varying texture.
It has also been shown that SGM is able to effectively deal with
the aforementioned issues (Hirschmüller and Scharstein, 2009).
Several combinations of matching cost functions and stereo meth-
ods were evaluated using original and degraded test images (e. g.
noise, exposure differences).

Furthermore, it has recently been shown that SGM can be im-
plemented in real-time on a variety of platforms. For example,
an FPGA implementation (Banz et al., 2011b) and a GPU imple-
mentation (Banz et al., 2011a) both reach over 60 fps for VGA
images with 128 pixel disparity range. The high algorithmic per-
formance and real-time capability make SGM very attractive for a
wide range of applications including low power embedded vision
systems and desktop system with off-the-shelf hardware.

Of major relevance to the performance are the smoothness con-
straints that are imposed by SGM during the cost aggregation
step. These constraints are adapted to the image content by means
of so-called penalty functions which penalize abrupt changes in
the depth information when, according to image content, a change
of objects is unlikely. Therefore, the choice of penalty functions
has a significant influence on the algorithmic performance and

robustness. Despite the many surveys on SGM, the influence of
the penalty functions has not yet been investigated.

In this paper, new penalty functions for the cost aggregation step
of SGM are proposed and evaluated. Due to the mutual depen-
dency of matching cost function and penalty function, two match-
ing cost functions for initial correspondence hypothesis are con-
sidered. These are based on the rank transform and the census
transform (Zabih and Woodfill, 1994), both of which are often
used in systems for disparity estimation due to their good perfor-
mance and efficient implementation possibilities. Each penalty
function is parametrized for both matching cost functions us-
ing the established data sets with ground truth disparities from
(Scharstein and Szeliski, 2002) with and without additional con-
trolled radiometric changes of intensity similar to (Hirschmüller
and Scharstein, 2009) as well as noise. Evaluation is performed
in terms of, firstly, accuracy and density of the disparity map and,
secondly, the insensitivity to the degraded input images.

Section 2 reviews algorithmic background on semi-global match-
ing and disparity estimation. Section 3 details the methodology,
experiments and results for the different test sets. Conclusions
are drawn in Section 4.

2 STEREO MATCHING

It is important to distinguish between the initial a similarity mea-
sure (matching costs) between two pixels in the base and match
image (or left and right image, respectively) and the aggregation
method that uses these costs. In this work, rank transform and
census transform (Zabih and Woodfill, 1994) are considered as
matching costs functions and semi-global matching (Hirschmüller,
2008) is used for cost aggregation. Final disparity selection is
performed by a winner-take-all (WTA) approach.

2.1 Rank Transform

Matching costs C(p, d) based on the rank transform (RT) of the
base and match image Rb and Rm are calculated as

C (p, d) = |Rb (px, y)−Rm (px − d, y)| (1)
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Figure 1: Investigated path orientations for eight and four paths.

where p = [px, py]T is the pixel location in the left image and
R is the area-based non-parametric rank-transform. It is defined
as the number of pixels p′ in a square M ×M (here: M = 9)
neighborhood A(p) of the center pixel p with a luminous inten-
sity I less than I(p)

R(p) =
∥∥{p′ ∈ A (p) | I(p′) < I(p)

}∥∥ . (2)

2.2 Census Transform

The census transform (CT) maps the squareM×M (here: M = 5)
neighborhoodA(p) of the center pixel p to a bit string where pix-
els with an intensity I less than I(p) are 1, else 0. Thus,

R(p) = ⊗
p′∈A(p)

ξ
(
I(p′), I(p)

)
(3)

with⊗ the concatenation and ξ(a, b) = 1 ∀ a < b, 0 else.
The matching cost between two pixels is the Hamming distance
of the corresponding census transformed pixels, i. e.

C (p, d) =∥∥i ∈ 0 . . .M2 − 1|Rb,i (px, y) 6= Rm,i (px − d, y)
∥∥ (4)

where i indexes the bit position. The census transform is also
non-parametric and area based.

Both methods are able to deal with radiometric differences since
they depend on the ordering of the pixel’s intensities rather than
the absolute values. In contrast to the rank transform, spatial in-
formation is retained by the census transform.

2.3 Semi-Global Matching

In many cases, pixel-wise calculated matching costs (i.e. locally
calculated) yield non-unique or wrong correspondences due to
low texture and ambiguity. Therefore, semi-global matching in-
troduces global consistency constraints by aggregating matching
costs along several independent, one-dimensional paths across
the image. Thereby, SGM aims to approximate a global energy
minimization problem which is NP-hard. The paths are formu-
lated recursively by the definition of the path costsLr(p, d) along
a path r.

Lr(p, d) = C(p, d) + min [Lr(p− r, d) ,

Lr(p− r, d− 1) + P1,

Lr(p− r, d+ 1) + P1,

min
i
Lr(p− r, i) + P2]−

min
l
Lr(p− r, l)

(5)

The first term describes the initial matching costs. The second
term adds the minimal path costs of the previous pixel p − r
including a penalty P1 for disparity changes and P2 for dispar-
ity discontinuities, respectively. Discrimination of small changes
|∆d| = 1 pixel (px) and discontinuities |∆d| > 1 px allows for
slanted and curved surfaces on the one hand and preserves dis-
parity discontinuities on the other hand. The last term prevents
constantly increasing path costs. For a detailed discussion refer to
(Hirschmüller, 2008). P1 is an empirically determined constant.
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Figure 2: Matching costs, aggregated path costs, and sum costs
for the pixel p = [183; 278] of the Teddy image calculated with
census transform and SGM.

P2 can also a empirically determined constant or can be adapted
to the image content. The selection of these penalty functions is
focus of this contribution and will be discussed in 3 in detail.

Quasi-global optimization across the entire image is achieved by
calculating path costs from multiple directions to a pixel, as shown
in Fig. 1. The aggregated costs S are the sum of the path costs

S (p, d) =
∑
r

Lr(p, d). (6)

The disparity map Db(px, py) from the perspective of the base
camera is calculated by selecting the disparity with the minimal
aggregated costs

min
d
S(p, d) (7)

for each pixel. For calculating Dm(qx, qy), the minimal aggre-
gated costs along the corresponding epipolar lines are selected:

min
d
S (qx + d, qy, d) . (8)

The effect of the path costs aggregation and the disparity selec-
tion is illustrated in Fig. 2. The initial matching costs (dotted line)
exhibit a high level of ambiguity. Seven of the eight aggregated
paths costs already show distinct minima. The summed path costs
(thick red line) clearly identify the minimum at a disparity level of
32 resolving all ambiguities. However, the cost difference for the
positions 32 and 33 is minimal indicating that the correct position
is located a sub-pel precision. Half-pel accuracy is obtained by
quadratic curve fitting through the neighboring sum costs around
the minimum. An evaluation of sub-pel interpolation methods
can be found in (Haller and Nedevschi, 2012).

Both, uniqueness check and left/right check are performed to en-
sure that only valid disparities with high confidence level are pro-
duced. The uniqueness check sets disparities invalid if the min-
imum mind S(p, d) is not unique. The left/right-check sets dis-
parities invalid if the disparity Db(p) and its corresponding dis-
parity of Dm differ by more than 1 px. No post-processing steps,
e. g. hole-filling or interpolation, are performed. An overview of
the processing steps is given in Fig. 3. From (5) and Fig. 2 the
crucial role of a "‘good"’ selection of P1 and P2 for the overall
performance is obvious. It is suggested in (Hirschmüller, 2008)
to adapt P2(I) to the image content in order to penalize abrupt
disparity changes when, according to image content, a depth dis-
continuity is unlikely. Therefore, it is clearly necessary to assess
different functions for P2(I) and their influence on the algorith-
mic performance, which is the scope of this paper.
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Figure 3: Processing steps for disparity estimation using rank transform/census transform and semi-global matching.

3 EVALUATION AND RESULTS

The four evaluated penalty functions are:

(a) empirically determined constant value, i. e.

P2,c = const. (9)

(b) negatively proportional to the absolute luminous intensity gra-
dient of the currently processed pixels along the path, i. e.

P2,l = −α · |I(p)− I(p− r)|+ γ (10)

(c) inversely proportional to the absolute luminous intensity gra-
dient of the currently processed pixels along the path. This fol-
lows the original proposal from SGM.

P2,i =
α

|I(p)− I(p− r)|+ β
+ γ (11)

(d) negatively proportional to the variance of the luminous inten-
sity in a local window, i. e.

P2,v = −α · Var (A(p)) + γ (12)

In all cases it has to be ensured that P2 ≥ P1. Therefore, a lower
bound is introduced P2,min to which the values are clipped. An
upper bound is not required because penalty higher than Cmax +
P1 cause that value never to be taken in the outer min-term in
Eq. (5). It follows that (b) does not require a parameter β for
shift in x direction. This is implicitly done by adjusting γ. Cases
(b) and (c) are based on the hypothesis that depth changes are
often visible as luminance changes. Case (d) is based on the hy-
pothesis that matching costs in highly structured areas are highly
discriminative and luminance changes not only occur due to ob-
ject changes.

3.1 Methodology and Middlebury Images

For the first set of experiments the established Middlebury stereo
data set (Cones, Teddy, Venus and Tsukuba) is used (Scharstein
and Szeliski, 2002). These were taken under controlled labora-
tory conditions. Intensity differences and noise are expected to
be minimal. The disparity ranges are 64 px for Cones and Teddy,
32 px for Venus, and 16 px for Tsukuba. Each penalty function
is parametrized for each image with both matching cost func-
tions for 4 and 8 paths. The resulting disparity maps are eval-
uated by counting the number of erroneous disparities in non-
occluded areas. An erroneous disparity differs by more than a
defined threshold from ground truth. Two thresholds are consid-
ered: |∆| > 1 px and |∆| > 0.5 px. Percentages stated in the
following are the number of erroneous pixels of all non-occluded
pixels (not the entire image). Ignoring occluded areas, i. e. where
disparities cannot be computed, allows to focus on the perfor-
mance of the disparity estimation algorithm rather than any post-
processing steps. Otherwise, the results would be biased by the

quality of the hole interpolation algorithm. For the same reasons
no post-processing steps are applied to the disparity maps.

Questions the first set of experiments is aimed at to answer are:
Is there a clear favorite among the penalty functions? How sensi-
tive is the performance towards the parametrization of the penalty
function? Is the parametrization robust across different images
taken with different setups and cameras? These questions are
of relevance for real world system since insensitivity towards
non-optimal parametrization and camera imposed differences are
mandatory.

Fig. 4 shows the results computed with census and 8 paths for
the four test images as the parametrization of each function is
changed. The parameter configurations for each penalty function
are sorted with increasing error and the best 100 configurations
are shown. The parameters of each function (P1, P2,min, α, β,
and γ) are changed systematically with carefully determined step
sizes big enough to ensure sufficiently different configuration sets
on the one hand and small enough not to miss local minima on
the other hand.

Setting P2 constant performs well if carefully adjusted to the par-
ticular image but quality degrades quickly as these values are
changed. The adaptive functions P2,l and P2,i perform signifi-
cantly better with up to 1 percentage points improvement. Both
are comparable in terms of quality and superiority is minimal de-
pending on the particular image. The variance based approach
performs significantly worse than the other adaptive approaches
and sometimes even worse than the fixed approach. This could
be due to the fact that P2,v does not calculate penalties along the
currently processed path but from the local window giving the
same penalty value for all path directions. For the census-based
matching costs P2,l and P2,i are the best functions.

The second row of Fig. 4 shows the data re-grouped according
to penalty function, this time over all configurations analyzed.
All functions are insensitive to a certain degree of non-optimal
parametrization to the image content. However, it is also clear
that good parametrization is essential for obtaining the maximum
of correct information.

The third row of Fig. 4 assess if optimal configurations coincide
from image to image. The configurations are now ordered ac-
cording to the parameter values and same configurations are on
the same x-position. Clearly, performance of a particular configu-
ration coincides across all images. Further, the best configuration
for one image is usually found for the other images when allow-
ing a minimal 0.5% percentage point error margin. When going
from 8 paths to 4 paths (data not shown) the same observations
and conclusions can be made with just slightly increased error
counts. For half-pel error thresholds the are no changes in con-
figurations (data not shown).

Results employing the rank transform are shown in Fig. 4 fourth
row. Error counts for best performance are always slightly higher
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Figure 4: Errors in unoccluded areas for all penalty functions employing census transform examining behavior on the same image (row
one), over different images (row two), stability of configurations across images (row three), and employing rank transform (row four).

(a) Left Cones image (b) Ground thruth (c) CT, P2,c (d) CT, P2,l (e) CT, P2,i (f) CT, P2,v

(g) Left Teddy image (h) Ground Truth (i) CT, P2,c (j) CT, P2,l (k) CT, P2,i (l) CT, P2,v

Figure 5: Disparity maps obtained with optimally parametrized penalty functions for Cones (top row) and Teddy (bottom row).

than for the census transform which is due to the missing spatial
information of the rank transform. As with the census transform
P2,c performs acceptably and P2,v poorly for an adaptive func-
tion. However, in opposite to census, P2,l always outperforms
P2,i; in 3 cases quite significantly. All functions are similarly
robust towards parametrization offset as with census (data not
shown). Again, good configurations coincide across all images
(data not shown).

The error levels obtained with optimally adapted penalty func-
tions are summarized in Table 1. For the two test images Cones
and Teddy the resulting disparity maps are shown in Fig. 5. Even
visually highly noticeable, P2,v introduces a significant amount of
errors. Using P2,i the small structures in Cones are retained, oth-
erwise there is no significant difference between P2,l and P2,i. For

comparison, these two functions are plotted with their optimal
configuration in Fig. 6 showing an obvious similarity between
the two functions over x.

3.2 Simulated Degenerated Images

For the second set of experiments the left input image of the
Cones data set is artificially degraded whereas the right remains
unchanged. Two types of radiometric differences and two types
of noise are considered:

• Additive white Gaussian noise (AWGN) with SNR = 12 dB
• Salt-and-Pepper noise with 14 % of the image degenerated
• Linear brightness (gain) change across the half the image
• Non-linear brightness (gamma) change
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The degenerated images are shown in Fig. 8 top row. The eval-
uation methodology remains as with the first experiments. This
experiment is aimed at answering the following questions: Are
the penalty functions robust towards a variety of different im-
age interferences and which performs best? How robust is the
parametrization across these interferences? Is the choice of penalty
function and parametrization the same as for the non-degenerated
images? The errors curves for the four types of simulated de-
generation are shown in Fig. 7. Fixed penalty functions degrade
quickly for census and rank, as the constant values are now trained
to the type and amount of noise in the image. Adaptive functions
are able to cope with the noise and radiometric changes. As with
non-degenerated images, P2,l and P2,i perform best and in many
cases similar. For rank, P2,l outperforms P2,i except for salt-and-
pepper noise. For census, the two functions perform equally ex-
cept for salt-and-pepper noise where the P2,i significantly outper-
forms the linear function. The variance based approach is always
outperformed by the other adaptive approaches. For qualitative
evaluation the resulting disparity maps are shown in Fig. 8.

Comparing configurations across the different types of degener-
ation shows that good configurations coincide (data not shown).
As before, good configurations from one image to the next can
often be found within a 0.5 percentage points error margin. How-
ever, comparing good configurations to configurations from the
non degenerated images shows that now higher dynamic range
and higher penalties are chosen. For example, the best param-
eter set from the original Cones image for P2,l is {P1 = 11,
P2,min = 17, γ = 35, α = 0.5} resulting in 5.23 % erroneous
disparities. For the AWGN case it is {P1 = 20, P2,min = 24,
γ = 70, α = 0.5} and for the salt-and-pepper case {P1 = 14,
P2,min = 24, γ = 40, α = 0.5} resulting on the original image
in 6.27 % and 5.37 %, respectively. For comparison, the opti-
mal penalty functions for the AWGN case have been included
in Fig. 6. Consequently, proper selection and parametrization of
penalty functions can make disparity estimation robust to high
levels of interferences with only minimal performance decrease
in ideal cases. However, it also shows that for high-end applica-
tions targeting highest quality disparity maps sophisticated image
preprocessing is required.

3.3 Real World Images

For real world image data the lack of ground truth makes it ex-
tremely difficult to setup automated parametrization. However,
optical inspection using real world data from (Ess et al., 2007)
was performed with the parametrizations obtained from the non-
degenerated and degenerated images. Special attention has been
paid to planar, little textured areas, edges, and small structures
(e. g. lamp posts). Generally, better results were obtained when
using the configurations from the degenerated images. This is in
accordance with the argumentation from above.

f Cones Teddy Venus Tsukuba

Census Transform
P2,c 5.38 % 10.40 % 2.53 % 8.35 %
P2,l 5.23 % 9.03 % 1.92 % 7.45 %
P2,i 5.43 % 9.30 % 2.06 % 7.55 %
P2,v 5.28 % 10.79 % 2.55 % 8.54 %

Rank Transform
P2,c 7.46 % 12.44 % 4.20 % 9.32 %
P2,l 7.29 % 11.17 % 3.15 % 8.58 %
P2,i 7.37 % 11.76 % 4.13 % 9.06 %
P2,v 7.49 % 12.57 % 4.16 % 9.41 %

Table 1: Errors in non-occluded areas with a threshold of 1 dis-
parity obtained with optimally parametrized penalty functions.

f Baseline AWGN Salt Shadow Gamma

Census Transform
P2,c 5.38 % 26.35 % 7.63 % 7.86 % 5.41 %
P2,l 5.23 % 18.91 % 8.27 % 7.27 % 5.27 %
P2,i 5.43 % 18.94 % 7.40 % 7.26 % 5.30 %
P2,v 5.28 % 30.70 % 8.40 % 8.16 % 5.45 %

Rank Transform
P2,c 7.46 % 40.64 % 10.99 % 10.27 % 7.60 %
P2,l 7.29 % 32.61 % 11.74 % 7.27 % 7.41 %
P2,i 7.49 % 40.61 % 11.11 % 9.94 % 7.47 %
P2,v 7.37 % 45.84 % 11.99 % 10.54 % 7.61 %

Table 2: Errors in non-occluded areas with a threshold of 1 dis-
parity obtained with optimally parametrized penalty functions on
the cones image under various types of degeneration.

4 CONCLUSIONS AND FUTURE WORK

In conclusion, the choice of penalty function and its parametriza-
tion has significant influence on the performance of SGM, es-
pecially under difficult imaging conditions (e. g. noise, expo-
sure differences). While for highly structured images taken un-
der near ideal conditions constant penalty functions (P2,c) per-
form well, they tend to become overfitted to the particular imag-
ing conditions and performance is not stable over different con-
ditions. Among the adaptive functions, the linear (P2,l) and in-
versely proportional (P2,i) functions significantly outperform the
variance based approach. They are also robust to interferences
in the images making adaptive penalty terms mandatory for ro-
bust disparity estimation. Even then, the quality of the dispar-
ity map significantly depends on a suitable penalty function for
SGM. Using inversely proportional penalty functions, as origi-
nally proposed with SGM, does not result in any performance
improvement compared to linear dependencies, which is of inter-
est for computationally limited implementations. Nevertheless,
thorough parametrization according to the employed matching
cost function is essential. Since parametrization using difficult
images results in more robust parameter sets real world systems
should parametrized under these conditions. For all penalty func-
tions, employing census transform instead of rank transform ex-
hibits better disparity maps with less edge blurring because cen-
sus transform retains spatial information. Future work includes
testing the penalty functions for other types of matching cost
functions, e. g. mutual information.
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Figure 7: Errors in unoccluded areas for all penalty functions on degenerated input images employing census and rank transform.

(a) Ground Truth (b) AWGN (c) Salt-and-Pepper (d) Shadowed (e) Gamma

(f) P2,l, Baseline (g) P2,l, AWGN (h) P2,l, Salt-and-Pepper (i) P2,l, Shadowed (j) P2,l, Gamma

(k) P2,i, Baseline (l) P2,i, AWGN (m) P2,i, Salt-and-Pepper (n) P2,i, Shadowed (o) P2,i, Gamma

Figure 8: Degenerated input images (row one) and corresponding disparity maps obtained with P2,l (row two) and P2,i (row three) using
the census transform.
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