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Abstract 

The MRO industry faces substantial challenges with regard to the capacity planning of disassembly and reassembly work. This is due to the 
unknown workloads when regenerating complex investment goods and is caused, in particular, by the uncertain degree of disassembly and the 
complex challenges of reassembly. Forecasting techniques based on Bayesian networks are developed along with mathematical models which 
optimize capacity utilization, job order and the resulting costs. The approaches are tested and validated in conjunction with an MRO company 
with global operations. The results show possibilities for enhancing the planning processes and are found to be transferable on an international 
scale regardless of sociocultural and process differences. 
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1. Introduction 

The maintenance, repair and overhaul (MRO) of complex 
capital goods is afflicted with challenges with regard to 
several processes [1]. Complex capital goods include diesel 
locomotives, aircraft engines, industrial gas turbines and wind 
turbines. The employees working in this field are highly 
qualified and specially accredited. Therefore, the supply of 
new employees is limited [2]. At the same time, the wages for 

such labour are high. Consequently, the capacities have to be 
planned as accurately as possible. This is one key challenge 
for MRO companies because the planning of regeneration 
processes is much more complex than for customary 
production processes due to high diversity of parts and 
damage. The process cannot be standardized as easily because 
every new regeneration job is unique in its damage set [3]. 
Thus, the workload of upcoming jobs is unknown beforehand, 
which makes them even harder to plan [4]. The capacity 
planning in the field of MRO has hardly been studied 
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scientifically. Currently no practical relevant, rule-based and 
thus transparent method or software application that is suitable 
for planning or controlling the regeneration of complex capital 
goods exists [5,6,7]. 

In this paper, aircraft engines are chosen as an example of 
complex capital goods. Aircraft engines consist of a vast 
number of components with special geometries and materials, 
which makes the regeneration process itself very complex [4]. 
Fig. 1 shows an aircraft high bypass turbofan engine. Special 
tooling and machines are needed to disassemble, repair and 
reassemble an engine. Aviation legislation calls for the 
company and its employees to have particular qualifications 
and accreditations in order to work on an aircraft engine [4]. 

 
Fig. 1. Schematic high bypass turbofan engine [8] 

The regeneration process for an aircraft engine begins after 
its removal from the wing. The engine is transported to a 
designated facility, where an incoming inspection is carried 
out to determine the damage to the engine and the work to be 
carried out. After disassembling the engine, all disassembled 
parts are inspected again to define the exact damage and the 
processing of the parts. A decision has to be made as to 
whether a part is serviceable, repairable or has to be purchased 
anew. The reassembly of the stored, repaired and purchased 
parts takes place as soon as the necessary parts are available. 
The regeneration ends when a test run of the reassembled 
engine is successful [9]. The regeneration process takes 20–70 
days and is shown in Fig. 2. 

 
Fig. 2. Regeneration of an aircraft engine [9] 

According to Herde (2013), the condition of an engine sent 
for regeneration is determined by four categories of 
influences: environment, usage, maintenance and directly 
triggering incidents. Environmental factors, e.g. the contents 
of dust or sulphate in the air, differ regionally. These factors 
can cause specific damage, e.g. burning or erosion. Therefore, 
the region in which an aircraft is operated has a great 
influence on the damage to its engines [4]. Whether an engine 
is used mostly on short- or long-haul flights is seen as a usage 
factor. Stresses on an engine are highest during starts and 
landings. Thus, operations over short distances cause more 
wear and potential damage [4]. Although all regeneration 
work has to be performed by accredited service providers, the 
exact regeneration processes can differ. For example, the 
cleaning method or the policy on life limited parts can have a 
substantial influence on the engine [4]. A bird strike is one 
example of a directly triggering incident; others are the sale of 
the engine or the necessary exchange of life limited parts. All 
of these are related to specific damage or work that has to be 
executed during the regeneration [4]. 

Although the influencing factors are known, the exact 
damage to an aircraft engine and the necessary disassembly 
level are to a large extent unknown beforehand [9]. The 
uncertain condition of an engine before its disassembly is a 
major challenge for MRO service providers because most of 
the planning processes proceed while the engine is still in use. 
The decision as to whether employees have to be specifically 
qualified or whether new personnel must be hired has to be 
made far in advance [10]. The workload for the disassembly 
department, for example, is highly dependent on the level of 
disassembly required for an engine. At the same time, 
environmental factors can have a big influence, too. Heavy 
erosion on bolts and screws causes more work during 
disassembly because the standard tools cannot be used. 
Instead, the employees have to improvise or even build special 
tools [1]. The information available is imprecise and therefore 
it is not easy to predict the correct workload for an engine [2].  

Nevertheless, customers expect short lead times and good 
quality at low costs [9]. A delay causes a severe loss of 
revenue for the owner of the engine. This is why a high 
service level is a key goal for MRO companies [11]. 
Additionally, customers can cause delays themselves when 
unexpected damage is found which needs clarification before 
the disassembly process can continue. This can only be 
prevented if as little damage as possible comes under the 
heading of “unexpected”. The regeneration of aircraft engines 
has to be profitable. With this in mind, it is the goal of an 
MRO service provider to meet customer demands with as little 
capacity as possible. All these reasons mean that a good 
estimate of the condition of an engine and the workload 
needed to regenerate it is essential for MRO service providers 
[12]. The lack of accuracy in information during the 
regeneration process is illustrated in Fig. 3 together with the 
potential for additional database usage. A database containing 
data about former regenerations of similar capital goods can 
be accessed using data mining techniques in order to increase 
the information content. Bayesian networks represent one way 
of using the existing fuzzy information to estimate the 
potential workload of complex capital goods [2]. 
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Fig. 3. Accuracy of information during regeneration process [10] 

The unknown workloads of the different engines in 
combination with strict deadlines from the customer and the 
need for efficient capacity usage represent the main challenges 
for capacity planning in an MRO company. Additionally, most 
of the work has to be performed directly when a job comes up 
and therefore cannot be stored as in a production company 
[1,5]. Capacities have to be utilized according to the existing 
workload. As the capacities consist mainly of highly qualified, 
accredited personnel [4], it takes time to augment the 
workforce because the number of available employees is 
limited [2]. Capacities can be adjusted by moving personnel 
from one department with too much capacity to another with a 
temporary lack of capacity. If employees have a wide range of 
qualifications and skills, it is possible, for example, to move 
them from the reassembly department to the disassembly 
department. The other way around is not as easy because of 
the higher qualifications needed for reassembly. At the same 
time, it is nearly impossible to move employees from 
disassembly or reassembly to repair work because of the 
totally different skill set necessary. Mathematical models are 
needed to determine how and when to adjust capacities in the 
most efficient way [13]. 

Another factor that influences the capacity planning of an 
MRO service provider is the sociocultural environment of the 
company. The regional labour market determines how easy 
the workforce can be enlarged and the labour legislation 
determines the flexibility. Furthermore, the acceptance of 
planning strategies and tools is dependent on the sociocultural 
background [14]. These influences have to be taken into 
account during the development of a methodology that 
provides reliable capacity planning. 

2. Methodology for capacity planning 

As explained above, estimating the regeneration workload 
is a key aspect in the planning and control of capacities [3]. 
Due to the influencing factors, described by Herde, the 
damage to an engine and the resulting workload should be 
predictable to a certain extent. The available information 
about an engine has to be used in the best possible way and 
merged into an estimate of the total workload. Bayesian 
networks have proved to be suitable for this kind of problem. 
It has been shown that for this approach Bayesian networks 
are superior to artificial neuronal networks, Fuzzy logic and 
other potential techniques in the field of data fusion [2]. 
Bayesian networks use the statistics of conditional 
probabilities to calculate an estimated value, which is 

dependent on input parameters. The input parameters used in 
the Bayesian networks are based on the influencing factors 
and include the operational region as well as information 
about the use of the engine. The database for the development 
of the networks is a damage library that consists of historic 
data of engines regenerated previously. The Bayesian 
networks are used to estimate the regeneration workload and 
the severity of the damage. A validation of the method was 
carried out with an industrial partner and showed very 
promising results for both networks [2]. 

Operations research methods, e.g. linear programming, can 
be used to plan the capacities in the best possible way. The 
capacity planning problem of an MRO company can be 
modelled as a system of equations with parameters, 
constraints and decision variables. The abstract structure of 
one of the mathematical models with its input and output 
parameters is presented in Fig. 4. 

 
Fig. 4. Abstract structure of a mathematical model for capacity planning 

Capacity planning is executed with different time horizons, 
usually distinguishing between long-, medium- and short-term 
plans. Thus, three different models are necessary to describe 
the entire planning problem [13]. The models also differ in the 
section of the company to which the plans apply. The long-
term model plans the whole facility, the medium-term model 
individual cost centres and the short-term model particular 
workstations [13]. The different models and their properties 
are presented in Table 1. Instead of a direct integration the 
models are indirectly linked. Decisions based on the results of 
the long-term planning model, such as ordering new 
machines, influence the amount of capacity available for cost 
centres of the medium-term planning and consequently the 
number of workstations which have to be optimal assigned by 
the short-term model. A rigid connection of the three models 
would be impractical because of the continuous changes in the 
regeneration environment due to the market situation or 
employee fluctuation.  

Again, the models were verified and validated together 
with an industrial partner. The models were fed with real 
world data and the output was compared with the reality. The 
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long- and medium-term models both calculate the optimal 
disposition of the capacities in order to maximize the profit 
while taking the restraints into account. The short-term model 
optimizes the assignment of jobs to individual workstations. 
The validations of all the models show good results and the 
potential added value for the industrial partner [13]. 

After achieving good results with both methods, a 
combined approach is carried out. The workload estimates of 
the Bayesian network are used as input parameters for the 
mathematical model, which then calculates the optimal 
capacity utilization. In this way, the two methods, which are 
found to be beneficial separately, can multiply their potential 
to create a reliable capacity planning approach [6]. 

With respect to the international organization of the 
industrial partner with subsidiaries on different continents, a 
North American subsidiary was chosen to carry out the 
combined approach. The Bayesian networks and 
mathematical models were adapted to take into account the 
fact that the processes and sociocultural aspects differ from 
those relevant to the facility in Europe. 

Table 1. General properties of the mathematical models [15] 

 Long-term 
model 

Medium-term 
model 

Short-term 
model 

Decision 
variables 

Domain: binary, integer and non-
negative real number range  MILP 

Domain: binary 
and integer 
number range  
ILP 
 

Workload Regeneration tasks forecast derived by Bayesian 
networks 
 

A unit Entire complex 
investment 
goods unit 

Assembly of 
complex 
investment 
goods unit 
 

Individual part 
of a complex 
investment 
goods unit 

Planning period 1 year 12 weeks 
 

1 week 

Time steps 1 month 1 week 
 

1 day 

Planning domain Whole company Individual cost 
centre 
 

Single 
workstation 

Capacity 
adjustment 

Recruitment or 
dismissal of 
employees 

Movement of 
employees 
between cost 
centres 
 

Increase or 
decrease in 
overtime 

Workload 
adjustment 

Outsourcing 
jobs or 
accepting 
external jobs 
 

Outsourcing 
jobs or 
accepting 
external jobs 

Outsourcing 
jobs or 
accepting 
external jobs 

Time 
compensation 

Preponing or 
postponing jobs  

Preponing or 
postponing jobs  

Preponing or 
postponing jobs 

3. Results 

The North American plant considered has a strong focus 
on the disassembly and reassembly processes of the 
regeneration process; most of the repair work is outsourced. 
So the capacity planning also focuses on the disassembly and 
reassembly of aircraft engines. Nonetheless, the repair of parts 
has an influence on the scheduling and planning process 
because the lead times of the repaired parts determine when 
the reassembly process can start. A delivery delay of a single 

part can cause a delay for the whole engine. The focus on 
disassembly and reassembly entails some other challenges as 
well. It is, for example, nearly impossible to give parts of an 
assembly job to an outside company in order to balance 
capacities. So basically the entire backlog has to be processed 
within the strict deadlines. Otherwise, financial penalties 
ensue and customer satisfaction suffers. 

Bayesian networks are developed with the Netica software 
by Norsys and are based on historic engine data. The 
Bayesian networks estimate the in-house workload to 
regenerate a specific aircraft engine. Estimation work is 
carried out with two different time horizons with respect to 
the planning horizons. The Bayesian network for long-term 
planning works with information that is basically known as 
soon as a regeneration contract is signed. So the workload can 
be estimated long before the engine to be regenerated arrives 
at the facility. The network for the medium-term planning 
works with information that is available directly prior to the 
regeneration process. So a workload estimate and accurate 
capacity planning is possible before the incoming inspection 
of the engine. The input parameters of both networks are 
based on the influencing factors described by Herde. A 
schematic Bayesian network is shown in Fig. 5. 

 
Fig. 5. Schematic Bayesian network [6] 

The Bayesian networks are validated separately before 
their estimates are used as input parameters in order to make 
sure that the transfer to the new sociocultural environment has 
been successful. For the validation, the workloads of engines 
that are not used to feed the calculations of the Bayesian 
networks are estimated and compared with the real workloads 
of the engines. With regard to former validations, the 
percentage deviation between estimated and real workloads 
are categorized [2]: 
 0–9.9 % very high quality estimate 
 10–25 % satisfactory quality estimate 
 > 25 % unsatisfactory quality estimate 

Table 2 lists the results of the validation of the two 
networks developed as well as the validation results that were 

Kundentyp
Typ A 0%

Typ B 100%
Typ C 0%

0%

Environment
Region A 22%
Region B 46%
Region C 8%
Other 24%

Regeneration workload
0 – 0.74 20%
0.75 – 0.99 30%
1 – 1.24 40%
1.25 – 1.5 9%
> 1.5 1%

1,13±0,3

Input parameter

Estimation parameter

Change to parameters
through knowledge input

Node

Edge

Maintenance
Process 1 52%
Process 2 16%
Process 3 13%
Other 19%

Usage
User profile A 13%
User profile B 6%
User profile C 61%
Other 20%

Directly triggering
incidents
Bird Strike 7%
Sale 25%
Other 68%
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achieved in the European plant [6]. The estimates are not only 
compared with the real workload but also with the existing 
planning data at the facilities to see if they can be beneficial to 
the company. 

Table 2. Validation of Bayesian networks for workload estimation; BN 
Bayesian network, IP = industrial partner 

Estimate 0–9.9 % 10–25 % > 25 % 

BN Long-term North America 52.0 % 18.0 % 30.0 % 

BN Medium-term North America 52.0 % 20.0 % 28.0 % 

IP Long- / medium-term North 
America 

8.0 % 50.0 % 42.0 % 

BN Long-term Europe 27.0 % 38.1 % 34.9 % 

IP Long-term Europe 26.4 % 25.0 % 48.6 % 

BN Medium-term Europe 33.8 % 29.2 % 37.0 % 

IP Medium-term Europe 26.7 % 45.0 % 28.3 % 

The results are regarded as positive and comparable with 
the validations in the European facility. The estimates of the 
Bayesian networks are better than the existing planning data. 
Therefore, the estimates of the networks can be used as input 
parameters for the mathematical model. 

In addition to the estimated workload of the Bayesian 
networks, several other parameters are used in the 
mathematical model, which are gathered differently, e.g. data 
regarding costs, capacity forecasts and revenue. The aim of 
the mathematical model is to calculate the best way of 
utilizing the existing capacities in order to cover the workload 
and maximize the profit at the same time. The model 
considers the fact that the increase as well as the decrease in 
capacity is limited by factors such as employees available on 
the job market and labour legislation. Potential penalties for 
missed deadlines due to insufficient capacity and storage costs 
for engines that are finished too early owing to overcapacities 
are considered as well. The model presented here plans the 
monthly utilization of the capacities over a period of one year 
and uses the workload estimates of the long-term network.  

 
Fig. 6. Results of mathematical model for long-term capacity planning 

The calculations are carried out with the solver of IBM 
ILOG CPLEX Add-in for MS Excel. Fig. 6 shows the results 
of the model in graphical form, with the proposed monthly 

utilization of capacities in combination with resulting 
penalties and stock units. 

The model is also validated with real world data from the 
industrial partner. The proposed capacity utilization of the 
model is compared with the work that was executed in the 
planned time period. The planning data from the industrial 
partner is also compared with the work actually executed. The 
best result of every planned month is marked in bold type in 
the following list of validation results (Table 3). 

Table 3. Validation of mathematical model for long-term capacity planning  

Percentage 
deviation 
of plan-
ning data 
from 
industrial 
partner 
(North 
America) 

Percentage 
deviation 
of mathe-
matical 
model 
(North 
America) 

Month Percentage 
deviation 
of plan-
ning data 
from 
industrial 
partner 
(Europe) 

Percentage 
deviation 
of mathematical 
model (Europe) 

19 % 8 % January 6% 9% 
19 % 11 % February 6% 4% 
1 % 12 % March 22% 17% 
1 % 3 % April 7% 3% 
14 % 2 % May 10% 17% 
19 % 9 % June 0% 0% 
14 % 0 % July 4% 4% 
7 % 6 % August 11% 11% 
11 % 10 % September 3% 2% 
6 % 17 % October 11% 4% 
5 % 17 % November 2% 7% 
6 % 5 % December 5% 1% 
10 % 8 % Total 7% 6% 

As can be seen, the results are very promising and exhibit a 
similar quality to the validation results of the long-term 
planning model developed for the European plant [13]. The 
mathematical model exhibits a better quality than the existing 
planning data. High deviations in March, October and 
November are the result of rigid information used to feed the 
Bayesian networks which didn’t include orders accepted on 
short notice. It could be demonstrated that it is possible to 
estimate the workload for the regeneration of an aircraft 
engine and use this estimate to plan the utilization of 
capacities in the most profitable way. This has not been 
demonstrated before and is a milestone for capacity planning 
with uncertain workload information [7]. 

4. Conclusion and outlook 

This paper has presented capacity planning and 
coordination models for the regeneration of complex 
investment goods. In a first step, this article deals with 
Bayesian networks as an approach to forecasting regeneration 
workloads for complex capital goods by means of data fusion. 
Based on the forecasts, algorithms are used in a second step to 
determine the capacities required based on the regeneration 
workload forecast. The results of the validation at two sites of 
a global industrial partner are presented as well. 

0

5000

10000

15000

20000

25000

Ja
nu

ar
y

F
eb

ru
ar

y

M
ar

ch

A
pr

il

M
ay

Ju
ne

Ju
ly

A
ug

us
t

S
ep

te
m

be
r

O
ct

ob
er

N
ov

em
be

r

D
ec

em
be

r

C
ap

ac
it

y 
p

er
 m

o
n

th

Months

Max Capacity Optimal capacity utilization
Forecasted Workload Stock units
Penalties



257 Steffen C. Eickemeyer et al.  /  Procedia CIRP   23  ( 2014 )  252 – 257 

As could be shown, it is possible to build a reliable 
capacity planning methodology for the special challenges in 
the business of regenerating complex capital goods such as 
aircraft engines. The approach presented here enables job 
workloads to be estimated when very little information is 
available. This data is used to optimize the complex problem 
of capacity utilization. A validation of the combined 
methodology was carried out. Not only did this show this to 
be a suitable approach, it also revealed optimization potential 
for the company in the range of 5–7 %. This is possible 
regardless of the fact that the idea of the methodology was 
transferred from a European sociocultural background to a 
North American one with just a few adjustments. This is 
perhaps only possible because of the similarity of the two 
cultures considered. In order to demonstrate the general 
possibilities of this approach, it is currently being transferred 
to a third subsidiary of the industrial partner in Asia, which 
also has a strong focus on disassembly and reassembly. The 
methodology will be adjusted for this application and also 
validated afterwards so that it is possible to compare the 
results with the existing validations for Europe and North 
America. 

Furthermore, the approach presented shows several areas 
that can be optimized in order to enhance the logistical 
performance and even shorten the throughput time of the 
existing regeneration process. The method of forecasting 
damage also has the potential to be useful for forecasting 
other parameters in regeneration, e.g. costs or consumption of 
resources, or to be used in other areas of industry, e.g. for 
strategic planning processes. The presented research is part of 
the CRC 871 program which has the goal to improve the 
regeneration of complex capital goods in general. Therefore 
the transferability of the approach to other applications and 
industries was a key aspect in the development. The transfer 
from one plant to another has already proven its flexibility. A 
transfer to the regeneration of diesel locomotives has been 
already applied for. For the transfer a funding period of about 
two years is calculated. 

Future research questions concern the incorporation of 
capacity demand uncertainties using a scenario approach. 
Extending the timeframe of the long-term planning horizon to 
more than one year, considering the net present value (NPV) 
of investments, e.g. in new machines, and cash flows for sales 
of machines, for instance, have to be taken into account. 
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