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LONG WAVE PROPAGATION, SHOALING AND RUN-UP IN NEARSHORE AREAS  

V.Sriram1, I. Didenkulova2,3, S. Schimmels4, A. Sergeeva5 and N.Goseberg6

INTRODUCTION  

 

This paper discusses the possibility to study propagation, shoaling and run-up of these waves over a slope in a 300-
meter long large wave flume (GWK), Hannover. For this purpose long bell-shaped solitary waves (elongated solitons) 
of different amplitude and the same period of 30 s are generated. Experimental data of long wave propagation in the 
flume are compared with numerical simulations performed within the fully nonlinear potential flow theory and KdV 
equations. Shoaling and run-up of waves on different mild slopes is studied hypothetically using nonlinear shallow 
water theory. Conclusions about the feasibility of using large scale experimental facility (GWK) to study tsunami 
wave propagation and run-up are made. 

Keywords: long wave dynamics; elongated solitons; propagation; run-up; large-scale experimental facility; 
numerical simulation 

For modeling of tsunami wave propagation, shoaling and run-up, often solitary or cnoidal waves 
have been used (Synolakis 1987). However, solitary and cnoidal-like waves are rarely observed during 
tsunami propagation. Furthermore, their characteristics are not comparable with most of real–field 
tsunamis as reported by (Madsen et al. 2008; Goseberg et al. 2013; Schimmels et al. 2014). However, a 
set of solitary and cnoidal-like waves can be formed in the far field as a result of long wave 
transformation into an undular bore, as it was observed during 2004 tsunami in the Indian ocean near 
the coast of Thailand (Fig. 1). 

 

 
Figure 1. Indian ocean tsunami of 26 December 2004 approaching Koh Jum island, off the coast of Thailand 

(Copyright Anders Grawin, 2006). 
 

Speaking about "typical" tsunami is hard. In reality, the variety of tsunami waves in terms of both 
periods and wave shapes occur. Due to large-distance propagation and complicated bottom and coastal 
topography, the initial wave changes its shape, hence, very often even the same tsunami event has very 
different manifestations at different locations. This is why when talking about tsunami, we should also 
study different wave shapes. 

Based on the past tsunami events, tsunamis approaching the shore may broadly be classified as (e.g. 
Shuto 1985) 
1. Non-breaking waves that act as a rapidly rising tide, observed during small and moderate tsunami 

events after short distance propagation. 
2. Undular bore, observed after tsunami long distance propagation (in terms of wavelength), see 

Fig. 1. 
3. Bore or hydraulic jump (wall of water), observed as a result of wave breaking during large tsunami 

events after short distance propagation. 
Hence, in tsunami studies different types of wave shapes should be considered.  
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It has been demonstrated in (Schimmels et al. 2014) that existing testing facilities with piston type 
wave makers (with a large stroke) can effectively be used to generate very long non-breaking waves. In 
this paper we will focus on the possibility to study all the three mentioned types of waves in these 
facilities.  

To do this, a large scale experimental study on generation of long solitary waves with different 
amplitudes and the same period of 30 s at 1 meter constant water depth has been carried out at the 
Large Wave Flume (Großer Wellenkanal, GWK) of Forschungszentrum Küste (FZK). Initially, the 
experimental data of wave propagation are compared with numerical simulations, performed in the 
framework of fully nonlinear potential flow theory and Korteweg-de Vries (KdV) equations. Later the 
same waves propagate to the shore and climb "hypothetical" beaches of different slope, confirming that 
by constructing a mild slope in the Large Wave Flume, one can study the characteristics of tsunami 
waves of various types.  

NUMERICAL MODELLING  
In order to analyze the transformation of long waves during propagation in shallow water depths a 

numerical wave tank based on fully nonlinear potential flow theory (Sriram et al. 2006) and KdV 
equations (Sergeeva et al. 2011) is used. In both models the fluid is assumed to be incompressible, the 
flow is irrotational and viscous forces are neglected. 

Nonlinear potential flow model 
The nonlinear potential flow model is based on Laplace’s equation for velocity potential ( )zx,Φ : 

 02 =Φ∇ , (1)  

which is solved in a sub-domain with a wave maker at one end. The computational domain with the 
corresponding boundary conditions is illustrated in Fig. 2. 

 
Figure 2. Numerical representations of the GWK testing facility. 

 
On the water surface, by considering fully nonlinear terms we can define the kinematic and 

dynamic free-surface conditions in the Langrangian form: 
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The solution for the above boundary value problem (BVP) is sought using a finite element scheme. 
Formulating the governing Laplace equation constrained with the associated boundary conditions leads 
to the following finite element systems of equation 
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where ‘m’ is the total number of nodes in the domain and the potential inside an element ( )zx,Φ  can be 
expressed in terms of its nodal potentials, jφ , as 

 ( ) ( )∑=Φ
=

n

j
jj zxNzx

1
,, φ . (4)  

Herein, Nj is the shape function and n is the number of nodes in an element. The above formulation 
does not have any singularity effect at the intersection point between the free surface and the boundaries 
unlike in other methods like BEM. Linear triangular elements with a structured mesh are used. Further 
details about the numerical model based on finite element method can be referred in (Sriram 2008). 

Korteweg-de Vries equation 
Complimentary to the potential flow model, we use a shallow water model based on the Korteweg-

de Vries (KdV) equation (see Sergeeva et al. 2011 for details): 
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Eq. 5 is solved numerically in a periodic domain for s with a period T. Two integrals of Eq. 5 are 
conserved: 
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and a pseudo-spectral method for time derivation and a Crank-Nicolson scheme for space discretization 
are used, see details in Fornberg (1996). The solution of Eq. 5 is calculated in the discrete Fourier space 
for spectral amplitudes and defined through the Fourier transform C(ω) = FFT{η (s, x)}, where the 
nonlinear part of Eq. 5 is calculated as Cnon(ω) = FFT{η2(s, x) /2} 
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PROPAGATION OF SOLITARY WAVES  
For tsunami propagation analysis we generate solitary waves in the form of elongated solitons, as in 

Didenkulova et al. (2008) 

 ( )[ ]xTtckHtx −−= )(sech),( 2η ,   
cT

k π2
= ,   )( Hdgc += . (8)  

where H is the wave amplitude and T is its period. 
The generation of these long waves is discussed in (Schimmels et al. 2014). The test cases based on 

these equations are shown in Table 1. 
 

Table 1. Details of the test cases. 

Test No. Depth (m) Wave period (s) Wave height (m) 
13/4 1.0 30 0.12 
13/5 1.0 30 0.11 

13/10 1.0 30 0.10 
14/7 1.0 30 0.08 
14/9 1.0 30 0.06 

14/10 1.0 30 0.05 
14/11 1.0 30 0.04 

 
In the following we exemplarily consider three cases (14/11, 14/9 and 13/4) representing small, 

medium and steep waves for detailed analysis. The experimental data as well as KdV and FNPT-FEM 
simulations are shown in Fig. 3. The corresponding stroke for the above cases is also shown in the 
figure, demonstrating the increase of required stroke with increasing wave height. Both the FNPT-FEM, 
KdV models and experimental measurements are in good agreement. The KdV simulations are carried 
out using the wave time history from FNPT-FEM model at 50 m as initial values.  
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Figure 3. Comparison between experiments (filed circle), FNPT-FEM simulation (line) and KdV solution 

(open circle) for positive wave pulses with period of 30 s and amplitudes H = 0.04 m (left), 0.06 m (middle) 
and 0.12 m (right). Top plot: Wave paddle stroke, middle: at x = 60 m from the wave paddle; bottom: at x = 

225 m from the wave paddle. 
 

It can be seen in Fig. 3 that all waves undergo significant transformation at 225 meter distance, 
which manifests different dependencies on initial wave amplitude. The smallest 0.04 m wave behaves 
like a Riemann wave, preserving its amplitude and becoming more asymmetric with a steepening of the 
face front. The wave of 0.06 m amplitude is more affected by dispersive effects and demonstrates the 
beginning of the split-up of the initial pulse into Korteweg-de Vries solitons. The beginning of 
separation of the first soliton is visible in the face front of the wave. A very nice description of this 
process is given in the paper by Madsen et al. (2008). Finally, the largest 0.12 m wave at the toe of the 
beach slope progresses much more in the wave separation into solitons, so that three of them can easily 
be distinguished in the signal. This split-up corresponds to an undular bore formation, which 
demonstrates the ability of GWK to be an appropriate facility for studying both types of tsunami waves, 
long nonbreaking surging waves and undular bores (see the classification provided in the Introduction). 
The second wave that is present in the experiments corresponds to the reflection from the slope.  

The distance where the wave starts to split up can be estimated from the nonlinear shallow water 
theory as the wave breaking distance X (Didenkulova et al. 2006, Zahibo et al. 2008) 

 ( )dtdV
gd

X
/max −

= ,                  gddgV 2)(3 −+= η . (9)  

Estimates based on Eq. 9 are calculated using the time series record at 50 m and are shown in Table 
2 (third column) together with the results from the numerical models. The latter were estimated from the 
water surface elevation time series at different locations as shown in Fig. 4. 
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Figure 4. FNPT-FEM (line) and KdV (dots) simulations of propagation of solitary waves of period 30 s and 

amplitudes H = 0.04 m (left), 0.06 m (middle) and 0.12 m (right). The water surface elevation at different 
locations shows the splitting of the wave forms. 

 
Table 2. Splitting locations from theory (SWT) and numerical simulations 
(FNPT-FEM and KdV). 

Test No. Wave height (m) SWT (m) FNPT-FEM (m) KdV (m) 

14/11 0.04 341 -- -- 
14/9 0.06 251 250 250 
13/4 0.12 147 146 146 

 
The split up of a long wave into solitons is well-described by KdV equation. For the initial wave 

described by Eq. 8 the number of formed solitons and their amplitudes can be found from (Pelinovsky 
1996) 

 [ ]2)12(81
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 ++
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181 UrN ,  (10)  

where Ur is the Ursell number. It can be seen from Eq. 10 that the amplitudes of formed solitons cannot 
exceed twice amplitude of the initial wave. For example, for a wave with H = 0.12 m, the largest soliton 
has an amplitude of 0.19 m. This is in agreement with the FNPT-FEM model, wherein the first wave 
height after 270 m is about 0.185m. 

RUN-UP OF SOLITARY WAVES  
It has been shown that the validated numerical model based on FNPT describes wave dynamics 

very well. However, it is not able to model the wave run-up process. This is why for studying wave run-
up on a beach, it is better to use a hybrid FNPT-NS model based on FEM and MLPG_R (Sriram et al. 
2014). In the present study, run-up has been studied by means of analytical solutions (Didenkulova 
2009) and differently transformed long waves were investigated on different slopes. This approach is 
much faster than the hybrid FNPT-NS and provides a good preliminary estimate. 

The sea surface elevation at the beginning of the slope is used as input to study wave run-up on a 
beach. Figure 5 shows the corresponding inundation on a 1:6 slope, like in GWK. Apparently the 
inundation patterns get expectedly more complicated with increasing amplitude of the incident wave 
and they strongly depend on the wave transformation during propagation along the flume. It can be seen 
that the inundation length increases nonlinearly with an increase in the initial wave amplitude. This is 
even more visible in Fig. 6, where the normalized run-up oscillations are displayed. From Fig. 6 one 
can see that the amplification factor (the ratio of the maximum run-up height to the maximum wave 
height at the toe of the slope) increases with an increase in the amplitude of the initial pulse. So, the 
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wave amplification on the beach for the 0.04 m wave is 2.5, for the 0.06 m wave 2.8 and for the 0.12 m 
wave it is 3.4. 
 

 
Figure 5. Inundation of a mild slope of 1:6 by solitary waves with amplitudes H = 0.04 m (left), 0.06 m 

(middle) and 0.12 m (right). 
 

Figure 6. Normalized run-up height of solitary waves with amplitudes H = 0.04 m (left), 0.06 m (middle) and 
0.12 m (right) on a mild slope of 1:6. 

 
The parameter Br plotted in Figs. 5 and 6 is the wave breaking parameter: 
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which indicates wave breaking during run-up. Here r is the run-up oscillations on the beach and g is the 
gravity acceleration. If Br < 1, the wave is not breaking. For Br = 1 the wave experiences first breaking 
just at the beach. This occurs in the back-wash stage and is manifested by the bubble formation when 
the water is at its maximal offshore position.  

EFFECT OF THE SLOPE  
Analysis of the effect of the beach slope has been studied hypothetically considering the possibility 

of constructing an artificial slope of different inclinations in GWK. For this we studied propagation of 
the initial pulse in the basin of constant depth (1 m) and distance L (from the wave generator to the 
beginning of the slope) and then its run-up on the slope α. The propagation was performed using FNPT-
FEM, which proved to be good for description of long wave dynamics in GWK. Run-up height was 
calculated based on nonlinear shallow water theory. Both slope α and distance L have been changing in 
order to keep the total length of the basin constant (see Fig. 7).  

The result of this analysis is shown in Fig. 8 for the initial 0.04 m pulse which climbs three 
different beach slopes: natural 1:6 GWK slope (blue solid line), 1:12 (red solid line) and 1:17 (green 
solid line). It can be seen, that the inundation distance increases substantially with a decrease in the 
beach slope. For example, the difference in inundation distance on 1:6 and 1:17 slopes is almost 70%. 

Figure 9 demonstrates how the amplification ratio of the solitary wave on a beach changes with the 
corresponding change of the beach slope. 
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Figure 7. Beach slope α with respect to the distance L. 
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Figure 8. Inundation of 4 cm high elongated solitary pulse for three types of the beach slope: natural 1:6 
slope of GWK (blue solid line), 1:12 (red solid line) and 1:17 (green solid line). 
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Figure 9. Amplification ratio of 4 cm wave on a beach with slope α. 
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Figure 10. Breaking parameter for the 4 cm wave on the beach with different slopes α. 

 
With this analysis based on analytical solutions of shallow water theory we are limited to the non-

breaking wave propagation and run-up, which corresponds to values of Br ≤ 1. Behavior of breaking 
parameter Br for 4 cm wave climbing different slopes is shown in Fig. 10. It can be seen that even the 
4 cm wave at the slope of 1:17 is already at the point of breaking. The wave of 12 cm will break already 
at the slope of 1:7 - just a little bit milder than the current GWK slope. For further decrease in the beach 
slope, the wave will form a steep front with further plunging breaking and bore formation. So, in this 
way all three types of waves according to the classification of Shuto (1985) can be reproduced in GWK.  
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CONCLUSION  
The potential of large scale facilities and in particular the 300-meter long Large Wave Flume 

(GWK) for tsunami wave propagation and run-up has been examined. Three types of long waves: non-
breaking surging waves, bore or hydraulic jump and undular bore have been considered for feasibility 
analysis. By studying the dynamics of long solitary pulses (elongated solitary waves) with different 
amplitudes and the same period of 30s it has been demonstrated that all three types of waves can be 
formed at the beach, if different beach slopes are considered. Thus, it can be concluded that the existing 
test facility in GWK can be used for tsunami research by constructing a mild slope (or bathymetry of a 
particular area) and investigating the run-up and inundation characteristics. 
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