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Abstract 

Modern monitoring systems in machine tools are able to detect process errors promptly. Still, the application of monitoring systems is restricted 
by the complexity of parameterization for save monitoring. In most cases, only specially trained personnel can handle this job especially for 
multi-purpose machines. The aim of the research project “Proceed” is to figure out in which extent a self-parameterization and autonomous 
optimization of monitoring systems in industrial series production can be realized. Therefore, a self-adjusting and self-tuning process 
monitoring system for series production has been developed. This system is based on multi-criteria sensor signal evaluation and is able to 
assess its monitoring quality quantitatively. For this purpose, the complete process chain of parameterization has been automated. For series 
production it is assumed, that the first process is not defective. So, process sensitive features are identified by a correlation analysis with a 
reference signal. The reference signal is selected through an analysis of the process state by an expert system. To assess the monitoring quality 
resulting from automatic parameterization, normed specific values were used. These values describe the monitoring quality with the help of the 
distance between a feature and its threshold normed to signal amplitude and noise. A second indicator is the reaction of the monitoring system 
to a synthetic error added to signal a sequence. Thus it is possible to estimate monitoring quality corresponding to automatic parameterization. 
The validation is carried out by a comparison between the result of the assessment and the reaction ability of the monitoring system to real 
process errors from milling, drilling and turning processes. 
© 2014 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the International Scientific Committee of “9th CIRP ICME Conference". 
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1. Introduction 

One objective of monitoring systems in cutting machine 
tools is to observe the manufacturing process and identify 
errors such as critical wear or tool breakage for example. 
Often the motor current of spindle or feed drives as well as 
additional sensor signals such as acceleration, force or 
acoustic emission signals are monitored. In [1, 2, 3] an 
overview of suitable sensor signals for process monitoring and 
signal processing methods is given. A large part of the 
monitoring strategies used in industrial series production are 
attributable to time dependent monitoring limits, whose 
parameterization is based on the initial manufacturing process 
[4]. If a monitored signal exceeds its threshold, the monitoring 
system sends an error message to the machine control. This 
can cause an immediate stop or a tool change. Thus, secondary 
damage can be avoided and the availability of the machine 
tool increases. In order to configure the monitoring system, 

signal sources as well as extraction methods and monitoring 
strategies have to be defined. Thereby, time effort and 
complexity increase with the number of monitored signals and 
the extent of machining. So the monitoring parameterization 
for a process with six-side machining in a turn-mill center is a 
time consuming task which can only be handled by specially 
trained staff. Previous approaches to reduce manual effort use 
statistic confidence limits to derive monitoring limits 
automatically [5, 6]. However, the parameters of feature 
extraction, such as cut-off frequency and filter order, have not 
been adressed for online parameterization. In [7] an approach 
for a pre-process design of monitoring systems is presented. 
At this point the project Proceed wants to figure out, in which 
extent a self-parameterization and independent optimization of 
monitoring systems in industrial series production can be 
realized. The aim of the project is to develop a self-adjusting 
and self-tuning process monitoring system, based on multi-
criteria sensor signal evaluation, which is able to assess its 
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monitoring quality quantitatively. The intention is to ensure 
the reduction of manual parameterization and an improvement 
of monitoring quality. To warrant a deferred applicability, 
positioning of sensors will be made under the aspect of 
industrial environmental conditions. Direct force 
measurements utilizing dynamometers are only used as 
reference. Figure 1 gives an overview about the information 
flow in the complete approach.  

First Step is an analysis of the first manufacturing process 
and its sensor signals. The features for the monitoring are 
selected based on this analysis. At the second work piece the 
monitoring starts with initial parameters. In parallel to the 
monitoring task the quality of the monitoring is assessed 
continuously. Based on this assessment an optimization 
algorithm searches for a superior setup for the monitoring 
task. If a proper setup is found it will be used for the 
monitoring task, starting with the next process. This paper 
deals with the issue of the feature selection and self-
assessment. A single work piece with different cutting 
processes was designed for testing. Because of that a 
segmentation of the manufacturing process is necessary [1]. 
The aim of this segmentation is to choose matching features 
for each manufacturing process. Assuming that in series 
production the first processes are not defective, segmentation 
and feature selection is done by an analysis of these first 
processes. As sensors, machine control inherent information 
such as motor torque or axes positions and a three axis 
acceleration sensor is used. The testing machine is a CTX420l 
lathe with powered tools. 

2. Process segmentation and analysis 

The analyzed reference process consists of seven different 
types of machining. Table 1 lists the processing steps. The 
aim of the segmentation is to identify the respective types of 
machining. In this approach a segment means a part of the 

manufacturing were a cutting process is possible and the feed 
direction, or the main feed axis is constant. This identification 
is based on the ID of the used tool and an interpretation of the 
movement of the feed axes. A distinction between roughing 
and finishing tool based on the tool ID is possible So the basic 
kind of manufacturing process is known. For further 
differentiation the movement of feed axes is analyzed. 

Table 1 Machining steps of the used work piece 

Cutting processes Cycles.  Remark 

Cylindrical turning 3  Subsequent finishing 

Face turning 4  Subsequent finishing 

Trepanning 1  Width of Cut 5mm

Slot milling 2  Depth of cut 1mm 

Slab milling 4  Full cut, down-, up milling 

Drilling 6  Depth 10mm 

Circular milling 2  Peripheral milling 

Figure 1 Information flow in the complete processing chain

Figure 2 Principle of segmentation
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Therefore, similar to the approach of Yohannes [8] a state for 
each machine axes and spindle is defined. In Table 2 the 
different states are shown. In combination with the tool ID it 
is possible to detect areas where no machining is expected, 
such as positioning with rapid feed rate, tool change or 
improper trajectories for the actual tool. Given the tool ID of 
the actual used tool and the axes state it is also possible to 
determine the process state in the remaining sections. In case 
of a turning process, for example, there are three possible 
states: cylindrical turning, face turning or form turning. This 
distinction is implemented by some sets of logical rules. The 
first segment starts if the feed velocity is at nominal feed rate. 
Now a main feed axis is defined. This is the only or fastest 
feed axis. If the main feed axis or the state of one axis 
changes a new segment begins. So for each switch between 
the machining states inside the section of possible machining 
a new segment is created. Figure 2 shows the principle of the 
segmentation approach. The first segment starts at the end of 
rapid feed rate with a constant velocity against z-direction. 
The second segment starts at the beginning of the curved path 
where both axes are accelerated. In the middle of the radius 
the main feed axis changes from the Z-axis to the X-axis. So 
segment tree starts, which ends with constant feed velocity in 
x-direction. In the following processes position and velocity 
are the triggers for the start of a segment. To avoid a false 
indication each previous segment is checked for a trigger 
match. The direction of feed motion is known for all 
segments. The next processing step is to determine a reference 
feature for each segment.  

Table 2 Possible Axes states 

Axis/spindle 
state

Description

0 Hold position 

1 Movement with constant velocity 

2 Axis is accelerated 

3 Movement with rapid speed or tool change position 

The major requirement for this selection is the sensitivity to 
the process state. In most cases this is a dependency to at least 
one component of the resulting cutting force. This selection is 
done by an expert system. Based on the tool-ID and the axes 
states a reference signal is selected. Except milling processes 
only control inherent signals are used. The aim is to choose a 
signal source whose signals such as torque or current are 
influenced as little as possible by disturbances and on the 
other hand most sensitive to the process condition. 
Disturbances could be friction, acceleration of the feed axes 
or random events for example the start of a peripheral device. 
For machining operations with a rotating tool spindle such as 
drilling and milling, the tool spindle is selected as reference 
axes. In most cases the velocity is constant, making it simple 
to determine the friction part of the torque through a model or 
an offset, such that only the process part remains. In case of a 
milling process are features like effective value at tooth 
engagement frequency from the acceleration sensors also 
available. That feature with the best signal to noise ratio will 
be selected if several potential reference features are 

available. For turning and other processes the preferred 
reference axis is determined by the following set of rules. 

 Workpiece spindle is reference if its state is 1 
 Else, main feed axis is reference if its state is 1 
 Otherwise the feed axes with state 0 and the best 

signal to noise ratio is reference 

These rules are originated by the attempt to minimize the 
error by friction and acceleration of feed axes. So axes with 
constant velocity are preferred to avoid complications at 
friction compensation at zero velocity [10]. Too confirm the 
selection of the reference feature an analyses of the process 
sensitivity is performed. Figure 3 shows the signal sequences 
on a face turning process. Because of the small-sized depth of 
cut there is no change in the signal characteristic of the X-
axis. This illustrates the need of a confirmation. According to 
the selection rules the actuating current of the X-axis would 
be selected as reference feature. However there is no 
correlation with the cutting process in the signal sequence 
detectable. To confirm the selection the signal to noise ratio 
from the friction compensated signals is calculated. In this 
case the Z-axis would be selected as reference. This approach 
is also applicable for further machining methods such as 
keyway slotting. The signal sequence of the reference feature 
is the basis for the selection of additional features. 

2.1. Feature selection 

To identify suitable signal features the signal sequence of the 
reference feature is filtered with a LP-filter. The resulting 
feature should correlate with at least one component of the 
cutting force at correct process identification. This is ensured 
by the prior selection of the reference signal. The reference 
feature is used to identify additional process sensitive features 
from the available signal sources. Table 3 lists the signal 
sources and the analyzed features which are used in an 
automatic analysis for every generated segment from Table 1. 
The controller inherent signals are available with a sample 
time of 12ms and the signals of the three axis acceleration 
sensor with a sample time of 100μs. The acceleration sensor 
itself is mounted on the Y-axes close to the turret. For a first 

Figure 3 Signal sequences of feed axes and spindle on a face turning process 
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selection of available features a covariance analysis with the 
reference feature is performed for each segment. Features 
which show the best correlation with the reference feature 
were compared in a second step. For this purpose a sliding 
effective value with a cutoff frequency of ten hertz is created 
from the relevant features. To compare the different features 
they will be normed to their own noise. This is done by a 
calculation of the standard deviation with sliding windows. 
The sliding average of the original signal sequence (j) (1) is 
divided by these sliding standard deviation (j) (2). By an 
additional multiplication with the square root of the window 
width N the calculated signal sequence meets a statistical test 
variable for an parameter test if there is an signal greater zero 
with the critical value c (3). The critical value c can be 
calculated with a given confidence limit and the inverse 
student t-distribution.  

                                                      (1) 

                                           (2) 

                                                          (3) 

Parallel to the feature selection based on signal analysis 
process specific features were selected knowledge based. This 
includes the signal of the acceleration sensor at tool rotational 
speed, tooth engagement frequency and the first harmonic in 
milling processes [1]. In addition the torque of the drive in 
feed direction in drilling [5] is selected. For both types of 
features it is assumed that they are sensitive to the process 
state. The aim is a comparison of features selected by an 
analysis algorithm and features selected knowledge based. For 
this comparison the characteristic on real process errors for 
both kinds of features is performed. 

Table 3 Used signal sources and features 

Signal source Features 

Torque feed drive 
X-Y-Z direction 

HP/LP Filter, cut off frequency 10Hz, 
time derivation,  

Torque tool/main 
spindle 

HP/LP Filter, cut off frequency 10Hz, 
time derivation 

Three axis 
acceleration sensor 

Effective value for a bandwidth of 250 Hz for a 
range from 0 to 5kHz for all three directions 

2.2. Comparison between analyses and knowledge based 
Feature selection 

A good correlation with the reference feature is given for 
all selected features. However, it is not possible to deduct the 
sensitivity of a feature from the signal based selection to the 
process state. In case of critical tool wear or tool breakage, not 
all features show the expected behavior. In Figure 4, 
knowledge based selected features and analyses based 
features for non-defective- and defective processes are 
compared for a drilling and a milling process. In case of the 
drilling process the torque of the tool spindle is the reference 

feature. The feature exhibiting the best correlation to the 
reference feature is the effective value for a specific frequency 
range from 2250Hz to 2500Hz. In comparison to the non-
defective process a change of characteristic is visible in the 
signal sequences of both features. In case of the slot milling 
process reference feature is the signal of the acceleration 
sensor at tooth engagement frequency. The feature with the 
best correlation is the effective value for a specific frequency 
range from 2500Hz to 2750Hz. Just like the drilling process 
the amplitude of both signals, best knowledge based selection 
and best signal analysis based selection in the non-defective 
process, is comparable. Hence in the defective process of slot 
milling in Figure 4 there is no change in the signal 
characteristic of the feature selected by the signal analyses 
algorithm. A precise analysis suggests that in cases of drilling 
and slot milling the cycling frequency of a bearing was 
selected. In the drilling process through the rising feed force 
the signal amplitude in this frequency area increases. In the 
slot milling process the failure has no influence to the selected 
frequency, because the passive cutting force was not affected 
by the failure like the feed force on the drilling process. So at 
the milling process the additional feature selected by the 
analysis algorithm form the high frequency signals are not 
suited for process monitoring. For all processes seemingly 
sensitive features were found. Additional extraction methods 
were performed to test these features. Overall the analysis of 
all features and their behavior to process errors shows that the 
knowledge base selected features seems well suited for 
process monitoring with the aim to detect critical tool wear or 
breakage. From the features selected through a signal analysis 
only a fraction is suitable for monitoring. At high frequency 
no additional use full features were found by the algorithm. 
But from the control inherent signals additional use full 
features were selected. In most cases the algorithm detects the 
knowledge based features to. A distinction between proper 
and improper features without analyses of their behavior in 
case of a process error was not possible at this state. 

Figure 4 Comparison of automatic selected features
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3. Assessment of monitoring quality 

Independent from the feature selection it is analyzed in which 
extend it is possible to assess the quality of the monitoring of 
a single feature monitoring. Main requirement to the used 
features is a change of characteristic in case of a process error. 
According to the specific application disturbances in the 
signals of the feed drives such as friction, acceleration or 
latching forces have to be compensated by suitable methods 
[9 e.g.]. For the assessment of monitoring quality two 
characteristics were evaluated: The gap between the long term 
average and its threshold as well as the time behavior of the 

monitoring to real process errors and test functions. 
According to the variation coefficient (relative standard 
deviation, ratio from standard deviation to average) the 
distance k between average  and its threshold u is 
normalized to the average (4).  

                                                                   (4) 

This characteristic indicates in which range the normed 
feature must change to cause an alarm. If statistical thresholds 
are used, the gap between average and threshold is given by a 
fixed confidence belt which is equivalent to the probability of 
a false alarm [6]. For other monitoring methods with 
threshold it is possible to calculate the probability of a false 
alarm by the student’s t-distribution. Therefore a confidence 
limit based on the distribution of the signal around its long-
term average is calculated. To estimate the performance of the 
monitoring system without real process errors test functions 
were used. These functions are meant to represent the signal 
characteristic in case of two types of process errors: Tool 
breakage is approximated by a short impulse with 10ms 
duration (1). Sudden tool failure resulting from too high 
cutting temperature for example is represented by a ramp with 
duration of 500ms (2). Both functions are scaled with a factor 

. As suitable values for the factor  values between 1,5 to 2 
have been proven. Thereby the aim is to represent sudden tool 

failure and breakage not gradually tool wear. To determine 
the reaction time of the monitoring system the original signal 
is multiplied with both test functions. The time lag between 
start of the test function and crossing of the threshold is the 
estimated reaction time. (Figure 4) 

                                           (5) 

                 (6) 

 Thereby a time window of 500ms will be observed. The three 
characteristics, estimated reaction time, probability of a false 
alarm and band gap are no absolute scale for the fitness of a 
single feature monitoring, but at means of comparing different 
features, identify improper features and difficult to monitor 
process segments. Figure 5 shows a comparison of two 
drilling processes. For both processes a confidence belt of five 
standard deviations was applied. In the first drilling process 
the normed band gap of about 0,5 during process indicates a 
good monitoring ability. In the second drilling process a 
normed band gap of about 1 to 2 indicates that an increase of 
the amplitude to 300% is necessary to affect an alarm. To 
evaluate the significance of the referred characteristics their 
values were compared to the behavior of the assessed features 
to real process errors. Table 4 lists the results for an 
assessment of the monitoring features for a drilling process. 
Evaluation criterions are the normed band gap, estimated 
reaction time and confidence belt. The parameters for the 
feature extraction were set by a genetic algorithm to optimize 
the monitoring setup for a multi criteria monitoring. 

Table 4 Assessment of features for a drilling process with test function 

Signal
source 

Feature & gap 
assessment 

Test
function 

Confidence 
belt

Estimated 
reaction time 

Torque 
tool

spindle 

LP 
0,45 Impulse 0,99997 24ms 

LP 
0,45 Ramp 0,99997 312ms 

Time derivation
1,198 Impulse 0,95 12ms 

Time derivation
1,198 Ramp 0,95 Not detected 

Torque 
feed 
drive 

LP 
0,44 Impulse 0,99993 36ms 

LP 
0,44 Ramp 0,99993 336ms 

In case of the impulse test function at all three features the 
threshold was exceeded immediately. Depending on its 
extraction method the time derivation is not able to detect the 
second test function. This prediction is confirmed by the 
behavior to real process errors occurred at tool wear tests. For 
the used features it is possible to make a statement about their 

Figure 5 Feature evaluation
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monitor-ability. Because of the complex relations in cutting 
processes and the large number of types of tool wear and tool 
failure a certain statement about the sensitivity of a feature to 
the process condition is only possible with process data of real 
process errors with this approach. Table 5 shows the reaction 
time of the same three features with identical monitoring 
boarders to a tool failure. The tool failure occurs allocated on 
four drilling processes. The first defect process is the first 
where a limit overstepping occurs. On the fourth process the 
tool breaks finally. The first three errors can be compared 
with the ramp test function. The fourth with the step test 
function. Because it is not possible to define a start time for 
the errors the reaction times are given relative to the detection 
at the low pass filtered spindle torque. In the case of the 
reaction to an abruptly change the behaviour on real errors is 
similar to the test functions. Not as expected is the behaviour 
of the last feature, the low pass filtered feed torque. Maybe 
the tool behaviour in case of the occurred failure is causal 
therefore.

Table 5 Reaction time to real process errors 

Signal
source 

Feature & gap 
assessment 

Relative reaction  time 

Error 1 Error 2 Error 3 Error 4 

Torque 
tool
spindle 

LP 
0,45 0 ms 0 ms 0 ms 0 ms 

Torque 
tool
spindle 

Time 
derivation 
1,198 

Not
detected

Not
detected + 1740 m s -48 ms 

Torque 
feed 
drive 

LP 
0,44 

Not
detected

Not
detected + 1260 m s +36 ms 

4. Conclusion and outlook 

It was shown that it is possible to realize an autonomous 
process segmentation and feature selection based on the 
automatic analysis of manufacturing processes. Considering 
the results it becomes clear that a secure selection is only 
possible with knowledge based approach. At the low 
frequency control inherent signals use full additional features 
were selected by the presented algorithm. At the high 
frequency external sensors both, use full and useless features 
were selected. Thus an added value results only for low 
frequency signal sources through the analysis based 
algorithm. During the test procedure in some cases for 

monitoring, suitable features were only determined by 
selection rules. Features selected based on the signal analysis 
were not all sensitive for process errors. Limiting factor for 
the monitoring is the signal-to-noise ratio. The ability to select 
signals with very low amplitude, but a high sensitivity is a 
second advantage of the knowledge based feature selection. 
Still, features selected by the analysis algorithm are potential 
sensitive to the process state. But a certain assessment is only 
possible after an error occurred. Therefore it seems to be 
reasonable to make a reassessment of the features, having real 
error data. In addition an approach for a self-assessment based 
on statistical analysis and test function was shown. The test 
functions approximate two types of process errors. The self-
assessment of the single feature monitoring can be used as an 
indicator for a proper monitoring and a scale for a comparison 
of different monitoring approaches. Finally the complete 
approach of a self-parameterizing monitoring system will be 
evaluated with an online demonstrator. 

At this point, the authors would like to thank the German 
Research Foundation (DFG) for its support of the research 
project Proceed (DE 447/96–1). 
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