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Abstract
We give sound and complete Hilbert-style axiomatizations for propositional dependence logic
(PD), modal dependence logic (MDL), and extended modal dependence logic (EMDL) by ex-
tending existing axiomatizations for propositional logic and modal logic. In addition, we give
novel labeled tableau calculi for PD, MDL, and EMDL. We prove soundness, completeness
and termination for each of the labeled calculi.
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1 Introduction

Functional dependences occur everywhere in science, e.g., in descriptions of discrete systems,
in database theory, social choice theory, mathematics, and physics. Modal logic is an
important formalism utilized in the research of numerous disciplines including many of the
fields mentioned above. With the aim to express functional dependences in the framework of
logic Väänänen [9] introduced dependence logic. Dependence logic extends first-order logic
with novel atomic formulae called dependence atoms. The intuitive meaning of the first-order
dependence atom =(t1, . . . , tn) is that the value of the term tn is functionally determined by
the values of the terms t1, . . . , tn−1. With the aim to express functional dependences in the
framework of modal logic, Väänänen [10] introduced modal dependence logic (MDL). Modal
dependence logic extends modal logic with propositional dependence atoms. A propositional
dependence atom dep(p1, . . . , pn, q) intuitively states that the truth value of the proposition
q is functionally determined by the truth values of the propositions p1, . . . , pn. It was soon
realized thatMDL lacks the ability to express temporal dependencies; there is no mechanism
inMDL to express dependencies that occur between different points of the model. This is
due to the restriction that only proposition symbols are allowed in the dependence atoms
of modal dependence logic. To overcome this defect Ebbing et al. [1] introduced extended
modal dependence logic (EMDL) by extending the scope of dependence atoms to arbitrary
modal formulae. Dependence atoms in extended modal dependence logic are of the form
dep(ϕ1, . . . ϕn, ψ), where ϕ1, . . . , ϕn, ψ are formulae of modal logic.
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In recent years the research around modal dependence logic has been active. The focus
has been in the computational complexity and in the expressive powers of related formalisms.
Sevenster [8] proved that the satisfiability problem for modal dependence logic is NEXPTIME-
complete, whereas Ebbing and Lohmann [2] showed that the related model checking problem
is NP-complete. Ebbing et al. [1] extended these results to handle also EMDL. Subsequently
Virtema [11] showed that the validity problems forMDL and EMDL are NEXPTIME-hard
and contained in NEXPTIMENP. Moreover he showed that the corresponding problem for the
propositional fragment PD (see Section 2.1 for a definition) ofMDL is NEXPTIME-complete.

Hella et al. [4] gave a van Benthem–style characterization of the expressive power
of EMDL via the so-called team k-bisimulation. In the article it was also shown that
the expressive powers of EMDL and ML(6) (modal logic extended with intuitionistic
disjunction) coincide. More recently Kontinen et al. (in the manuscript [6]) gave another van
Benthem–style characterization for the expressive power of the so-called modal team logic.
Moreover, in the manuscript [7], Sano and Virtema gave a Goldblatt–Thomason theorem
forMDL and EMDL. They also showed that with respect to frame definabilityMDL and
EMDL coincide with a fragment of modal logic extended with the universal modality in
which the universal modality occurs only positively. These characterization truly demonstrate
the naturality of the related languages.

In this paper we give sound and complete axiomatizations for variants of propositional and
modal dependence logics (PD, PL(>),MDL, EMDL, andML(>)). We give Hilbert-style
axiomatizations for these logics by extending existing axiomatizations for propositional logic
and modal logic. In addition, we give novel labeled tableau calculi for these logics. This
paper is one of the first articles on proof theory of propositional and modal dependence logics.
The only other work known by the authors of this article is the PhD thesis of Fan Yang
[12] and the subsequent manuscript [13]. Among other things, in her thesis, Yang presents
axiomatizations of variants of propositional dependence logic based on natural deduction.
Our Hilbert style axiomatization of PD coincides in essence with the natural deduction
system given by Yang. However our axiomatization avoids the complexity of the system of
Yang by concentrating on the proof-theoretic essence of the axiomatization. Provided that a
Hilbert-style axiomatization for the negation normal form fragment of propositional logic is
given, we specify one inference rule which gives us an axiomatization of PD.

The article is structured as follows. In Section 2 we introduce the required notions and
definitions. In Section 3 we give Hilbert-style axiomatizations for propositional and modal
dependence logics. In Section 4 we present labeled tableau calculi for these logics.

2 Preliminaries

The syntax of propositional logic (PL) and modal logic (ML) could be defined in any
standard way. However, when we consider extensions of PL andML by dependence atoms,
it is useful to assume that all formulae are in negation normal form, i.e., negations occur only
in front of atomic propositions. Thus we will define the syntax of PL andML in negation
normal form. When ϕ is a formula of PL orML, we denote by ϕ⊥ the equivalent formula
that is obtained from ¬ϕ by pushing all negations to the atomic level. Furthermore, we
define ϕ> := ϕ. When ~a is a tuple of symbols of length k, we denote by aj the jth element of
~a, j ≤ k. When ϕ is a formula, |ϕ| denotes the number of symbols in ϕ excluding negations
and brackets. When A is a set |A| denotes the number of elements in A. When f : A→ B is
a function and C ⊆ A, we define f [C] := {f(a) | a ∈ C}.
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294 Axiomatizing Propositional Dependence Logics

2.1 Propositional logic with team semantics
Let PROP = {zi | i ∈ N} denote the set of exactly all propositional variables, i.e., proposition
symbols. We mainly use metavariables p, q, p1, p2, q1, q2, etc., in order to refer to the variable
symbols in PROP. Let D be a finite, possibly empty, subset of PROP. A function s : D →
{0, 1} is called an assignment. A set X of assignments s : D → {0, 1} is called a propositional
team. The set D is the domain of X. Note that the empty team ∅ does not have a unique
domain; any subset of PROP is a domain of the empty team. By {0, 1}D, we denote the set
of all assignments s : D → {0, 1}.

Let Φ be a set of proposition symbols. The set of formulae for propostional logic PL(Φ)
is generated by the grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ), where p ∈ Φ.

By |=PL, we denote the ordinary satisfaction relation of propositional logic defined via
assignments. Next we define the team semantics of propositional logic.

I Definition 1. Let Φ be a set of atomic propositions and let X be a propositional team.
The satisfaction relation X |= ϕ for PL(Φ) is defined as follows. Note that, we always assume
that the proposition symbols that occur in ϕ are also in the domain of X.

X |= p ⇔ ∀s ∈ X : s(p) = 1.
X |= ¬p ⇔ ∀s ∈ X : s(p) = 0.

X |= (ϕ ∧ ψ) ⇔ X |= ϕ and X |= ψ.

X |= (ϕ ∨ ψ) ⇔ Y |= ϕ and Z |= ψ, for some Y, Z such that Y ∪ Z = X.

I Proposition 2 ([8]). Let ϕ be a formula of propositional logic and X a propositional team.
Then X |= ϕ ⇔ ∀s ∈ X : s |=PL ϕ. In particular the equivalence {s} |= ϕ ⇔ s |=PL ϕ
holds for every assignment s.

The syntax of propositional logic with intuitionistic disjunction PL(>)(Φ) is obtained by
extending the syntax of PL(Φ) by the grammar rule ϕ ::= (ϕ>ϕ). The syntax of propositional
dependence logic PD(Φ) is obtained by extending the syntax of PL(Φ) by the grammar rules
ϕ ::= dep(p1, . . . , pn, q), where p1, . . . , pn, q ∈ Φ and n ∈ N. The intuitive meaning of the
propositional dependence atom dep(p1, . . . , pn, q) is that the truth value of the proposition
symbol q is completely determined by the truth values of the proposition symbols p1, . . . , pn.
We define the semantics for the intuitionistic disjunction and the propositional dependence
atoms as follows:

X |= (ϕ>ψ) ⇔ X |= ϕ or X |= ψ

X |= dep(p1, . . . , pn, q) ⇔ ∀s, t ∈ X : s(p1) = t(p1), . . . , s(pn) = t(pn)
implies that s(q) = t(q).

The next proposition is very useful. The proof is very easy and analogous to the corresponding
proof for first-order dependence logic [9].

I Proposition 3 (Downwards closure). Let ϕ be a formula of PL(>) or PD and let Y ⊆ X
be propositional teams. Then X |= ϕ implies Y |= ϕ.

Note that, by downwards closure, X |= (ϕ∨ψ) iff Y |= ϕ and X \Y |= ψ for some Y ⊆ X.

2.2 Modal logics
In order to keep the notation light, we restrict our attention to mono-modal logic, i.e., to
modal logic with just the modal operators ♦ and �. However this is not really a restriction,
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since the definitions, results, and proofs of this article generalize, in a straightforward manner,
to facilitate any number of modalities.

Let Φ be a set of atomic propositions. The set of formulae for modal logic ML(Φ) is
generated by the grammar: ϕ ::= p | ¬p | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ, where p ∈ Φ.

Note that, since negations are allowed only in front of proposition symbols, � and ♦ are
not interdefinable. The syntax of modal logic with intuitionistic disjunction ML(6)(Φ) is
obtained by extending the syntax ofML(Φ) by the grammar rule ϕ ::= (ϕ6 ϕ).

The team semantics for modal logic is defined via Kripke models and teams. In the context
of modal logic, teams are subsets of the domain of the model.

I Definition 4. Let Φ be a set of proposition symbols. A Kripke model K over Φ is a tuple
K = (W,R, V ), where W is a nonempty set of worlds, R ⊆W ×W is a binary relation, and
V : Φ→ P(W ) is a valuation. A subset T of W is called a team of K. Furthermore define

R[T ] := {w ∈W | ∃v ∈ T s.t. vRw}, R−1[T ] := {w ∈W | ∃v ∈ T s.t. wRv}.

For teams T, S ⊆ W , we write T [R]S if S ⊆ R[T ] and T ⊆ R−1[S]. Thus, T [R]S holds if
and only if for every w ∈ T there exists some v ∈ S such that wRv, and for every v ∈ S
there exists some w ∈ T such that wRv.

We are now ready to define the team semantics for modal logic and modal logic with
intuitionistic disjunction.

I Definition 5. Let Φ be a set of atomic propositions, K a Kripke model and T a team of
K. The satisfaction relation K, T |= ϕ forML(Φ) is defined as follows.

K, T |= p ⇔ w ∈ V (p) for every w ∈ T .
K, T |= ¬p ⇔ w 6∈ V (p) for every w ∈ T .

K, T |= (ϕ ∧ ψ) ⇔ K, T |= ϕ and K,T |= ψ.

K, T |= (ϕ ∨ ψ) ⇔ K, T1 |= ϕ and K, T2 |= ψ for some T1 and T2

such that T1 ∪ T2 = T .

K, T |= ♦ϕ ⇔ K, T ′ |= ϕ for some T ′ such that T [R]T ′.
K, T |= �ϕ ⇔ K, T ′ |= ϕ, where T ′ = R[T ].

ForML(6) we have the following additional clause:

K, T |= (ϕ6 ψ) ⇔ K, T |= ϕ or K, T |= ψ.

By |=ML, we denote the ordinary satisfaction relation of modal logic defined via pointed
Kripke models.

I Proposition 6 ([8]). Let ϕ be an ML-formula, K be a Kripke model, and T be a team
of K. Then K, T |= ϕ ⇔ ∀w ∈ T : K, w |=ML ϕ In particular, for every point w of K, the
equivalence K, {w} |= ϕ ⇔ K, w |=ML ϕ holds.

The syntax for modal dependence logic MDL(Φ) is obtained by extending the syntax of
ML(Φ) by the rules ϕ ::= dep(p1, . . . , pn, q), where p1, . . . , pn, q ∈ Φ and n ∈ N, for
propositional dependence atoms. The syntax for extended modal dependence logic EMDL(Φ)
is obtained by extending the syntax ofML(Φ) by the rules ϕ ::= dep(ϕ1, . . . , ϕn, ψ), where
ϕ1, . . . , ϕn, ψ ∈ML(Φ) and n ∈ N, for modal dependence atoms. The intuitive meaning of

CSL 2015



296 Axiomatizing Propositional Dependence Logics

the modal dependence atom dep(ϕ1, . . . , ϕn, ψ) is that the truth value of the formula ψ is
completely determined by the truth values of the formulae ϕ1, . . . , ϕn. Formally:

K, T |= dep(ϕ1, . . . , ϕn, ψ) ⇔ ∀w, v ∈ T :
∧

1≤i≤n
(K, {w} |= ϕi ⇔ K, {v} |= ϕi)

implies (K, {w} |= ψ ⇔ K, {v} |= ψ).

The following result for MDL and ML(6) is due to [10] and [3], respectively. For
EMDL it follows via a translation from EMDL intoML(6), see [1].

I Proposition 7 (Downwards closure). Let ϕ be a formula ofML(6) or EMDL, let K be a
Kripke model and let S ⊆ T be teams of K. Then K, T |= ϕ implies K, S |= ϕ.

2.3 Equivalence and validity in team semantics
We say that formulae ϕ and ψ of PL(>)(Φ) or PD(Φ) are equivalent and write ϕ ≡ ψ, if
the equivalence X |= ϕ ⇔ X |= ψ holds for every propositional team X. Likewise, we say
that formulae ϕ and ψ ofML(>)(Φ) or EMDL(Φ) are equivalent and write ϕ ≡ ψ, if the
equivalence K,T |= ϕ ⇔ K,T |= ψ holds for every Kripke model K and team T of K.

A formula ϕ of PL(>)(Φ) or PD(Φ) is said to be valid, if X |= ϕ holds for every team X

such that the proposition symbols that occur in ϕ are in the domain of X. Analogously, a
formula ψ of EMDL(Φ) orML(6)(Φ) is said to be valid, if K, T |= ϕ holds for every Kripke
model K (such that the proposition symbols in ϕ are mapped by the valuation of K) and
every team T of K. When ϕ is a valid formula of L, we write |=L ϕ.

The following proposition shown in [11, 12] will later prove to be very useful.

I Proposition 8 (>-disjunction property). Let L ∈ {PL(>),ML(>)}. For every ϕ,ψ in L,
|=L (ϕ>ψ) iff |=L ϕ or |=L ψ.

3 Extending axiomatizations of PL and ML

In this section we show how to extend sound and complete axiomatizations for PL and
ML into sound and complete axiomatizations for PL(6) and ML(6), respectively. We
use the fact that both PL(6) and ML(6) have the >-disjunction property. In addition,
we obtain axiomatizations for PD,MDL, and EMDL. The axiomatizations are based on
compositional translations from PD into PL(6), and fromMDL and EMDL intoML(6).

3.1 Axiomatizations for PL(>) and ML(>)
In the definition below, we treat different occurrences of the same formulae as distinct entities.

I Definition 9. Let ϕ be a formula of PL(>) orML(>). Let SubOcc(ϕ) denote the set of
exactly all occurrences of subformulas of ϕ. Define

SubOcc>(ϕ) := {(ψ> θ) | (ψ> θ) ∈ SubOcc(ϕ)}.

We call a function f : SubOcc>(ϕ)→ SubOcc(ϕ) a >-selection function for ϕ if f
(
(ψ> θ)

)
∈

{ψ, θ}, for every (ψ> θ) ∈ SubOcc>(ϕ). If f is a >-selection function for ϕ, then ϕf denotes
the formula that is obtained from ϕ by replacing simultaneously each (ψ> θ) ∈ SubOcc>(ϕ)
by f(ψ> θ).

Note that if ϕ ∈ PL(>)(Φ), ψ ∈ ML(>)(Ψ), f is a >-selection function for ϕ, and g is a
>-selection function for ψ, then ϕf ∈ PL(Φ) and ψg ∈ML(Ψ).
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I Proposition 10 ([11]). Let ϕ be a formula of PL(>) orML(>), and let F be the set of
exactly all >-selection functions for ϕ. Then, ϕ ≡6f∈F ϕ

f .

Let HPL and HML denote sound and complete axiomatizations of the negation normal
form fragments of PL andML, respectively. For a logic L, an L-context is a formula of the
logic L extended with the grammar rule ϕ ::= ∗. By ϕ(ψ / ∗) we denote the formula that is
obtained form ϕ by uniformly substituting each occurrence of ∗ in ϕ by ψ. We are now ready
to define the axiomatizations for PL(>) andML(>). We use PL(>)- andML(>)-contexts
in the following rules:

ϕ(ψi / ∗) (I > i)
ϕ
(
(ψ1 >ψ2) / ∗

) i ∈ {1, 2}.

Let HPL(>) (HML(>), resp.) be the calculus HPL (HML, resp.) extended with the rules
(I > 1) and (I > 2). In the calculi HPL(>) and HML(>), the axioms and inference rules of
HPL and HML may only be applied to formulae of PL andML (i.e, to formulae without
>), respectively.

I Theorem 11. HPL(>) and HML(>) are sound and complete.

Proof. We will proof the soundness and completeness for HPL(>). The case for HML(>)
is completely analogous. Note first that from Proposition 2 it follows directly that HPL is
complete for PL also in the context of team semantics.

For soundness, it suffices to show that the rule (I > 1) preserves validity. The case for
(I > 2) is symmetric. Let ϕ be a PL(>)-context and let ψ1 and ψ2 be PL(>)-formulae.
Assume that γ1 := ϕ(ψ1 / ∗) is valid. We will show that then γ2 := ϕ

(
(ψ1 >ψ2) / ∗

)
is

valid. Let F and G be the sets of exactly all >-selection functions for γ1 and γ2, respectively.
By Proposition 10, γ1 ≡6f∈F γ

f
1 and γ2 ≡6g∈Gγ

g
2 . Since γ1 is valid, it follows by

Proposition 8, that γf
′

1 is valid for some f ′ ∈ F . Since clearly, for every f ∈ F , there exists
some g ∈ G such that γf1 = γg2 , it follows that there exists some g′ ∈ G such that γg

′

2 is valid.
Thus γ2 is valid.

In order to prove completeness, assume that a PL(6)-formula ϕ is valid. Let F be
the set of exactly all >-selection functions for ϕ. By Propositions 10 and 8, there exists a
function f ∈ F such that the PL-formula ϕf is valid. Since HPL is complete and HPL(6)
extends HPL, ϕf is provable also in HPL(6). Clearly by using the rules (I > 1) and (I > 2)
repetitively to ϕf , we eventually obtain ϕ. Thus we conclude that HPL(>) is complete. J

3.2 Axiomatizations for PD, MDL, and EMDL
The following equivalence was observed by Väänänen in [10]:

dep(p1, . . . , pn, q) ≡
∨

a1,...,an∈{⊥,>}

∧{
pa1

1 , . . . , pann , (q 6 q⊥)
}
. (1)

Ebbing et al. ([1]) extended this observation of Väänänen into the following equivalence
concerning EMDL:

dep(ϕ1, . . . , ϕn, ψ) ≡
∨

a1,...,an∈{⊥,>}

∧{
ϕa1

1 , . . . , ϕann , (ψ 6 ψ⊥)
}
. (2)

These equivalences demonstrate the existence of compositional translations from PD into
PL(>), and fromMDL and EMDL intoML(>), respectively.
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We will use the insight that rises from combining the above equivalences with Propositions
8 and 10 in order to construct axiomatizations for PD, MDL, and EMDL, respectively.
Recall that when ~a is a finite tuple of symbols, we use aj to denote the jth member of ~a. For
each natural number n ∈ N and function f : {⊥,>}n → {>,⊥}, we have the following rules:

ϕ
(∨

~a∈{⊥,>}n
∧{

pa1
1 , . . . , pan

n , qf(~a)} / ∗ ) (
PLdep(f)

)
ϕ
(
dep(p1, . . . , pn, q) / ∗

)
ϕ
(∨

~a∈{⊥,>}n
∧{

ϕa1
1 , . . . , ϕan

n , ψf(~a)} / ∗ ) (
ML dep(f)

)
†

ϕ
(
dep(ϕ1, . . . , ϕn, ψ) / ∗

)
where † means that ϕ1, . . . , ϕn, ψ are required to be modal formulae.1 Define PLdep :=
{
(
PL dep(f)

)
| f : {⊥,>}n → {>,⊥}, where n ∈ N} and MLdep := {

(
ML dep(f)

)
| f :

{⊥,>}n → {>,⊥}, where n ∈ N}. Let HPD and HMDL be the extensions of the calculi
HPL and HML by the rules of PLdep, respectively. Let HEMDL be the extension of HML
by the rules ofMLdep.

The proof of the following theorem is analogous to that of Theorem 11.

I Theorem 12. Let L ∈ {PD,MDL, EMDL}, HL is sound and complete.

4 Labeled tableaus for propositional dependence logics

The calculi presented in Section 3 have a few clear shortcomings. Foremost, the calculi
miss the team semantic nature of these logics. Thus the calculi are in some parts quite
complicated. Especially this is the case for the rules PL dep andML dep. This seems to be
the case also for any concrete implementations of the axiomatizations HPL and HML of the
negation normal form fragments of PL andML, respectively.

In this section we give axiomatizations for PD,MDL, and EMDL that do not have the
shortcomings of the calculi of Section 3. The proof rules of the labeled tableau calculi that
are given in this section have a natural and simple correspondence with the truth definitions
of connectives and modalities in team semantics.

4.1 Checking validity via small teams
The following result (observed, e.g., in [11]) follows directly from the fact that PL(>) and
PD are downwards closed, i.e., from Proposition 3.

I Proposition 13. Let ϕ be a formula of PL(>) or PD and let D be the set of exactly all
proposition symbols that occur in ϕ. Then ϕ is valid iff {0, 1}D |= ϕ.

Adapting a notion that was introduced by Jarmo Kontinen in [5] for first-order dependence
logic, we say that anML(>)- or EMDL-formula ϕ is n-coherent if the condition

K, T |= ϕ ⇔ K, T ′ |= ϕ for all T ′ ⊆ T such that |T ′| ≤ n

holds for all Kripke models K and teams T of K.

1 In the special case where ϕ is ∗ in the rule
(
PLdep(f)

)
, the obtained rule coincides with the rule of

Dependence Atom Introduction in [12, p.75].
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The following result forML(>) was shown in [4]. The result for EMDL follows from
the result forML(>) essentially via the following equivalence.

dep(ϕ1, . . . , ϕn, ψ) ≡
∨

a1,...,an∈{⊥,>}

∧{
ϕa1

1 , . . . , ϕann , (ψ 6 ψ⊥)
}
.

For ϕ ∈ ML(>), we define Rank>(ϕ) to be the number of intuitionistic disjunctions in
ϕ. For ψ ∈ EMDL, we define Rank>(ψ) to be the number of intuitionistic disjunctions in
theML(>) formula obtained by using the above equivalence. Note that Rank>(ϕ) ≤ |ϕ|,
whereas Rank>(ψ) ≤ 2|ψ|.

I Theorem 14. Every formula ϕ ofML(>) or EMDL is 2Rank>(ϕ)-coherent.

The following result follows directly from Theorem 14.

I Corollary 15. Let ϕ be a formula ofML(>) or EMDL. The following holds:

ϕ is valid iff K, T |= ϕ for every Kripke model K and every team T of K

such that |T | ≤ 2Rank>(ϕ).

4.2 Tableau Calculi for PL, PL(>), and PD
We will now present labeled tableau calculi for PL, PL(>), and PD. In Section 4.3 we will
extend these calculi to deal withML,MDL, and EMDL.

Any finite, possibly empty, subset α ⊆ N is called a label. We mainly use symbols
α, β, α1, α2, β1, β2, etc, in order to refer to labels and symbols i, j, i1, i2, j1, j2, etc, in order
to refer to natural numbers. Our tableau calculi are labeled, meaning that the formulae
occurring in the tableau rules are labeled formulae, i.e., of the form α : ϕ, where α a label
and ϕ is a formula of some logic L. Labels correspond to teams and the elements of labels,
i.e., natural numbers, correspond to points in a model. The intended top down reading of the
labeled formula α : ϕ is that α denotes some team that falsifies ϕ. A tableau in these calculi
is just a well-founded, finitely branching tree in which each node is labeled by a labeled
formula, and the edges represent applications of the tableau rules. The tableau rules needed
for axiomatizing PL, PL(>), and PD are given in Figure 1.

In the construction of tableaus, we impose a rule that a labeled formula is never added
to a tableau branch in which it already occurs. A saturated branch is a tableau branch in
which no rules can be applied or the application of the rules have no effect on the branch. A
saturated tableau is a tableau in which every branch is saturated. A branch of a tableau is
called closed if it contains at least one of the following:
1. Both {i} : p and {i} : ¬p, for some proposition symbol p and natural number i ∈ N.
2. ∅ : ϕ, for some formula ϕ.
3. {i} : dep(p1, . . . , pn, q), for some proposition symbols p1, . . . , pn, q and i, n ∈ N.
If a branch of a tableau is not closed it is called open. A tableau is called closed if every
branch of the tableau is closed. A tableau is called open if at least one branch in the tableau
is open.

Let TPL denote the calculi consisting of the rules (Prop), (¬Prop), (∧), and (∨) of
Figure 1. Let TPL(>) denote the extension of TPL by the rule (>) of Figure 1, and TPD
denote the extension of TPL by the rules (Split) and (PL dep) of Figure 1.

Let ϕ be a formula of L(Φ) ∈ {PL(Φ),PL(>)(Φ),PD(Φ)} and k := min(|Φ|,Rank>(ϕ)).
We say that a tableau T is a tableau for ϕ if the root of T is {1, . . . , 2k} : ϕ and T is obtained
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{i1, . . . , ik} : p
(Prop)

{i1} : p | . . . | {ik} : p
{i1, . . . , ik} : ¬p

(¬Prop)
{i1} : ¬p | . . . | {ik} : ¬p

α : (ϕ ∧ ψ)
(∧)

α : ϕ | α : ψ
α : (ϕ ∨ ψ)

(∨) where β ⊆ α
β : ϕ | α \ β : ψ

α : (ϕ>ψ)
(>)α : ϕ

α : ψ

α : dep(p1, . . . , pn, q) (Split)†
α1 : dep(p1, . . . , pn, q) | . . . | αk : dep(p1, . . . , pn, q)

†: α1, . . . , αk are exactly all subsets of α of cardinality 2.

{i1, i2} : dep(p1, . . . , pn, q) (PL dep)‡
{i1} : pg1(1)

1 | . . . | {i1} : pgk(1)
1

{i2} : pg1(1)
1 | . . . | {i2} : pgk(1)

1

...
...

...
{i1} : pg1(n)

n | . . . | {i1} : pgk(n)
n

{i2} : pg1(n)
n | . . . | {i2} : pgk(n)

n

{i1, i2} : q | . . . | {i1, i2} : q
{i1, i2} : ¬q | . . . | {i1, i2} : ¬q

‡: g1, . . . gk are exactly all functions with domain {1, . . . , n} and co-domain {>,⊥}.

Figure 1 Tableau Rules for TPL, TPL(>), and TPD.

by applying the rules of TL. We say that ϕ is provable in TL and write `TL ϕ if there exists
a closed tableau for ϕ.

I Example 16. We show that the PD-formula dep(p, p) is provable TPD. Figure 2 is an
illustration of a closed TPD-tableau for dep(p, p).

Since the number of proposition symbols that occur in dep(p, p) is one, the root of the
tableau is {1, 2} : dep(p, p). We first apply the rule (PLdep) to {1, 2} : dep(p, p) and branch
into two branches as depicted in Figure 2. In the left (right) branch we apply the rule (¬Prop)
to {1, 2} : ¬p ((Prop) to {1, 2} : p). Consequently, each branch of the tableau becomes closed
due to the labeled formulae of the type {i} : p and {i} : ¬p, i ∈ {1, 2}. Therefore, dep(p, p)
is a theorem of TPD.

I Theorem 17 (Termination of TPL, TPL(>), and TPD). Let L be a logic in {PL,PL(>),PD}
and ϕ an L-formula. Every tableau for ϕ in TL is finite.

Proof. Let T be a tableau for ϕ. By definition, the root of T is α : ϕ, for some finite α.
Clearly every application of the tableau rules either decreases the size of the label or the
length of the formula. Note also that the rule (∨) can be applied to any β : ψ ∈ T only
finitely many times. Thus T must be finite. J

I Lemma 18. If there exists a saturated open branch for ϕ then ϕ is not valid.

Proof. Let B be a saturated open branch for ϕ and let Φ be the set of proposition symbols
that occur in ϕ. Let α : ϕ denote the root of the branch B. It is easy to check that if β : ψ is
a labeled formula in B then β ⊆ α. For each i ∈ α we define an assignment si : Φ→ {0, 1}
such that

si(p) :=
{

1 if the labeled formula {i} : ¬p occurs in the branch B,
0 otherwise.
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{1, 2} : dep(p, p)

{1} : p
{2} : p
{1, 2} : p
{1, 2} : ¬p

{1} : ¬p

×

{2} : ¬p

×

{1} : ¬p
{2} : ¬p
{1, 2} : p
{1, 2} : ¬p

{1} : p

×

{2} : p

×

Figure 2 A tableau showing that the PD-formula dep(p, p) is provable in TPD.

It is easy to show by induction that if a labeled formula β : ψ occurs in the branch B then
Xβ 6|= ψ, where Xβ = {si | i ∈ β}. Thus ϕ is not valid. J

I Theorem 19 (Completeness of TPL, TPL(>), and TPD). Let L be any of the logics in
{PL,PL(>),PD}. The calculus TL is complete.

Proof. Fix L ∈ {PL,PL(>),PD}. Assume 6`TL ϕ. Thus every tableau for ϕ is open. From
Theorem 17 it follows that there exists a saturated open tableau for ϕ. Thus there exists a
saturated open branch for ϕ. Thus, by Lemma 18, 6|=L ϕ. J

I Definition 20. Let B be a tableau branch and Index(B) the set of exactly all natural
numbers that occur in B. We say that B is faithful to a propositional team X by a mapping
f : Index(B)→ X if, for all α : ϕ ∈ B, f [α] 6|= ϕ.

I Lemma 21. Let L be a logic in {PL,PL(>),PD}. If ϕ ∈ L is not valid then there is an
open saturated branch in every saturated tableau of ϕ in TL.

Proof. Assume 6|=L ϕ. Let Φ be the set of exactly all proposition symbols that occur in ϕ.
By Proposition 13, {0, 1}Φ 6|= ϕ. Put α := {1, . . . , 2|Φ|} and fix a bijection f : α→ {0, 1}Φ.
Let T be an arbitrary saturated tableau for ϕ. By Theorem 17, T is finite and, by definition,
the root of T is α : ϕ. Note that Index(B) = α, for every branch B with the root α : ϕ. We
will show that there is an open saturated branch in T .

First, we establish that B0 := {α : ϕ} is faithful to {0, 1}Φ by f . But, this is easy since
f [α] = {0, 1}Φ. Second, assume that we have constructed a branch Bn such that Bn is
faithful to {0, 1}Φ by f . We will show that at least one extension of Bn by rules of TL is
faithful to {0, 1}Φ by f . Here we are concerned with the rule of (∨) alone. Assume that,
from β1 : (ψ1 ∨ ψ2) ∈ Bn and the rule of (∨), we obtain two extensions {β2 : ψ1} ∪ Bn and
{β1 \ β2 : ψ2} ∪ Bn for β2 ⊆ β1. Our goal is to show that one of the extensions is faithful
to {0, 1}Φ by f . By assumption, we obtain f [β1] 6|= (ψ1 ∨ ψ2). By the semantic clause
for ∨, f [β2] 6|= ψ1 or f [β1] \ f [β2] 6|= ψ2. Since f [β1] \ f [β2] ⊆ f [β1 \ β2], it follows from
downwards closure that f [β2] 6|= ψ1 or f [β1 \ β2] 6|= ψ2. This implies that at least one of the
two extensions is faithful to {0, 1}Φ by f . We choose one of the faithful extensions as Bn+1.

Since T is finite and saturated, Bj is a saturated branch in T for some j ∈ N. Moreover,
since Bj is faithful to {0, 1}Φ by f , Bj is open. J

I Theorem 22 (Soundness of TPL, TPL(>), and TPD). Let L be any of the logics in
{PL,PL(>),PD}. The calculus TL is sound.
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i1Rj1

...
inRjn

{i1, . . . , in} : ♦ϕ
(♦)

{j1, . . . , jn} : ϕ

α : �ϕ
(�)†

f1(1)Ri1 | . . . | fk(1)Ri1
...

...
...

f1(t)Rit | . . . | fk(t)Rit
{i1, . . . it} : ϕ | . . . | {i1, . . . it} : ϕ

{i1, i2} : dep(ϕ1, . . . , ϕn, ψ)
(ML dep)‡

{i1} : ϕh1(1)
1 | . . . | {i1} : ϕhk(1)

1

{i2} : ϕh1(1)
1 | . . . | {i2} : ϕhk(1)

1

...
...

...
{i1} : ϕh1(n)

n | . . . | {i1} : ϕhk(n)
n

{i2} : ϕh1(n)
n | . . . | {i2} : ϕh1(n)

n

{i1, i2} : ψ | . . . | {i1, i2} : ψ

{i1, i2} : ψ⊥ | . . . | {i1, i2} : ψ⊥

†: t = 2Rank>(ϕ) and f1, . . . , fk denote exactly all functions with domain {1, . . . , t} and co-domain α, and
i1, . . . , it are fresh and distinct.

‡: h1, . . . hk denotes all the functions with domain {1, . . . , n} and co-domain {>,⊥}.

Figure 3 Additional Tableau Rules for TML, TML(>), TMDL and TEMDL.

Proof. Fix L ∈ {PL,PL(>),PD}. Assume that 6|=L ϕ. By Lemma 21, there is an open
saturated branch in every saturated tableau of ϕ in TL. Therefore, and since, by Theorem
17, every tableau of ϕ in TL is finite, there does not exists any closed tableau for ϕ in TL.
Thus 6`TL ϕ. J

4.3 Tableau Calculi for ML, ML(>), MDL, and EMDL
In addition to labeled formulae, the tableau rules for modal logics contain accessibility
formulae of the form iRj, where i, j ∈ N. The intended interpretation of iRj is that the point
denoted by j is accessible by the relation R from the point denoted by i. The tableau rules
for the calculi are given in Figures 1 and 3.

In the construction of tableaus, in addition to the rules given in Section 4.2, we impose
that the tableau rule (�) is never applied twice to the same labeled formula in any branch.
The definitions of open, closed and saturated tableau and branch are as in Section 4.2 with
the following additional rule: A branch is called closed also if it contains a labeled formula
{i} : dep(ϕ1, . . . , ϕn, ψ), for some i, n ∈ N and ϕ1, . . . , ϕn, ψ ∈ML.

Let TML, TML(>), and TMDL denote the extensions of TPL, TPL(>), and TPD by the
rules (♦) and (�) of Figure 3, respectively. Let TEMDL denote the extension of TML by
the rules (Split) of Figure 1 and (ML dep) of Figure 3.

Let ϕ be a formula of L ∈ {ML,ML(>),MDL, EMDL}. We say that a tableau T is
a tableau for ϕ if the root of T is {1, . . . , 2Rank>(ϕ)} : ϕ and T is obtained by applying the
rules of TL. We say that ϕ is provable in TL and write `TL ϕ if there exists a closed tableau
for ϕ.

I Example 23. This example illustrates one difference between TPL and TMDL even for the
same formula dep(p, p). Figure 4 is an illustration of a closed TMDL-tableau for dep(p, p).
When dep(p, p) is considered as a PD-formula, the calculation starts with the label {1, 2}
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{1, 2, 3, 4} : dep(p, p)
{i, j} : dep(p, p)

{i} : p
{j} : p
{i, j} : p
{i, j} : ¬p

{i} : ¬p

×

{j} : ¬p

×

{i} : ¬p
{j} : ¬p
{i, j} : p
{i, j} : ¬p

{i} : p

×

{j} : p

×

Figure 4 A tableau showing that theMDL-formula dep(p, p) is provable in TMDL.

{1, 2} : �dep(p)

1R3
2R4

{3, 4} : dep(p)
{3, 4} : p
{3, 4} : ¬p

{3} : p
...

{4} : p

{3} : ¬p

©

{4} : ¬p

...
...

...

Figure 5 A tableau showing that theMDL-formula �dep(p) is not valid.

(see Example 16 and Figure 2). However, when dep(p, p) is considered as anMDL-formula,
our definition leads us to start the calculation with the label {1, 2, 3, 4}.

The equivalentML(>) formula that theMDL-formula dep(p, p) translates into is∨
a∈{>,⊥}

∧
{pa, p>¬p}.

Therefore Rank>(dep(p, p)) = 2, and thus the root of any TMDL-tableau for dep(p, p) is
{1, 2, 3, 4} : dep(p, p). We first apply the rule (Split) to {1, 2, 3, 4} : dep(p, p) and obtain 6
branches. By symmetry, we may concentrate on one of the branches. We denote it by {i, j}
(i 6= j). We then apply the rule (PLdep) to {i, j} : dep(p, p) and branch into two branches
as depicted in Figure 4. In the left (right) branch we apply the rule (¬Prop) to {i, j} : ¬p
((Prop) to {i, j} : p). Consequently, each branch of the tableau becomes closed due to the
labeled formulae of the type {l} : p and {l} : ¬p, l ∈ {i, j}. Therefore, dep(p, p) is a theorem
of TMDL.
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I Example 24. We show that theMDL formula �dep(p) is not valid. Note that the equival-
entML(>)-formula that �dep(p) translates into is �(p>¬p). Therefore Rank>(�dep(p)) =
1, and thus the root of any TMDL-tableau for �dep(p) is {1, 2} : �dep(p). We are going to
find an open saturated branch for �dep(p).

First, we apply the rule (�) for {1, 2} : �dep(p). One of the branches that is obtained is
depicted in Figure 5. We then apply the rule (PLdep) to {3, 4} : dep(p). Then, by applying
the rules (Prop) and (¬Prop) to {3, 4} : p and {3, 4} : ¬p, respectively, we obtain an open
saturated branch as depicted in Figure 5. From the open saturated branch, we can construct
the following Kripke model K = (W,R, V ) that falsifies theMDL-formula �dep(p). Define
W := {w1, w2, w3, w4}, R := {(w1, w3), (w2, w4)}, V (p) := {w3}. One can easily verify that
K, {w1, w2} 6|= �dep(p).

I Definition 25. Let L ∈ {ML,ML(>),MDL, EMDL}. Let B be a branch of a tableau
in TL and let α : ϕ be the root of B. Recall that Index(B) denotes the set of exactly all
natural numbers that occur in B. For i, j ∈ Index(B), we write i ≺B j if iRj occurs in B.
By ≺∗B and �∗B, we mean the transitive closure and the reflexive and transitive closure of
≺B, respectively. Moreover, for i ∈ Index(B) and n ∈ N, define

LevelB(i) := |{j ∈ Index(B) | i0 ≺∗B j �∗B i, for some i0 ∈ α}|,
LayerB(n) := {j ∈ Index(B) | LevelB(j) = n}.

It is easy to see that, for every branch B, the graph (Index(B),≺B) is a well-founded forest.

I Theorem 26 (Termination of TML, TML(>), TMDL, and TEMDL). Let ϕ be a formula
ofML,ML(>),MDL, or EMDL. Every tableau for ϕ is finite.

Proof. Let T be a tableau for ϕ and let α : ϕ denote the root of T . By definition α is finite.
Clearly, by the definitions of the tableau rules, if β : ψ occurs in T then |β| ≤ |α|. From this
and from the definitions of the tableau rules, it is easy to see that T is a finitely branching
tree. Thus from König’s lemma it follows that T is infinite if and only if T has an infinite
branch.

Let B be an arbitrary branch of T . We will show that B is finite.
Claim 1. If α : ϕ occurs in B then, for every i, j ∈ α, LevelB(i) = LevelB(j).
Claim 2. For each k ∈ N the set LayerB(k) is finite.
Claim 3. There is a k ∈ N such that LayerB(k) = ∅.
Note first that if LayerB(k) = ∅ then LayerB(n) = ∅, for every n ≥ k. Thus from Claims 2
and 3 it follows that only finitely many labels may occur in B. Note also that, for every
labeled formula β : ψ that occurs in B, ψ is either a subformula of ϕ or a subformula of some
θ⊥, where θ is anML subformula of ϕ. Thus only finitely many labeled formulae may occur
in B. Thus B is finite.

Proof of Claim 1 is easy. We will sketch the proofs of Claims 2 and 3.
Proof sketch of Claim 2. Claim 2 follows from Claim 1 by induction: Clearly LayerB(0)
is finite. LayerB(k + 1) is generated via applications of the tableau rule (�) to labeled
formulae β : �ψ of the branch B, where β ⊆ LayerB(k) and �ψ is either a subformula of ϕ
or a subformula of some θ⊥, where θ is anML subformula of ϕ. Since LayerB(k) is finite,
LayerB(k + 1) is as well.
Proof sketch of Claim 3. For finite labels β, define

mB(β) := max{|ϕ| | β1 : ϕ occurs in B and β1 ∩ β 6= ∅}.
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For finite labels β, define MB(β : ψ) := (mB(β), |ψ|, |β|). The ordering between the tuples is
defined as follows:

(i, j, k) < (k, l,m) iff i < k or (i = k and j < l) or (i = k and j = l and k < m).

Note that for every labeled formula β : ψ that occurs in B it holds that mB(β) < mB(α),
|ψ| ≤ |ϕ| and |β| ≤ |α|. Thus the ordering of the tuples is well-founded. Furthermore it
is easy to check that an application of each tableau rule decreases the measure MB. For
finite collections of labeled formulae Γ, defineMB(Γ) := max{MB(β : ψ) | β : ψ ∈ Γ}. It is
straightforward to show that, for every k ∈ N, eitherMB

(
LayerB(k+ 1)

)
<MB

(
LayerB(k)

)
or LayerB(k + 1) = ∅. From this the claim follows. J

I Definition 27. Let B be a tableau branch. We say that B is faithful to a Kripke model
K = (W,R, V ) if there exists a mapping f : Index(B) → W such that, K, f [α] 6|= ϕ for all
α : ϕ ∈ B, and f(i)Rf(j) holds, for every iRj ∈ B.

I Lemma 28. Let L ∈ {ML,ML(>),MDL, EMDL}. If ϕ ∈ L is not valid then there is
an open saturated branch in every saturated tableau of ϕ in TL.

Proof. In this proof, we focus on ML(>). Assume that ϕ ∈ ML(>) is not valid. By
Corollary 15, there is a Kripke model K = (W,R, V ) and a team T of K such that |T | ≤
2Rank>(ϕ) and K, T 6|= ϕ. Put α0 := {1, . . . , 2Rank>(ϕ)}. Let T be an arbitrary saturated
tableau for ϕ. By Theorem 26, T is finite and, by definition, the root of T is α0 : ϕ. We will
show that there is an open branch B in T .

We first establish that B0 := {α0 : ϕ} is faithful to K. Let f : α0 →W be any mapping
(note: W is non-empty) such that f [α0] = T . Clearly K, f [α0] 6|= ϕ, and thus B0 is faithful to
K. Assume then that we have constructed a branch Bn such that Bn is faithful to K. Thus
there is a mapping g : Index(Bn)→W such that, for all β : ψ ∈ Bn, K, g[β] 6|= ψ, and, for all
iRj ∈ Bn, g(i)Rg(j) holds. We will show that any rule-application to Bn generates at least
one faithful extension Bn+1 to K. Here we are concerned with the rules of (♦) and (�) alone.
(♦) Assume that {i1, . . . , ik} : ♦ψ, i1Rj1, . . . , ikRjk ∈ Bn. Let α := {i1, . . . , ik} and β :=
{j1, . . . , jk}. We obtain from our assumption that K, g[α] 6|= ♦ψ and g[α][R]g[β]. From
the semantics of ♦ it follows that K, g[β] 6|= ψ. Thus Bn+1 := Bn ∪ {β : ψ} is faithful to
K. Clearly Bn+1 is an extension of B by the rule (♦).

(�) Assume that α : �ψ ∈ Bn. We obtain from our assumption that K, g[α] 6|= �ψ. By the
semantics of �, it follows that K, R[g[α]] 6|= ψ. Now, by Theorem 14, there exists a team
S ⊆ R[g[α]] such that 0 < |S| ≤ 2Rank>(ψ) and K, S 6|= ψ. Fix such S ⊆ R[g[α]] and let
u1, . . . , um be the elements of S. Since S ⊆ R[g[α]] there exists a function h : {1, . . . ,m} →
α such that g

(
h(l)

)
Rul, for each l ≤ m. Let h′ : {1, . . . , 2Rank>(ψ)} → α denote the

expansion of h defined such that h′(l) := h(m) for m < l ≤ 2Rank>(ψ). We then extend our
function g to a mapping g′ to cover new fresh indexes β := {j1, . . . , j2Rank>(ψ)}. We define
that g′(jl) := ul, for l ≤ m, and g′(jl) := um for m < l ≤ 2Rank>(ψ). By construction,
we obtain that K, g′[β] 6|= ψ and g′(h′(l))Rg′(jl) for all 1 ≤ l ≤ 2Rank>(ψ). Therefore,
together with our assumption, Bn+1 := Bn∪{h′(1)Rj1, . . . , h′(2Rank>(ψ))Rj2Rank>(ψ) , β : ψ}
is faithful to K by g′. Clearly Bn+1 is an extension of B by the rule (�).

Since T is finite and saturated, Bj is a saturated branch in T for some j ∈ N. Moreover,
since Bj is faithful to K, Bj is open. J

I Theorem 29 (Soundness of TML, TML(>), TMDL, and TEMDL). Let L be a logic in
{ML,ML(>),MDL, EMDL}. The calculus TL is sound.
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Proof. Fix L ∈ {ML,ML(>),MDL, EMDL}. Assume that 6|=L ϕ. By Lemma 28, there
is an open saturated branch in every saturated tableau of ϕ in TL. Therefore, and since, by
Theorem 26, every tableau of ϕ in TL is finite, there does not exists any closed tableau for ϕ
in TL. Thus 6`TL ϕ. J

I Lemma 30. Let L ∈ {ML,ML(>),MDL, EMDL}. If there exists an open saturated
branch for ϕ in TL then ϕ is not valid.

Proof. Let B be an open saturated branch in a tableau T of TL starting with {1, . . . , 2Rank>(ϕ)} :
ϕ. Define the induced Kripke model KB = (W,R, V ) from B as follows: W := Index(B);
iRj iff iRj ∈ B; V (p) := {i | {i} : ¬p ∈ B} for any p occurring in B, otherwise, V (p) :=
∅. It is straightforward to prove by induction on χ that α : χ ∈ B implies KB, α 6|= χ.

Since {1, . . . , 2Rank>(ϕ)} : ϕ ∈ B, it follows that KB, {1, . . . , 2Rank>(ϕ)} 6|= ϕ. Thus ϕ is not
valid. J

I Theorem 31 (Completeness of TML, TML(>), TMDL, and TEMDL). Let L be a logic in
{ML,ML(>),MDL, EMDL}. The calculus TL is complete.

Proof. Fix L ∈ {ML,ML(>),MDL, EMDL}. Assume that 6`TL ϕ. Thus every tableau
for ϕ is open. From Theorem 26 it follows that there exists a saturated open tableau for ϕ.
Thus there exists a saturated open branch for ϕ. Thus, by Lemma 30, 6|=L ϕ. J

5 Conclusion

We gave sound and complete Hilbert-style axiomatizations for PL, PL(>), PD, ML(>),
MDL, and EMDL. In addition, we presented novel labeled tableau calculi for these logics.
We proved soundness, completeness and termination for each of the calculi presented.
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