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Abstract: Crop growth and yield are affected by water use during the season: the green water
footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting
agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level.
We collected weather, soil and crop inputs for 45 locations for the period 1992-2012. Calibrated model
runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF
of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was
attributed to the green WFE. The green and blue WF compared favourably with global benchmark
values (R% = 0.64-0.80; d = 0.91-0.95). The variability in the WF of arable crops across different regions
in Europe is mainly due to variability in crop yield (co = 45%) and to a lesser extent to variability
in crop water use (cv = 21%). The WF variability between countries (co = 14%) is lower than the
variability between seasons (cv = 22%) and between crops (cv = 46%). Though modelled yields
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increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and
25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of
nitrogen to the surface and groundwater. The results showed that the water footprint provides a
measurable indicator that may support European water governance.

Keywords: water footprint; arable crops; cereals; Europe; crop water use; yield

1. Introduction

The water footprint (WF) concept has created awareness of sustainable water use following
a global assessment of national production, consumption and international trade [1]. Traditional
water consumption statistics have been given for different sectors, such as domestic, agricultural and
industrial water use, but these show little about how much water is actually used. The water footprint
provides a way to compare water use of regions, sectors, commodities and nations. Leading work in
understanding water availability and risk has come from the food industries through the analysis of
water quantities that companies use throughout their supply chain. With water being inherently local,
the water footprint calculations highlight the risks of local exploitations that could potentially disrupt
both business operations and the surrounding community.

Water is a precious commodity, certainly in drought-prone regions and at times of drought in
any part of the world. The economic cost of drought has been enormous. In 2003, combined drought
and heat waves led to 30% reduction in primary productivity [2], and an estimated 13 billion € loss in
European agricultural production [3]. With water shortages already threatening growth, the future of
Europe’s agriculture will be tied closely to water availability. In addition climate models project that
southern Europe will face increased drought and central Europe prolonged dry spells [4,5] frequently
combined with heat waves [6]. The rising population, coupled with increasing demands by the
agriculture and energy industries presents an interdependent relationship often referred to as the
water-food—energy nexus; the demand for water will likely outweigh supply by 2050 unless changes
in food and energy preferences are implemented [7]. While access to water has been recognized as a
basic human right, the increasingly high demand for water resources should be valued according to
its supply.

The WEF is closely linked to the concept of virtual water, which is the volume needed to produce a
commodity or service. Importing virtual water can be perceived as a partial solution to problems of
water scarcity, particularly in dry regions [8]. National, regional and global water and food security can
be improved when water-intensive commodities are traded from places where they are economically
viable to places they are not. Food import offers an alternative to reduce pressure on domestic water
resources and enables more productive water use as expressed by the WF of food [9]. Other research
has taken a life cycle assessment (LCA) approach to evaluate the water footprint of products, processes
and organisations as initiated by [10]. Subsequently, an ISO 14046 standard was set to specify the
principles, requirements and guidelines [11]. The ISO standard may introduce complexity by creating
water footprints for each environmental impact, e.g., for water availability, scarcity, eutrophication
and eco-toxicity, across the life cycle of a product which is beyond the crop water footprint that this
research focuses on.

The WF of crops forms the basis for WF estimations of crop products and derived commodities [12].
In terms of water volumes used, the crop WF estimations consider three major sources of water, i.e.,
water from rain (green WF), irrigation (blue WF) and water for diluting chemicals (grey WF) [13].
In a comparison of different irrigation and water conservation methods for four locations [14], it was
concluded that a combination of drip irrigation and synthetic mulching allowed for the largest
reduction in the WF of maize, potato and tomato. The inter-annual variability of the crop WF
highlighted inter alia the importance of increased yields for 22 crops for the period 1978-2008 in
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China [15]. Understanding the variability is a prerequisite to making projections of good water
governance under different scenarios of global change. Our study contributes to understanding the
variability of the WF across regions, soils and annual weather conditions in Europe. We hypothesize
that the variability in the water footprint of arable crops across different regions in Europe is mainly
due to variability in crop yield and to a lesser extent to variability in crop water use. Therefore, the
objectives of this study were to quantify the variability in water used to grow arable crops across
different regions in Europe; to estimate their yield variability; to establish the variability in the WF
of these different crops; and, to compare the results with benchmark values from global model
estimates as in [16]. Understanding the sources of variability in the WF is important to elucidate
water consumption patterns in relation to crop production, which in turn enables more efficient water
management and agricultural water governance within the framework of a water—food—-energy nexus.

2. Materials and Methods

2.1. Data

We collected temperature, rainfall, wind speed, solar radiation and relative humidity data from
41 meteorological stations across different regions in Europe for the period 1992-2012 (Table 1; Figure 1).
Reference evapotranspiration was calculated using the modified Penman-Monteith approach [17].
The climatological diagrams of temperature, precipitation and evapotranspiration for these locations
demonstrate a wide variation in weather conditions (Figure 2) and soils (Appendix A). The dominant
soil type(s) for 45 locations were described in terms of texture; chemical composition; volumetric water
content at saturation, field capacity and wilting point of different soil horizons up to 1.5 m or to an
impervious layer. With the exception of polder regions, groundwater was absent and water leaching
from the root zone was discharged as drainage. In each location major arable crops were selected for
calculating the water footprint (Table 1).

Table 1. Meteorological stations and crops per region (Location see Figure 1).

Country Region Meteo Stations ! Major Crops 2
AT Marchfeld Gross Enzersdorf, Fuchsenbigl WHB, BAR, MAZ, SBT
BE Flanders Koksijde, Gent, Ukkel, Peer WHB, BAR, MAZ, SBT, POT
CY Country Nicossia, Pafos, Larnaca WHD, POT, BAR, MAZ
(@4 Eastern Czech Domaninek, Lednice, Verovany WHB, BAR, MAZ, RAP
DE-1 Mairk. Oderland Muncheberg, Manschnow WHB, BAR, SBT, RAP, POT, MAZ
DE-2 North-East Lower Saxony Braunschweig WHB, BAR, SBT

Kuusiku, Tartu, Tallinn, Voru,
L83 Clormirity Pérnu, Viike-Maarja, Kuressaare VRLALE, 1B, (O, el
FI-1 Hame Jokioinen BAR, WHB, BAR, POT, RAP
FI-2 South Finland Mikkeli, Ylistaro, Laukaa, Piikio BAR, WHB, BAR, POT, RAP
HR Koprivnica-KriZevci Krizevci MAZ
IT-1 Foggia Foggia WHD, SBT
1T-2 Val d’Orcia Radicofani WHB, WHD, BAR
NO South Eastern Norway Serésjordet BAR
NL Flevoland Lelystad WHB, POT, SBT, MAZ
PL Mazovia Dabrowice WHB, BAR, POT, SBT, RAP
SK Danube Lowland Bratislava-letisko, Hurbanovo, WHB, BAR, MAZ

Nitra, Jaslovske Bohunice
SR Vojvodina Rimski Sancevi WHD, MAZ, SBT, POT
TR Thrace Edirne, Kirklareli, Tekirdag WHD, WHB, BAR, MAZ

Notes: ! In bold are meteorological stations located in the vicinity of experimental fields; 2 BAR is barley (Hordeum
vulgare L.); MAZ is maize (Zea mays L.); POT is potato (Solanum tuberosum L.); SBT is sugar beet (Beta vulgaris L.);
RAP is oilseed rape (Brassica napus L.); WHB is common wheat (Triticum aestivum L.); and, WHD is durum wheat
(Triticum turgidum L.).
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Figure 1. Location of different meteorological stations across Europe.

2.2. Crop Water Use

FAO’s “Aquacrop” model version 5.0 [18] was used to calculate the crop water footprint. The
growth module is evapotranspiration driven, where crop transpiration (T) is converted to biomass
through a water productivity parameter [19,20]. The evaporative power of the atmosphere (ET0) is
converted to actual evapotranspiration (ET) and separated into non-productive water fluxes, i.e., soil
evaporation (E), and productive water fluxes, i.e., crop transpiration (T). Soil moisture conditions
determine E from the soil surface not covered by canopy [19,20]. Crop canopy expands from seedling
to maturity as determined by accumulated growing degree days.

Crop calendar and growth characteristics were collected for the major arable crops in each location
(Table 1). The crop growth parameters were set using experimental field data collected for each region
(Appendix A, [21]). For regions without experimental field data available, crop growth parameters
were derived from farmers’ fields” data.

All weather, soil and crop input data (Figure 2; Appendix A) were inserted into the model. The
model’s phenological module was run in growing degree days to capture crop growth dynamics
during the growing season. Rainfed model runs for the different locations were followed by sprinkler
irrigation runs, at 80% field capacity, and according to local farm practices. Therefore, regions where
no irrigation was reported were excluded from the irrigation model runs.
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Figure 2. Climatological diagrams for different meteorological stations along a broad transect in Europe for the period 1992-2012. P is precipitation (mm); ET0 is

reference evapotranspiration (mm); Tmean is average temperature (°C). A two letter code refers to the countries.
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2.3. Water Footprint Calculations

Irrigated agriculture receives water from irrigation (blue water) and from precipitation (green
water), while rainfed agriculture only receives green water. Green water is originated by precipitation
and is the soil water held in the unsaturated zone available to plants, while blue water refers to the
manageable water in rivers, lakes, wetlands and aquifers [22]. The green WF and blue WF reflect
the rainfed and irrigated crop water use per harvested crop with calculation methods established
by [13]. The grey WF accounts for water used to dilute nutrient pollution to meet ambient water
quality standards; for reasons of comparison we focused on nitrogen pollution [16].

Igp
10- Y 8P ET,
WFgraen _ dily , green (1)

Igp
10- Y521 ETap
WFblue - d_; - (2)

[[o< -AR]/[Cmax - Cm?t”
gz @)

WFgrey -

where ET} is the daily evapotranspiration in mm-day !, accumulated over the length of the growing
period (Igp, in days), under rainfed (green) and irrigated (blue) conditions. The factor 10 converts
water depths from millimetres into water volumes per land surface (m3-ha—!). The nominator
reflects crop water use in m3-ha~!, whereas the denominator (Y) is crop yield in Mg-ha~!. The green
water evapotranspiration under irrigated conditions was estimated as the total evapotranspiration
simulated in a scenario without irrigation. The blue water evapotranspiration equalled the total
evapotranspiration simulated in the scenario with irrigation minus the simulated green water
evapotranspiration. For the grey WE, we assumed that the nitrogen fraction (x) that reached
free flowing water bodies through leaching or runoff equalled 10% of the application rate (AR in
kg-ha !-year~!). Fertilizer application rates were reduced significantly in the European Member States
following the introduction of the Nitrates Directive in 1991 and the Water Framework Directive in
2000. Reporting mechanisms are in place so that nitrogen application rates and derived gross nitrogen
balances are available from Eurostat for the period 1992-2012 [23]. Fertilizer consumption rates are
available per hectare of arable land in the World Bank database [24]. We assumed drinking water
standards for water quality with a difference between maximum acceptable and natural background
concentration (Cyax — Cnat) of 10 mg-L’l [16].

2.4. Yield Statistics

Yield is an important component of the WF. Yields, area and production of wheat, barley, grain
maize, potato, sugar beet and oilseed rape differed distinctly across the different regions in Europe, as
shown for 2012 regional statistical yields (Figure 3). The harvested production of cereals in 2012-2015 in
the EU-28 was estimated at one ninth of global cereals production; wheat (44%—47%), maize (21%-22%)
and barley (19%-20%) account for a high share [25]. Despite a European-wide system of production
quota, sugar beet remains the most important root crop for north-western Europe. Potato production
is more widely spread across the different European Member States, as reflected by the presence of
yield data in different regions (Figure 3). Oilseed rape, the main oilseed crop across Europe, showed an
upward trend in production during the last decade due to its use for bioenergy purposes [25]. Regional
statistical yields were compared with modelled yields assuming a humidity of 14% for cereals, 80% for
root crops and 9% for oilseed rape [25].
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Figure 3. Yields (Mg-ha—!) for major arable crops across the European regions for the year 2012 based on regional statistics. A two letter code refers to the country that
the region belongs to.
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2.5. Statistical Analysis

The statistical analysis was done in R using the core functionalities [26] and the hydroGOF
package [27]. Common statistical measures were used to describe the datasets. The coefficient of
variation (cv), i.e., the ratio of the standard deviation to the mean expressed in %, was used to compare
the spread of variables. The Pearson correlation coefficient (r?) was used as a measure of strength of an
association between two variables. Statistical metrics to describe the agreement between modelled and
statistical yields and between our and benchmark WFs were the mean average error (MAE), the root
mean square error (RMSE) and the index of agreement (d) [27]. The regression lines on the graphs and
the associated coefficient of determination (R?) were provided as a measure of how well the statistical
yields or the benchmark WFs were approximated by our modelled results.

3. Results

The water footprint (WF) of arable crops across different regions in Europe showed a large
variability. We presented this large variability in relation to the different components that comprised
the water footprint: evaporation and transpiration; biomass and yield; and, the green, blue and grey
WE. Since these components were intrinsically linked to the water balance, a general comparison was
made of the major water balance input and output.

3.1. Water Balance

The water balance was driven by reference evapotranspiration, calculated from solar radiation,
wind speed, temperature and relative humidity using the modified Penman—Monteith equation [17].
In all studied regions (Table 1), the reference evapotranspiration was higher than the precipitation
accumulated over the growing season of spring sown crops (Figure 4). For autumn sown crops this
difference was less pronounced. In northern and western European regions cumulative precipitation
was higher than cumulative evapotranspiration during the growing season for the period 1992-2012.
Simulated sub-surface drainage was in all cases higher than simulated surface runoff, but this difference
was not always significant (Figure 5). A surplus on the water balance led to higher runoff and drainage
during the growing season, and vice versa for a deficit. Due to higher precipitation during winter a
surplus occurred during the growing season of autumn sown crops (Figure 5).

7 N = precipitation (P)
o autumn sown crop = evapotranspiration (ET0)
8 4
- 8
s T g
o ] = - T e - > g T
= == ' B i e == H - T —
L g %Q ‘ T T g | 3 ‘ = Q TeE=T T
@ 87 T Ef*‘EETEEBE‘l‘%E 2 *‘E
1B }i3%g‘*é5 L‘LE‘EL EIEE+ E
o 4 - E 4 | - 3 ° LR = i
(= ke e = B
o .
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Figure 4. Precipitation (P in mm) and reference evapotranspiration (ET0 in mm) during the growing
season of autumn and spring sown crops across the European regions for the period 1992-2012. A two
letter code refers to the country that the region belongs to.



Water 2017, 9, 93 10 of 22

3 . -
= 0 autumn sown crop funoff
8 B drainage
8* o o T
¥ :
0] = ! H
g : : ;
£ 8 o 3 . .
g @ : b, o _ - :
© : : ; : -
. 8 & o B i | ;
%8_ i b - §@T3 :
s - 1 | g &7 : - 8 |
= .. o mer s TR Tt
2 8 g! : i __HW- KN .
= 1Ti i :g_ G e - i
R : I N : Do . ‘
it | IO it I Mhnd
o= W= L T =gl TLiF L
T T T T T T T T T T T T T
AT BE CY CZ DE EE Fl IT NL PL SK SR TR

Figure 5. Runoff (mm) and drainage (mm) during the growing season of autumn sown crops across
the European regions for the period 1992-2012. A two letter code refers to the country that the region
belongs to.

3.2. Soil Evaporation and Crop Transpiration

The crop evapotranspiration comprised two major components, i.e., soil evaporation and crop
transpiration. At sowing and planting soil evaporation was relatively high and crop transpiration
low. As the growing season progresses crop transpiration represented the largest share of the
evapotranspiration (Figure 6). After maturity the contribution of evaporation largely depends on the
time between maturity and harvest. Overall a large variability was observed between the different
European regions and was attributed mostly to transpiration. Summer crops had the largest variability
(Figure 6), and this variability became less under irrigation (Figure 7).
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Figure 6. Transpiration (T in mm, green) and evaporation (E in mm, blue) for major arable crops across
the European regions for the period 1992-2012. A two letter code refers to the country that the region
belongs to.
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across the European regions for the period 1992-2012. A two letter code refers to the country that the
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3.3. Biomass and Yield

The total biomass and yield were modelled in dry weight using “Aquacrop”. For reasons
of comparison with statistical yields, modelled yield and biomass were converted to fresh weight
assuming humidity at harvest of 14% for cereals, 80% for root crops and 9% for oilseed rape [25].

An overall satisfactory correspondence was observed between modelled and statistical yields
(Figure 8). The modelled results relied on calibrated crop phenological and growth development on
experimental fields [21] or on farmers’ fields. The best agreement between modelled and statistical
yields was obtained for rapeseed (R2 =0.60; MAE = 0.7; RMSE = 0.8) and barley (R2 =0.62; MAE =1.1;
RMSE = 1.3), followed by wheat (R? = 0.50; MAE = 1.5; RMSE = 1.8) and maize (R? = 0.48; MAE = 2.1;
RMSE = 2.5). Potato (R? = 0.48; MAE = 9.3; RMSE = 11.2) and sugar beet (R?> = 0.31; MAE = 10.0;
RMSE = 11.6) showed a weak linear relationship between modelled and statistical yields (Figure 8);
where MAE is mean average error and RMSE is root mean square error [27]. All modelled crop yields
were higher than the corresponding statistical yields owing in part to calibration on experimental
and farmers’ fields [21], which were on average more intensively managed than the entire crop area.
In addition, the statistical yields are a simple division of crop production by area harvested and
therefore lead to an overall lower yield than observed on individual farms.

The modelled yields ranged from 0.56 Mg-ha~! higher for oilseed rape to 5.5 Mg-ha™! for potato
as compared to statistical yields (Table 2). Modelled cereal yields had lower variabilities relative to
the mean as compared to statistical cereal yields. Modelled root and tuber crop yields, however, had
larger standard deviations than the corresponding statistical yields. For example, statistical potato
yields (28.1 + 12.6 Mg-ha~!) were lower and had a lower dispersion than modelled potato yields
(33.6 + 13.9 Mg-ha™!). The combined inter-regional and inter-annual variabilities relative to the mean
were lower for modelled yields as compared to statistical yields (Table 2). The coefficient of variation
was highest for statistical yields of potatoes (44.9%), closely followed by rapeseed (44.5%) and barley
(42%). The lowest variability was for modelled wheat yields (17%) and statistical sugar beet yields
(22%). Yields were modelled as a fraction of dry harvestable biomass, whereas comparisons between
modelled and statistical yields were made on a fresh weight basis. The harvest index (HI in Table 2),
i.e., the ratio between yield and biomass, enabled conversion to fresh weight biomass. In addition
to humidity at harvest, conversions to fresh weight biomass assumed a humidity of 70% for green
above ground biomass. After conversion, the statistical metrics standard deviation (s) and coefficient
of variation (cv) for biomass were the same as for modelled and statistical yields, respectively. Higher
harvest indices may occur in individual countries, and certainly occur for dry weight conversions.
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Figure 8. Comparison of modelled and statistical yields (in Mg-ha—!) and expressed in fresh weight

for major arable crops across the European regions for the period 1992-2012, including the identity line

(blue) and a linear regression of modelled on statistical yield (red).

Table 2. Modelled and statistical yields (in Mg~ha*1) and harvest index (HI in %) for the major arable
crops in Europe for the period 1992-2012. For crop abbreviations see Figure 3.

Crop ystat-m ystat-s ystat-cv  ymod':m  ymod:s ymod-cv HI
BAR 4.44 1.86 41.88 5.26 1.77 33.54 41
MAZ 7.76 2.92 37.67 9.28 2.27 24.50 41
POT 28.07 12.60 44.88 33.58 13.89 41.35 72
RAP 2.48 1.10 44.50 3.04 0.92 30.26 23
SBT 52.43 11.55 22.02 54.24 12.74 23.48 64
WHB 4.94 2.04 41.27 6.13 1.96 31.91 41
WHD 3.05 0.85 27.99 4.96 0.86 17.43 37

Notes: Where y is yield (Mg-ha™!); HI is harvest index (%); stat refers to regional statistics and mod to modelled;
m denotes mean, s standard deviation and cv coefficient of variation (%). All figures refer to fresh weight.

3.4. Green, Blue and Grey Water Footprint

We calculated the green water footprint (WF) for rainfed crops using both modelled

and statistical yields (Figure 9).

Across all European regions the largest green WF was

calculated for oilseed rape (1857 4+ 661 m3-Mg~!), durum wheat (1414 + 720 m®*Mg~!) and
common wheat (1108 4 580 m®>-Mg 1), followed by barley (901 + 458 m3-Mg~!) and grain maize
(590 + 304 m3-Mg’l). The lowest green WFs were calculated for potatoes (157 &+ 75 m?’-Mg’l)
and sugar beet (67 + 19 m3-Mg~!). Green WF calculations with modelled yields were between
1% lower for sugar beet and up to 78% lower for durum wheat as compared to statistical yields
owing to a larger variation in the statistics. The coefficient of variation was lowest for modelled
sugar beet (21%) and highest for modelled wheat (44%); for statistical yields these were 29% and
52%, respectively. The largest green WF was calculated for oilseed rape in FI (2410 + 727 m3-Mg™1)
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and EE (2191 4 569 m3 -Mg’l), followed by common wheat in EE (2147 4 568 m3 -Mg’l) and durum
wheat in CY (2055 £ 1019 m®>-Mg~!). The lowest green WF was calculated for sugar beet in AT
(61 + 7 m3-Mg~1), DE (61 + 14 m®>-Mg~!), NL (62 + 8 m3-Mg~!) and BE (63 + 11 m3-Mg~1).
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Figure 9. The green waterfootprint (in m3-Mg~!) for modelled and statistical arable yields across the
European regions for the period 1992-2012. A two letter code refers to the country that the region
belongs to.

Crop water use and yield, both used for calculating the green WF for rainfed crops, were
significantly correlated. The Pearson correlations of statistical yields with transpiration (r? = 0.33;
p < 0.001) were stronger than with evapotranspiration (r> = 0.28; p < 0.001); for modelled yields this was
0.33 and 0.31, respectively (p < 0.001). The green WF decreased exponentially with increasing yields,
which was more pronounced for statistical yields than for modelled yields owing to the presence of
extremely low yields in the statistical series. Regions with extremely low yields in their data records
therefore displayed a larger variability in the green WF (Figure 9). Examples were wheat and barley in
CY and EE; grain maize in SK and TR; oilseed rape in FI and EE; sugar beet in SR; and, potato in SK.
The relationship between the green WF and evapotranspiration was linearly positive but extremely
weak, whereas with transpiration a slightly stronger relation was observed. The variability in yields,
however, dominated the green water footprint.

The combined green and blue water footprint was calculated for irrigated crops, notably grain
maize, potato and sugar beet. Irrigation amounts varied between the different European regions,
reflecting different climatological environments, soil types and growing seasons (Figure 10). The
largest irrigation needs were estimated for sugar beet in IT (434 4= 70 mm), followed by potato in CY
(278 £ 142 mm) and sugar beet in TR (356 & 108 mm); the lowest irrigation amounts were for potato
in NL (72 & 47 mm), grain maize in BE (92 &+ 63 mm) and CZ (100 £ 41 mm). A larger variation was
observed for sandy textured soils such as present in BE, DE and AT. For SR, CY, TR and IT higher
temperatures and evapotranspiration rates combined with low precipitation amounts resulted in larger
water demands for irrigation (Figure 10). An expected strong linear relation was observed between
irrigation and evapotranspiration (r?> = 0.77; p < 0.001). Statistical yields were significantly correlated
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with irrigation amounts (r> = 0.27; p < 0.001), evapotranspiration (r? = 0.38; p < 0.001) and transpiration
(r2 = 0.45; p < 0.001) during the growing season, suggesting the presence of irrigated yields in the
statistical data.

B

. Lm

irrigation (mm)
100 200 300 400 500 600

0
I

T T T T T T
AT BE cYy cz DE IT NL SR TR

Figure 10. Irrigation (in mm) during the cropping season across the European regions for the period
1992-2012. A two letter code refers to the country that the region belongs to.

Since no statistical data were available for yields under irrigation, we could only compare
modelled water footprints under irrigated and rainfed conditions. Higher evapotranspiration rates
of up to 155 mm for maize in TR, 205 mm for potato in AT and 304 mm for sugar beet in IT were
accompanied by higher yields of up to 3.1 Mg-ha~! (48%) for maize in TR, 12.4 Mg-ha~! (49%) for
potato in AT and 20.7 Mg-ha~! (50%) for sugar beet in TR. The combined increases in yields and
evapotranspiration rates resulted in increases in the WFs of irrigated crops. When comparing irrigated
to rainfed conditions, we estimated WF increases of between 4 m3-Mg’1 (5%) for potato in BE and
33 m3-Mg~! (6%) for maize in AT; the range in percentages varied from 1% (6 m3-Mg~!) for maize
in TR to 25% (18 m3-Mg~!). The WF under irrigated conditions was dominated by green water
(Figure 11), which in turn was mostly influenced by yields. The highest blue and green WF was
for grain maize in AT (566 + 79 m®-Mg~!) and TR (457 + 59 m3-Mg!), followed by potato in AT
(142 + 18 m3-Mg~') and SR (134 4+ 17 m®>-Mg~'). The lowest blue and green WFs were for potato
in BE and NL (74 & 9 m3-Mg~!). The variability, as measured by the coefficient of variation, was
higher for blue water (12%-126%) than for green water (7%—-20%). The coefficient of variation for the
combined green and blue WF of irrigated crops was 34% for potato, 25% for maize and 18% for sugar
beet. The lowest coefficient of variation were for maize in CZ (9%) and potato in CY (10%); the highest
were for maize in BE (19%) and sugar beet in IT (17%).
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Figure 11. The blue water footprint (in m3-Mg~1) for modelled yields of irrigated arable crops across
the European regions for the period 1992-2012. A two letter code refers to the country that the region
belongs to.
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We calculated the grey water footprint on the basis of four different nitrogen application rates:
a reported rate, a maximum rate derived from local field experiments, and a rate based on nutrient
balance calculations according to Eurostat and World Bank (Figure 12). We assumed an equal
occurrence of the four considered nitrogen application rates but with a maximum of 250 kg-N-ha~!
in accordance with the European Nitrogen Directive. The highest potential nitrogen inputs are in
NL and BE owing to a large share of animal manure in fertilizer application rates, followed by
DE and NO with a much lower share of manure; the lowest nitrogen inputs are in TR and EE.
For all regions the grey WF was larger for statistical yields than for modelled yields (Figure 13).
An inter-annual and interregional comparison of the different crops showed the largest grey WF
for oilseed rape (268 = 100 m3-Mg_1), barley (158 + 72 m3-Mg_1) and wheat (131 + 39 m3-Mg_1),
followed by grain maize (91 + 35 m3-Mg~!) (Figure 13). The lowest grey WF was observed for sugar
beet (13 £+ 3 m3~Mg’1) and potato (26 £ 7 m3 -Mg’l). The coefficient of variation (cv) for the grey WF
calculated with statistical yields was 46% for barley, 38% for maize and rapeseed, 30% for wheat, 28%
for potato and 22% for sugar beet; for the grey WF calculated with modelled yields the order was
different: rapeseed (43%), barley (32%), wheat (30%), maize and potato (27%), and sugar beet (25%).
Autumn sown crops showed large grey WFs, e.g., rapeseed in FI (409 & 71 m3-Mg~1!), barley and
wheat in CY (321 4+ 131 m®-Mg~!; 327 + 209 m3-Mg~') and rapeseed in NL (310 4+ 69 m3-Mg~'). The
lowest grey WFs were observed for sugar beet in all regions, ranging between 8 + 1 m3-Mg~! in AT
and 15 + 2 m3 -Mg’1 in BE. The largest cv was for wheat in CY (64%) and maize in TR (57%), whereas
the lowest cv occurred for potato in NL (9%) and sugar beet in DE (10%).
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Figure 12. Nitrogen application rates on arable land (in kg-N-ha—!) according to Eurostat [23] and
World Bank [24] for the period 2006-2012. Other are soil amendments such as compost, sewage sludge
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Figure 13. Grey water footprint (in m3-Mg~1) for modelled and statistical arable yields for the period
1992-2012 and for four different nitrogen application rates. Note the differences in scale between crops.
A two letter code refers to the country that the region belongs to.

4. Discussion

We used the “Aquacrop” model to estimate crop growth and evapotranspiration under both
rainfed and irrigated conditions. This model has been developed to simulate yield response to water
under water-limited conditions [18-20]. Regions, crops and soils that are sensitive to dry spells and
drought provide for a water-limited environment. Reviews of model behaviour show mixed results
with respect to water use efficiencies and yields [28]. An intercomparison of eight models showed
between 13% and 19% uncertainty in the estimation of evapotranspiration (“Aquacrop”: cv = 15%),
and between 13% and 34% for transpiration (“Aquacrop”: cv = 24%) for wheat [21].

The green WF showed the largest variability for cereals (cv = 51%-52%), closely followed by potato
(cv = 48%); the lowest variability was for oilseed rape (cv = 36%) and sugar beet (cv = 28%) (Table 3).
For all arable crops, the yield is more variable (co = 45%; cv in Table 2) than the crop evapotranspiration
(co = 21%; cv in Table 3). This clearly demonstrates the importance of yields and their variability for
the water footprint. Similar to the findings of [29], root and tuber crops have much lower WFs as
compared to cereals and oilseed crops (Table 3), owing to a combined effect of higher yields and higher
moisture contents at harvest. Cereals and oilseed crops have a much smaller harvestable fraction of
the total biomass produced per surface area, and therefore have larger water footprints.

Table 3. Green water footprint (WF) (WFg in m3-Mg~!) and evapotranspiration (ET in mm) for the
major arable crops in Europe for the period 1992-2012. For crop abbreviations see Figure 3.

Crop WFg-m WFg-s WFg-cv ET-m ET-s ET-co

RAP 1857 661 36 405 103 25
WHB 1108 580 52 459 87 19
WHD 1414 720 51 375 62 17

BAR 901 458 51 337 82 24
MAZ 590 304 52 373 73 20

POT 157 75 48 332 64 19

SBT 67 19 29 351 86 25

Notes: Where m denotes mean, s standard deviation and cv coefficient of variation (%).

Between the different regions in Europe, high yielding western European regions have WFs
that can be up to six times lower than the WFs of regions in northern or southern Europe
(Figures 9,11 and 13). A threefold increase can occur between seasons, certainly in regions with
variable yields. An analysis of variance (ANOVA) demonstrated clear effects of crops, countries,
seasons and their factorial interactions on the green water footprint (p < 0.001). The largest variability
between seasons is for the southern (CY, TR) and northern countries (EE, FI, NO) and for WHD,
BAR and RAP. The variability between countries (¢ = 14%; range: 7%—-26%) is lower than the
variability between seasons (cv = 22%; range: 10%-50%) and the variability between crops (cv = 46%;
range: 29%-52%).
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The breakdown of the crop water footprints in different components enabled a better
understanding of the different contributing factors involved. A comparison between our calculations
for the European regions and water footprint benchmarks for crop production provided by [16],
revealed a good agreement for the green WF (R? = 0.80; d = 0.95), a reasonably good agreement for
the blue WF (R? = 0.64; d = 0.91) and a lower agreement for the grey WF (R? = 0.25; d = 0.73), where
R? is the coefficient of determination and d is the index of agreement [27]. Overall the best fit was
obtained for the green WF (Figure 14). All WF were highly influenced by yield so that only well
calibrated models able to model yield can be successfully deployed to estimate the WF. Yield variability
determined the WF variability.
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Figure 14. Comparison of green, blue and grey water footprints (WF) of this study with benchmark
WEF [16] in m3-Mg ™! for arable crops. The blue line represents the identity line.

Crop growth and production are mostly affected by the distribution of green water during the
growing season. Blue water directly influences the yield provided water is available for irrigation:
we modelled yield increases of up to 50% which highlight the benefits of irrigation. Water scarcity,
exacerbated further by climate change, is an issue of major concern in arid and semi-arid regions with
serious impacts on food security, sustainability and economy. The fact that the majority of available
water is consumed by agricultural activities, particularly in arid and semi-arid countries, underpins
the need for monitoring and reducing water consumption patterns in agricultural areas. Our modelled
yield increases did not result in lower crop WFs under sprinkler irrigation; drip irrigation may result
in lower WFs as calculated by [14]. The WF of agricultural crops allows for decision making and better
management of the water potential.

Applied to agricultural production the grey WF is the amount of freshwater required for the
assimilation of any pollutant, in casu nitrogen runoff due to agricultural crop production. Nitrogen
application rates differ considerably between regions, and regulations are in place to limit the input
for example in nitrogen vulnerable zones or nature conservation areas [30].

Other important sources of variation are crop type, farming system, soil type, and the
rainfall-runoff regime. When runoff and drainage were taken into account (Figure 5), the grey WF
showed a lot more variability between the years and could be as low as zero during some years
for summer crops. In addition, the pollution and hence grey water is attributed to a single crop
thereby neglecting the role of a crop in the rotation. For example oilseed rape had a high grey WE,
despite the crop’s capacity to deplete nitrogen from the previous crop before winter and therefore
reduce N leaching. A contrary example is the high leaching risk of bare soil during winter prior to
sugar beet. These effects were not incorporated in the applications of the grey water footprint of
crops [13,16]. Recent applications concentrated on a nitrogen balance to budget uptake and losses, and
arrived at higher estimates of nitrogen-related water pollution in river basins owing to differences
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in computational methods [31]. Therefore the grey WF should be compared with caution between
studies and agricultural systems.

Practices to reduce the WF of crop production start with awareness of the WF of different crop
management systems. A transition to less water-demanding crops with higher water productivities
or higher water use efficiencies offers opportunities to optimize plant water use. Soil and water
conservation techniques and water saving irrigation methods, e.g., drip irrigation and deficit irrigation,
could further reduce water demands [14]. Advanced techniques lower the crop water demand, but
cannot markedly decrease the WF; achieving more stable and higher yields, however, can. The high
dependency on yield warrants strategies to increase agricultural productivity which is accomplished
through breeding programs and/or through optimizing resources use during the crop growth season.
The grey WF is partly regularized through the Water Framework and Nitrates Directives with
designated nitrate vulnerable zones and limitations on nitrogen and phosphorus applications [30].
Ensuring that water quality is minimally affected offers good perspectives for nutrient smart precision
farming. Overall the water footprint and its assessment process helps establish a greater awareness of
water consumption patterns among different stakeholders involved.

5. Conclusions

We calculated the green and blue water footprint with FAO’s “Aquacrop” model, and the grey
water footprint on the basis of nitrogen application rates for six major arable crops in 45 locations
across Europe for the period 1992-2012. The WF of cereals is larger than the WF of tuber and root
crops owing mainly to the difference in yield and moisture content at harvest between these crop types.
Since yield has a larger variability than crop water use, yield estimates are of paramount importance
to the crop WE. The WF for wheat, for example, can be up to five or six times larger in northern
and southern Europe as compared to high yielding western European regions. The WF variability
between crops was larger than the variability between seasons and in turn larger than the variability
between countries. Yield increases under sprinkler irrigation were not high enough to reduce the
water footprint. Water saving irrigation and soil conservation techniques, however, may result in WF
reductions. The green and blue WE, but not the grey WF, compared favourably with internationally
available benchmark values. Confronted with drainage and runoff, the grey WF tended to overestimate
the contribution of nitrogen to the surface and groundwater. Other agro-hydrological methods to
calculate the grey WF resulted in even larger values which points to caution when comparing different
studies. The large variability between crops, regions and seasons; and between yields and water use as
major components of the WF highlights the importance of crop yield variability. The water footprint is
a measurable indicator that may support European water governance.
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Appendix A

The dominant soil type(s) and meteorological stations of each region are provided in Table Al,
together with references to relevant datasets. Crop characteristics used for calibration are provided in
Table A2.
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Table A1. Soil hydrological properties of the topsoil for different locations across Europe.

19 of 22

CTRY Location Soil Type Texture ! FC (%) WP (%) Pore Space  References
AT  Gross Enzersdorf Chernozem Silt Loam 35 21 43 [32]
AT Gross Enzersdorf Parachernozem Sandy Loam 28 8 39
AT  Gross Enzersdorf Fluvisol Clay Loam 35 22 42
AT Fuchsenbigl Calcaric Chernozem Silt Loam 38 23 53
BE Koksijde Calcaric & Gleyic Fluvisol Marine Clay 39 23 50 [33-35]
BE Gent Albeluvisol Sandy Loam 22 10 47
BE Peer Podzol Loamy Sand 16 8 46
BE Ukkel Luvisol Silty Loam 34 12 49
CY Larnaca Chromic Vertisol Clay 42 28 50 [36,37]
CY Nicosia Vertic-Chromic Luvisol Clay Loam 38 24 46
CY Pafos Eutric Fluvisol Loam 32 18 46
cz Domaninek Dystric Cambisol Loam 30 15 47 [38]
Ccz Lednice Chernozem Silt Loam 35 16 49
(@V4 Verovany Chernozem Silt Loam 33 14 47
DE Manschnow Fluwic Gleysol Clay loam 39 15 46 [39]
DE Manschnow Cambisol Sandy Loam 31 9 40 [39]
DE Manschnow Podzol Sandy Loam 14 5 42 [39]
DE Miincheberg Eutric Cambisol Loamy sand 26 11 36 [40,41]
DE Braunschweig Luvisol Sandy Loam 24 6 46 [41]
EE Kuusiku Calcic Luvisol Silt Loam 28 7 40 [42]
EE Viike-Maarja Calcaric Cambisol Sandy Loam 28 8 45
EE Tartu Mollic Cambisol Loam 30 9 48
EE Voru Stagnic Luvisol Loamy Sand 20 6 42
EE Tallinn Haplic Albeluvisol Sand 16 3 44
EE Kuressaare Gleysol Clay 35 22 50
EE Parnu Gleysol Clay loam 32 20 48
FI Jokioinen Haplic Umbrisol Silt loam 35 21 45 [43]
FI Mikkeli Mollic Cambisol Sandy Loam 28 7 42
FI Ylistaro Verti-Gleyic Cambisol Silt Loam 35 15 48
FI Laukaa Eutric Regosol Silty Clay 46 25 55
FI Piikio Vertic Cambisol Clay Loam 36 22 48
HR Krizevci Gleyic Luvisol Silt loam 36 12 41 [44]
IT Foggia Alluvial vertisol Clay Loam 42 24 55 [45]
IT Radicofani Vertic Cambisol Silty Clay 42 27 51 [46,47]
NL Lelystad Gleyic Fluvisol Marine Clay 36 16 45 [48]
NO Serésjordet Gleyic Podzoluvisol Silt Loam 37 20 50 [49]
PL Dabrowice Podzol Loamy Sand 23 17 40
SK Jasl.Bohunice Chernozem Silty Loam 34 14 44 [50]
SK Nitra Luvisol Clay Loam 36 17 44
SK Bratislava Fluwisol Sandy Loam 32 12 44
SK Hurbanovo Phaeozem Clay Loam 35 18 44
SR Rimski Sancevi Chernozem Loam 34 17 51 [51]
TR Kirklareli Cambisol Sandy Clay Loam 35 17 42 [52]
TR Tekirdag Fluvic Cambisol Sandy Clay Loam 39 28 46 [53]
TR Edirne Cambisol Clay Loam 37 23 41 [53]
Notes: ! Soil texture is classified according to the USDA nomenclature.
Table A2. Planting (P) and harvesting (H) dates of arable crops in the different regions.
WHB/WHD BAR RAP MAZ POT SBT
Region *
P;H P;H P;H P;H P;H P;H
AT 12/10;30/7 25/3;30/6 7/5;26/9 16/4;5/9 12/4;18/8
BE 15/10;!/8 15/10;15/7  15/9;15/7  1/5;30/9  10/4;30/9  10/4;15/10
CY 15/11;30/5 15/11;4/5 15/1;24/5
cZ 3/10;30/7 30/3;25/7  28/8;20/7 30/4;15/9
DE-1 2/10;30/7 20/9;15/7  28/8;24/7 16/5;15/9
DE-2 25/10;30/7 25/9;25/6 15/4;30/9
EE 30/8;10/8 25/4;3/8 1/5;15/9 5/5;10/9
FI-1 30/8;20/8 15/5;20/8 15/5;10/9 15/5;10/9
FI-2 10/9;15/8 10/5;15/8 10/5;1/9 15/5;5/9
HR 29/4;3/10
IT-1 15/11;20/6 22/3;18/8
IT-2 15/11;15/7  15/11;10/7




Water 2017, 9, 93 20 of 22

Table A2. Cont.

WHB/WHD BAR RAP MAZ POT SBT

P; H P; H P;H P;H P;H P;H
NL 20/10;30/7 5/9,17/7 30/4;15/10 25/4;20/9 10/4;15/10
NO 25/4;15/8
PL 20/9;14/7 24/4;16/7 28/8;17/8 15/4;30/9 15/4;20/9
SK 7/10;20/7 24/3;10/7 20/4;3/9 15/4;15/9
SR 15/11;10/7 20/4;30/9 30/3;10/7  30/3;15/10
TR 15/11;30/6 30/9;15/6 9/4;20/8 15/3;20/8

Notes: * For the name of the region see Table Al.

Region *
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