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The following paper introduces a novel scanning method for mapping and localization purposes in mobile robotics. Our method
is based on a rotating monostatic radar network, which determines the positions of objects around the scanner via a continuously
running lateration algorithm. The estimation of surfaces with ultrawideband radar networks has been studied experimentally in
lab environments, especially with lateration, envelopes of spheres, and SEABED algorithms. But we do not see a link to the field
of mapping and localization of mobile robots, where laser scanners are dominating. Indeed, only few research groups use radars
for mapping and localization, but their applied sensor principle is based on a rotating focused radar beam. Consequently, only 2D
radar scanners are known inside the robotic world and methods for 3D scanning with radars need to be investigated. This paper
will derive the theoretical background of the sensor principle, which is based on a radar network on a rotating joint, and discuss its
erroneous influences. We were performing first scans of standard geometries and deriving a model in order to compare theoretical
and experimental measurement results. Furthermore, we present first mapping approaches and a simulation of a scanner with
multiple sensors.

1. Introduction

Obtaining all-around range information of an environment
is essential in many areas of mobile robotics. Commonly,
popular sensors like laser scanners, sonar sensors, and stere-
ocameras have established themselves as state-of-the-art for
most tasks in mobile robotics. Nevertheless, radar sensors
frequently appear in field robotics but are seldomused to per-
form tasks likemapping and localization. Radar can penetrate
certain materials, basically nonconductors, which provides
advantages in dusty, foggy, rainy, or other harsh environ-
ments. But limited resolution, noisy data, and influence of
optical effects like refraction, reflection, and absorptionmake
the application in mobile robotics challenging.

The use of radar sensors in mobile robotics is chal-
lenging but not impossible. The first appearance of radar
sensors in the robotic community is traced back to the
Australian Centre for Field Robotics in the early nineties,
where fundamental work on probabilistic SLAM algorithms
in combination with radar was developed (Clark and Whyte
[1]). Because of their limited resolution and other aforemen-
tioned drawbacks, radar sensors are not very suitable to use

in indoor environments. Nevertheless, Detlefsen et al. [2]
were investigating the use of radar sensors in an industrial
environment and Marck et al. [3] in an office. As far as we
can see, all radar sensor principles in mobile robotics are
based on mechanical beam-forming. Usually, the radar beam
is focussed via a parabolic antenna and panned mechanically
over the environment. Electrical beam-forming through
phased array antennas is not seen very often in mobile
robotics, but rather in automotive systems of the car industry.

Besides beam-forming techniques, position estimation
can be achieved through lateration, which is a common tech-
nique in radar networks for aircraft surveillance. Lateration is
a measurement method, where the position of a point target
is calculated through distance information from 𝑛 sensors
with known location. The term trilateration refers to the
measurement of three distances to define the position of an
object (in contrast to triangulation, where three angles are
used to calculate an object’s position). There exist two types
of radar networks. In case of a monostatic radar network, the
transmitter and receiver of the radar signal are collocated at
the same location and can only receive signals that have been
emitted by themselves. Multistatic radar networks consist
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of transmitters and receivers at different locations and can
receive other sensors’ signal after it has been reflected from
an object.

In this paper, we introduce a scanning method, which
is based on a rotating monostatic radar network. We use
frequency modulated continuous wave (FMCW) radar sen-
sors, which provide distance but no angle information of
objects inside the observation area. The sensors work in
24GHz ISM band and accordingly are limited in Germany
to a bandwidth (B) of 250MHz, which corresponds to a
theoretical distance resolution of 0.6m (see (1), 𝑐

𝑜
—speed of

light). But the real distance resolution of most radar sensors
is by the factor two or three larger. The availability of sensors
with a high resolution depends on national and international
bandwidth regulations. An ultrawideband (UWB) channel
between 22GHz and 26,65GHz has been closed in 2013, but
it is moved to 79GHz for automotive purposes recently ([4,
p. 20]):

Δ𝑑 =

𝑐0
2𝐵

. (1)

The resolution Δ𝑑 of a radar sensor is equal to its min-
imum detection range. A radar’s resolution is its capability
to distinguish objects. If the difference between the radial
distances of two or more objects to the sensor is less than
its resolution, then the sensor merges the two or more
distance information into one. Additionally, the detection of
objects depends on their radar cross-section (RCS) and the
background noise of the environment.

This paper is organized as follows. In Section 2.1, we
present a short overview on how position estimation via lat-
eration in radar networks is commonly solved. In Section 2.2,
we describe a problem that arises from data association and
how to apply the bottom-up data association method of
Fölster and Rohling [5] to resolve this problem. Section 2.3
describes the influences of errors in a radar network. In our
first experiment, which will be described in Section 3, we
were performing first scans, whose results will be presented
and discussed in Section 4.

2. Materials and Methods

Estimating the position of an object with a radar network can
be solved by standard lateration methods. For example, in
order to define an object’s position in two-dimensional space,
at least two sensors are necessary. Two radii can break down
the object’s position to two possible locations. Usually, only
one location is plausible due to the antenna’s direction. Geo-
metrically, ghost objects can appear in lateration networks,
which represents a wrong data association of the sensor’s
object lists. A precise derivation, how ghost objects appear,
is given by Rabe et al. [6].

Besides lateration techniques, the envelopes of spheres
and SEABED method exist. This method has been studied
by Sakamoto and Kidera et al. [7, 8], who use it as a surface
estimation technique for three-dimensional imaging with a
UWBpulse radar systemwith high resolution. Like Sakamoto
and Kidera, we assume boundary scattering on metallic
surfaces to describe the model of our scanner.

2.1. Principle and Derivation. For terminology, we define the
number of sensors in a radar network as 𝑛 and the sensor-
index 𝑖. Accordingly, 𝑆

𝑖
are the sensors with the coordinates

𝑥
𝑆𝑖

and 𝑦
𝑆𝑖
. Every sensor outputs an object-list OL

𝑖
=

[𝑑
𝑖1, 𝑑𝑖2, . . . , 𝑑𝑖𝑚], which contains distance information 𝑑

𝑖𝑗

from the sensor 𝑆
𝑖
to an object 𝑂

𝑗
.

For a radar network in two-dimensional space and two
sensors (see Figure 1), we obtain two equations:

(𝑥
𝑆1 −𝑥𝑂1)

2
+ (𝑦
𝑆1 −𝑦𝑂1)

2
= 𝑑

2
11

(𝑥
𝑆2 −𝑥𝑂1)

2
+ (𝑦
𝑆2 −𝑦𝑂1)

2
= 𝑑

2
21.

(2)

In case the number of sensors is higher than the dimen-
sion of the space plus one (e.g., three sensors in two-
dimensional space), then the system of equations becomes
overdetermined. Due to errors in each sensor measurement,
the overdetermined system of equations has no exact solu-
tion; hence a regression has to be found. The common way
to solve this problem is the minimum mean square method.
A detailed derivation and example of the method can be
seen in the dissertation of Schneider [9, p. 11–14]. A general
representation of the systemof equations for a sensor network
in two-dimensional space is given in (3). An expansion to
three dimensions is self-explanatory. In order to estimate the
object’s location, the system needs to be solved for ⃗𝑜:

𝐴 =(

2 ⋅ (𝑥
𝑆1 − 𝑥𝑆𝑛) 2 ⋅ (𝑦
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.

.

.
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(3)

2.2. Ghost Objects: A Data Association Problem. If more than
one object is located inside the observation area of the radar
network and the distance of the sensors to each other is larger
than two times the sensor’s resolution, then the so-called
ghost objects can appear (see Figure 2). Ghost objects rep-
resent a wrong data association of the distance information
from the object lists due to geometrical ambiguity. For our
experiment, the ghost object issue is not relevant because we
chose a distance between the sensors 𝑑Ant smaller than 1,2m.
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Figure 1: Our FMCW radar sensors measure radial distances to
objects inside the observation area.The position of an object𝑂

𝑗
can

be estimated through the intersection of two radii.
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Figure 2: Two objects (blue) are located in front of three sensors. In
this case, due to ambiguity, six ghost objects appear.The observation
area is discretized into grid cells. By calculating for every cell the
error according to (4), an optimal data association can be performed.

But if the experiments were performed with UWB radars,
then ghost object would be an issue.

Fölster and Rohling [5] present a method called bottom-
up data association. In two-dimensional space, at least three
sensors are necessary for this method. In order to distinguish
ghost objects from real objects, the observation area in front
of the sensor network is discretized into cells, which represent
a finite set of possible object positions. Then, a simple
minimum distance calculation is done. Each cell contains
an error value 𝐸(𝑥, 𝑦), which represents the square of the
minimum distance of the cell to the sensor 𝑆

𝑖
minus the

distance 𝑑
𝑖𝑗
between object 𝑂

𝑗
and sensor 𝑆

𝑖
, summarized

over all 𝑛 sensors (see (4)). This calculation results in the
lowest error values in cells that are closest to the real objects:

𝐸 (𝑥, 𝑦) =

𝑛

∑

𝑖=1
[ min
𝑑𝑖𝑗∈OL𝑖

(𝑑
𝑖𝑗
−𝑑 (𝑥, 𝑦))]

2

. (4)

The grid can be represented in Cartesian or polar coordi-
nates.The grid size should be chosen under the consideration
of the radar network’s range resolution and azimuth-angle
accuracy [5].

2.3. Considerations on Erroneous Influences on Position Esti-
mation in Monostatic Radar Networks. Understanding and
analysis of errors that influence our sensor principle are
essential to evaluate and discuss the feasibility and exper-
imental results. Estimating the position of objects with
lateration requires sensors with very high range accuracy.
Nevertheless, every sensor has a measurement error. In case
of lateration, the maximum position measurement error 𝜎PD
can be approximated by the maximal range measurement
error 𝜎

𝑅max
of all sensors and the angle 𝛼 (see (5)). Figure 3

clarifies the relation between the range measurement error
𝜎
𝑅
, the angle 𝛼, and the position measurement error 𝜎PD

graphically. This figure displays the assumed case that 𝜎
𝑅
is

constant. A closer look on 𝜎
𝑅
is done in the following and

shows that it can not be assumed to be constant; indeed, it is
impossible to predict. From (5) and Figure 3, it can be seen
that the accuracy is getting very bad at the sides of the sensor
network, where 𝛼 is approaching zero. An enhancement of
the accuracy can be achieved by a larger distance between the
sensors:

𝜎PD ≈

𝜎
𝑅max

sin𝛼
. (5)

The range measurement accuracy is defined by the
root-mean-square (rms) measurement error 𝜎

𝑅
[10, p. 167].

According to (6), the range measurement error is formed
of the root-sum-square of three error components. The
dominating component is the S/N-dependent random range
measurement error 𝜎RN. Its standard deviation is given by
(7). The fixed random range error 𝜎RF is the remaining
range error, which remains if the S/N ratio gets very high.
It represents the remaining error, caused by the sensor and
sensor electronics architecture in case of a perfect S/N ratio.
Range bias errors 𝜎RB are constant for 𝑛MC measurements. In
case of our sensor principle, the bias error does not affect the
function or needs to be considered in lateration algorithms
because it only results in a scaling that can be calibrated.
In general, the accuracy of the sensor’s range measurement
can be enhanced by increasing the number of measurements
𝑛MC. If measurements, which are recorded during a scan of
one object, can be averaged will be discussed in Section 4. In
Section 2.3, it is explained that the root standard deviation
𝜎
𝑅
is not constant and depends on unpredictable influences.

Mathematically, if different groups of random variables with
different standard deviations have the same expected value,
then together they still have the same expected value and a
weighted standard deviation. This rule makes it legitimate to
average over measurement cycles if radar network and object
are static. In case of a dynamic radar network, we need to con-
sider the non-point-target-case (NPTC), in order to clarify
the characteristics of the expected value in dependency of the
angle of the radar network.TheNPTC is based on the fact that
a radar is not measuring the distance to the same point of an
object, if the sensor is placed at different locations. Besides
obtaining 𝑛MC measurements from different measurement
cycles, an averaging can be achieved as well by increasing
the number of sensors; hence it was shown in Section 2.1
that overdetermined systems of equations are solved by a
regression. A normal distribution of the range measurement
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Figure 3: (a) Presentation of the distribution of the position estimation error 𝜎PD over an observation area with two sensors at 𝑆1 (12.3, 0)
and 𝑆2 (12.7, 0), in case of a constant 𝜎

𝑅
of = 0.03m. Although the assumption of a constant 𝜎

𝑅
is not correct, this diagram aims to clarify the

effect that 𝜎PD gets very high at the sides of the radar network; hence the accuracy of our sensor principle is bad, if an object is entering from
the side of the observation area, which is usually the case in our rotating sensor network. (b) Area of ambiguity, which is caused by the two
rms errors 𝜎

𝑅1 and 𝜎𝑅2.

values of our sensors has been investigated and confirmed,
but will not be explained in further details in this paper:

𝜎
𝑅
= √

𝜎
2
RN

𝑛MC
+

𝜎
2
RF

𝑛MC
+ 𝜎

2
RB.

(6)

The dominating component of (6) is the S/N-dependent
random range error 𝜎RN. Interestingly, the sensor’s band-
width has influence on the sensor’s resolution and accuracy
as well. So far, estimating the radar’s accuracy seems to
be feasible. But a closer look at the signal-to-noise ratio is
leading to a complex relation, which is impossible to resolve
in our experimental setup. Without going into details of
the derivation of the S/N ratio, the proportionality in (8) is
sufficient to know for our experiment:

𝜎RN =

Δ𝑅

√2 ⋅ (S/N)
=

𝑐0

2𝐵√2 (S/N)
. (7)

From the proportionality in (8), we can summarize the
following facts. First, the S/N ratio is higher and results
accordingly in a better accuracy, if the RCS (𝜎) of an object
is high. Consequently, our radar principle results in better
position estimations for objects with high RCS. But objects
with a highRCS are entering the observation area earlier from
the sides than objects with a lower RCS; hence an object with
high RCS suffers more from the geometrical issue described
in Figure 3(a). Another problem is that the RCS cannot be
assumed to be constant for an object. Even for standard
geometries, for example, corner reflectors, 𝜎 differs from the
aspect of view. From a historical point, research on the RCS
and its dependence on the aspect angle has been already
performed in the year 1946 by Robertson [11]. But there is
not only a change of the RCS because of its geometric shape.
There is a fluctuation of the RCS, which can be explained

by the Swerling models. Ludloff explains in [12, p. 3–14]
how the fluctuation can be modelled. The model is based on
the idea that one radar target consists of multiple reflector
elements, which are distributed over the volume of the target.
The model assumes the reflector elements to be isotropic and
with the same RCS and neglects the effects of reflection or
shadows among themselves.Through overlapping of reflected
radar waves on this multiple isotropic reflector elements,
phase differences result in complex interferences.This model
explains the appearance of high fluctuation of the RCS, even
if the aspect angle is changed only slightly. To sum it up, an
exact estimation of the RCS, even of standard geometries,
is not possible in the real world and consequently needs
to be represented by a probability. In addition to other
influencing parameters, like the wave length 𝜆 of the radar’s
center frequency, the object’s distance to the sensor 𝑅, and
the thermal noise (see (8)), it leads us to the conclusion that
it is not possible to give an exact estimation for the range
measurement error 𝜎

𝑅
:

𝑆

𝑁

∼

𝜎𝜆
2

𝑅
4BT
𝑆

. (8)

After having clarified that the position estimation error
𝜎PD depends on an unpredictable component, namely, the
objects in the sensor’s observation area, we want to call
attention to another source of error, which is caused by the
sensor principle itself. We can see from the approximation in
(5) that it is possible to lower the position estimation error
𝜎PD by increasing the distance between the sensors. But, with
a larger sensor distance, the influence of the NPTC raises.

The NPTC occurs due to the fact that in most environ-
ments we cannot assume to have only point objects, whose
dimensions are much smaller than the radar’s resolution.
Normally, objects exceed the resolution cells of the sensors;
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in other words, we need to be able to handle surfaces with our
sensor principle. That boundary surfaces can be estimated
with UWB radars in combination with lateration algorithms
as was shown byMirbach andMenzel [13]. But, as can be seen
in Figure 4, the estimation of the object position is wrong, if
sensors measure the distance to different points of the object.

3. Experiments

In order to evaluate the sensor principle, we were performing
first scans of standard objects in an indoor environment.The
goal of the first experiment is to find out about error influ-
ences in our sensor principle. As mentioned before, a limited
resolution can be problematic in an indoor environment, for
example, an office. There might be metallic radiators, steal-
beams behind the walls, computer towers, and many other
objects that can have a RCS huge enough of being detected
by our radar sensor.

Accordingly, the probability of occurrence of two objects,
with a smaller difference of their radial distances to the sensor
than the radar’s resolution, is high; hence we can rarely trust
our scan results, if performed in an indoor environment. For
fundamental research, our radar sensors with an resolution of
approximately 0.6m are sufficient. Of course, by using better
sensors, a better result can be achieved.

For our first experiment, we were performing two test
series, where we placed a standard geometry, far away (at
least two times the resolution) from disturbing objects as
mentioned before. During experiment A, we were using a
planar metallic board, and during experiment B, we were
using a corner reflector. Both experiments will be explained
in the following section.

3.1. Scan in front of a Metallic Planar Board and a Corner
Reflector. During experiment A, we were scanning an indoor
environment with our sensor unit. We were placing a planar
metallic surface perpendicular to the sensor unit. We placed
the board at the same height like the sensor unit in order
to perform a 2D experiment in a 3D environment. Each
measurement contains the accumulation of ten 360∘ degree
scans with a step size of 0.7∘ degrees. Not every measurement
cycle leads to a successful position estimation. A successful
position estimation can be processed if both sensors detect an
object. Experiment B is performed according to experimentA
with a corner reflector. All relevant details of the experiments
can be seen in Table 1.

In Figure 6, the results of experiment A and experiment
B are displayed. Further discussion of the scan results will
be given in Section 4. A picture of the experimental environ-
ment is shown in Figure 5.

3.2. Scan of a Hallway. In the second experiment, we want
to find out if our sensor principle is suitable for robotic
mapping. Therefore, we were recording raw data for a map
of our hallway. To avoid influences of control and odometry
errors of our robots, we were performing scans at known
poses (see Figure 7).The walls of the corridor have a distance
of approximately 2m.

Table 1: Experiment A.

Experiment A B

Object
Metallic planar

surface
(100 cm × 45 cm)

Aluminium corner
reflector

Antenna distance 𝑑Ant = 40 cm 𝑑Ant = 40 cm
Distance between
sensor unit and object 𝑑0 ≈ 198 cm 𝑑0 ≈ 215 cm

S

Object

Figure 4: Measuring the position of an object via lateration is based
on the assumption of detecting with different sensors at different
locations always the distances to the same point. This assumption is
only acceptable for certain geometries or if the objects dimension is
much smaller as the sensors’ resolution. In a real world environment,
this becomes a surface estimation issue.

Figure 5: In the front, the scanning unit is visible. In the back, the
metallic planar surface and the corner reflector can be seen.

4. Results and Discussion

In order to make a correct interpretation of our scan results,
two models for the case of the board and the corner reflector
have been derived. A model can be helpful when designing
parameters of a system or understanding effects.
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Figure 6: Both diagrams present the results of scans inside an indoor environment. (a) A planarmetallic surface (A) and (b) a corner reflector
(B) have been positioned inside the scan area of the sensor. Both scans have been postprocessed with a Gaussian kernel density estimator in
order to represent the probability of a detected object 𝑝(𝑜).
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Figure 7: Ground truth of our office environment with scan
positions of the sensor unit.

4.1. Model of the Scanned Objects. As in most physical
models, we assume simplifications in order to break down the
complexity of the problem.We assume that all radarwaves are
reflected from the object’s boundary surface; hence a penetra-
tion of thematerial is neglected. Furthermore, we assume that
a single sensor is only measuring distances to surfaces, which
are inside its observation area andperpendicular to the sensor
itself. Double reflections, like those can appear between two
parallel walls, are neglected. In case of orthogonal lines or
areas, we assume a distance measuring to the corner point.

Figures 8 and 9 demonstrate a simplified understanding
of the experimental setup. The value 𝑑0 represents the
distance between the center of rotation of the sensor unit and
the object. In case of the planar metallic surface (Figure 8),
we cannot expect that each sensor is measuring the distance
to the same point due to a NPTC. According to our model,

Planar metallic board

d0

d1A d2A

𝛽

dAnt

Figure 8: Each sensor measures the distance to a perpendicular
surface. In case of a planar surface, the sensors of a radar network
measure the distances to different points.

Aluminium corner reflector

d0

d1B

d2B

dAnt

𝛽

Figure 9: Due to the reflective property of a corner reflector, the
sensors of the radar network measure always the distance to the
corner point; hence no NPTC occurs and it is legitimate to average
measurement values of a scan.
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Figure 10: (a) This diagram displays the characteristics of the distance measurement 𝑑1𝐴 (green) and 𝑑2𝐴 (red) of object 𝐴. The blue points
represent the distance measurements of the model according to (9). It can be seen that model and experiment do not fit very well. Side effect
from the edges of the metallic surface, the metallic stand, and a nonperfectly planar surface are reasons for the nonoptimal characteristics. (b)
The diagram presents the distribution of the position estimation after the lateration algorithm. Again, the blue points represent the modelled
result and the green ones the measurement results. Obviously, the NPTC situation is leading to the spread results, which can be seen already
in Figure 6.

the distances can be calculated with (9), where 𝑋
𝑖
represents

a random variable with normal distribution and standard
deviation 𝜎

𝑅
which is added to the geometrical part of the

equation:

𝑑1𝐴 = 𝑑0 −
𝑑Ant
2

sin𝛽+𝑋1

𝑑2𝐴 = 𝑑0 +
𝑑Ant
2

sin𝛽+𝑋2.

(9)

Due to the influence of the NPTC, it is not legitimate to
average themeasurement points of the planarmetallic surface
because the expected value, resulting from the lateration
algorithm, is not constant and depends on the aspect angle.

In case of a corner reflector, we can expect a distance
measuring always to the same point (the corner point).
Consequently, an averaging is legitimate. A measurement
cycle in front of a corner reflector can be represented with
the following equation:

𝑑1𝐵 = √(𝑑0 −
𝑑Ant
2

sin𝛽)
2
+ (

𝑑Ant
2

cos𝛽)
2
+𝑋1

𝑑2𝐵 = √(𝑑0 +
𝑑Ant
2

sin𝛽)
2
+ (

𝑑Ant
2

cos𝛽)
2
+𝑋2.

(10)

Figure 10 presents a comparison between the model of
the planar surface and the measurements of the experiment
A. We cannot confirm our model to be correct because of
side effects and a nonperfectly planar surface. Nevertheless,
we learn that the hugest error influence of our sensor unit is
not the range measurement error 𝜎

𝑅
. The biggest problem of

our principle is the NPTC, which results in a wide spread of
the measurement values. Figure 6 displays scan results with a
KDE postprocessing, which result in a very high probability
𝑝(𝑜) for our scanned object’s locations. Accordingly, we
obtain probabilities which describe areas, where an object
could be located.

Figure 11 represents the measurement results of the cor-
ner reflector, which fit very well with our model. We can
assume to have almost no influence of the NPTC situation.
The remaining spread of the measurement values is caused
by the range measurement error 𝜎

𝑅
of the sensors.

4.2. Mapping with Known Poses. There exist several mapping
algorithms. An overview is given by Thrun in [14, p. 7].
Thrun introduces algorithms, which are suitable for mapping
with unknown robot poses, which is named simultaneous
localization and mapping (SLAM). In this paper, we focus on
mapping with known poses, which is simpler. But mapping
with known poses is leading to more promising results
because odometry and control errors do not influence the
map. Occupancy grid mapping with Bayes filter might be the
most popular probabilistic representation of a map and will
be the next step to combine with our sensor principle.

Figure 12 presents two simple approaches for grid map-
ping with our sensor principle. Figure 12(a) presents the
measurement values of the hallway in a two-dimensional
histogram. In general, double reflection between parallel
walls or from the ground can occur and cause wrong position
estimations.Due to the fact thatwe can expectmoremeasure-
ments of true objects than fromwrong detection, a histogram
is accumulating accordingly true object locations; hence the
hallway’s shape is visible.Thehistogram representation can be
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Figure 11: (a) The diagram represents the characteristics of 𝑑1𝐵 (green) and 𝑑2𝐵 (red) of object 𝐵. The blue points represent the distance
measurements of the model according to (11). Corner reflectors are very suitable for our scanning principle and can function as landmarks
because they do not suffer under the NPTC. (b) Consequently, the experimental and modelled values result in very similar position
estimations.
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Figure 12: (a) Representation of the measurement points in a two-dimensional histogram. (b) A normalized Gaussian kernel density
estimation for each 360∘ scan.

fine-tuned via changing the bin size. Our second approach for
further grid mapping algorithm is shown in Figure 12(b). We
applied on every 360∘ scan a Gaussian KDE and normalized
the values. Afterwards, we summed all normalized kernel
estimated scans to obtain the map. This method can be fine-
tuned with the kernel size of the estimator. In general, this
approach is leading to a blurry representation of ourmap.We
realized that we can build a dynamic inverse sensor model
with both approaches, which will be the focus of further
investigation.

4.3. 3D Scan with Multiple Sensors. We simulated a scenario
with six point targets and a scanner which is equipped
with nine sensors. We used the simulation software V-
REP from Coppelia Robotics, which allows the simulation
of sonar sensor, which have a similar behaviour to radar
sensors.We added to every distancemeasurement a Gaussian
noise and solved the system of equation from (3) via the
minimummean squaremethod. Furthermore, the simulation
assumes sensors with a very high resolution. Accordingly,
the simulation is used only to demonstrate the influence of
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Figure 13: (a) This picture shows the simulated scene with six objects. Spheres are suitable as a point target. The scanner is equipped with 9
radar sensors and panning over all six objects from the left to the right. (b) Representation of the measurement points which are calculated
via minimum mean square method. As it can be seen in the picture above, wrong position estimation of the spheres is the consequence of
not detecting the same object with all sensors. (c) The filter criterion (see (11)) lowers the occurrence of wrong position estimations due to
the NPTC. The red triangle in both diagrams represents the scanning unit.

the NPTC effect without influences of low resolution, when
detecting multiple point targets with one sensor.The setup of
the scenario can be seen in Figure 13.

Due to NPTC, which can be seen in the upper picture
of Figure 13, the lateration algorithm results in many wrong
position estimations, which can be seen as a spread of the
estimated points.Therefore, we defined a criterion to filter the
measurement. 𝑑

𝑗
is the distance between the average position

of all sensors and the object position ⃗𝑜:

−

𝑑Antmax

2
+

1
𝑛

𝑛

∑

𝑖=1
𝑑
𝑖𝑗
< 𝑑
𝑗
<

𝑑Antmax

2
+

1
𝑛

𝑛

∑

𝑖=1
𝑑
𝑖𝑗
. (11)

The filter criterion enhances the result significantly. A
comparison of the result with and without filter is shown at
the bottom of Figure 13.

5. Conclusion

Robust localization and navigation in hazardous and tough
environments are still a difficult issue in field robotics
research. Dust, rain, fog, and inadequate illumination are
conditions, which make popular sensors, such as laser scan-
ners or cameras, not suitable. Radar overcomes the aforemen-
tioned difficulties.

In this paper, we were investigating a new scanning
method and took a closer look at failure influences in order
to judge the principle’s feasibility. We were focusing on two
influences: first, the range measurement error of the sensor
itself and second, the influence of wrong position estimation
due to the lateration principle (NPTC). We proved that the
influence of the NPTC needs to be considered. Only objects,
which are similar to corner reflectors, do not suffer under this
effect.
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The lateration technique focusses on the estimation of
points inside the observation area. A comparisonwith surface
estimation algorithms like envelopes of spheres or SEABED
might be an interesting point of investigation.

We proved that our sensor principle is suitable for robotic
mapping. An investigation on an dynamic inverse sensor
model, which is obtained from kernel density estimations,
will be the focus of our future research.

To sum it up, our proposed principle is an alternative to
standard radar based scanning-methods. Mechanical beam-
forming techniques require an antenna and electric beam-
forming techniques need phase array radars, which are com-
monly more expansive. Although no antenna construction is
required, our principle needs more than one sensor. From
one single 360∘ scan that is obtained through mechanical
beam-forming, we can expect from each measurement step
at an incremental angle distance information, which results in
more measurement points than our principle, which detects
only the objects with the highest RCS due to a nonfocused
observation area. But our principle is recording more than
one measurement of an object during one scan rotation,
which raises the possibility of a correct detection of an object.
An advantage over traditional rotating mechanical beam-
forming techniques is the possibility to perform 3D scans as
well, which would be mechanically complicated in case of
mechanical beam-forming and is only known in combination
with electrical beam-forming radars. But our principle suffers
more from the NPTC, bad accuracy and resolution, and
wrong calibration or asynchronism of measurements than
traditional techniques and is accordingly limited.
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