brought to you by W CORE

BOREAL UPLAND AND DRAINED PEATLAND FORESTS

Mari Pihlatie^{1,2}, likka Haikarainen¹, Elisa Halmeenmäki¹, Petteri Pyykkö¹, Jussi Heinonsalo³, Minna Santalahti³, Anuliina Putkinen^{1,3}, Hannu Fritze⁴, Katerina Machacova⁵, Mika Korkiakoski⁶, Kari Minkkinen⁷, Paavo Ojanen⁴, Timo Penttilä⁴, Annalea Lohila⁶

¹Department of Physics, University of Helsinki, Finland, ²Department of Physics, Viikki Plant Science Centre, University of Helsinki, Finland, ³Department of Food and Environmental Sciences, University of Helsinki, Finland, ⁴Natural Resources Institute Finland, Fin

BACKGROUND

Upland forest ecosystems are considered as a sink of atmospheric methane (CH_4). Recent evidence shows that trees may emit CH_4 from their stems and canopies, however, the mechanisms are still poorly understood.

MOTIVATION

We have found that boreal Scots pine ($Pinus\ sylvestris$) shoots and stems emit small amounts of CH_4 , and that the stem CH_4 emissions increase with soil water content.

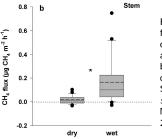


Figure 1. Stem and forest floor fluxes of CH₄ from dry and wet plots of boreal forest dominated by Scots pine (*Pinus sylvestris*). From Machacova et al., 2016, Sci. Rep.

RESEACH QUESTIONS

- 1) Do all tree species emit CH₄?
- 2) What are the drivers of tree CH₄ fluxes?
- 3) What are the mechanisms behind the CH_4 fluxes?
- 4) What is the role of microbes (bacteria, fungi, archaea) in tree-CH₄ fluxes?
- 5) Are the tree CH₄ emissions significant at the ecosystem and regional scale?

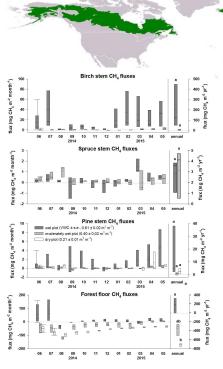
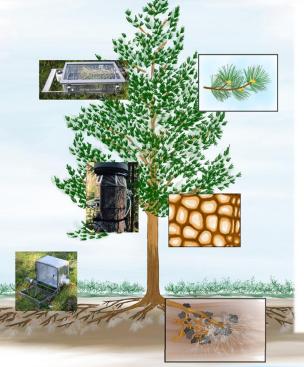



Figure 2. Stem and forest floor fluxes of $\mathrm{CH_4}$ from wet, moderately wet and dry plots of boreal forest at Hyytiälä, Finland.

Hyytiälä, upland forest Lettosuo, drained peatland forest

SEASONALLY VARIABLE STEM CH₄ EMISSIONS

All the studied tree species emitted CH₄ from their stems and the stem fluxes were highly seasonally variable (Fig. 2). Forest floor was a sink of CH₄ in dry and moderately wet plots and a source of CH₄ in the wet plot. Particularly high emissions were measured from birch (*B. pubescens* and *B. pendula*) stems. Emissions from birch and pine (*Pinus sylvestris*) stems were dramatically higher under high soil water content compared to spruce (*Picea abies*) trees. All tree species emitted CH₄ during winter months indicating that the CH₄ emissions are not connected to physiological activity of the trees.

MEASUREMENTS

Leaf level, stem and forest floor chamber measurements.

Laboratory experiments to partition fluxes between aboveground (shoots) and belowground (roots and soil) parts and to test drivers of the CH₄ fluxes.

Microbial community analysis in the trees and soil: methanogens and methanotrophs (qPCR).

Tree wood anatomy.

Environmental drivers (e.g. radiation, temperature, photosynthesis, sapflow, transpiration, soil water content, soil temperature, soil and tree [CH₄]).

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITE UNIVERSITY OF HELSINK TEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTT MATEMATISK-NATURVETENSKAPLIGA FAKULTETEI