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Magnified imaging based on non-Hermitian nonlocal cylindrical metasurfaces
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We show that a cylindrical lensing system composed of two metasurfaces with suitably tailored non-Hermitian
(i.e., with distributed gain and loss) and nonlocal (i.e., spatially dispersive) properties can perform magnified
imaging with reduced aberrations. More specifically, we analytically derive the idealized surface-impedance
values that are required for “perfect” magnification and imaging and elucidate the role and implications of non-
Hermiticity and nonlocality in terms of spatial resolution and practical implementation. For a basic demonstration,
we explore some proof-of-principle quasilocal and multilayered implementations and independently validate the
outcomes via full-wave numerical simulations. We also show that the metasurface frequency-dispersion laws
can be chosen so as to ensure unconditional stability with respect to arbitrary temporal excitations. These
results, which extend previous studies on planar configurations, may open intriguing venues in the design of
metastructures for field imaging and processing.
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I. INTRODUCTION

Optical metamaterials, artificially engineered so as to
exhibit desired responses not readily attainable in nature, have
been the subject of intense investigations over the past decades
[1,2], with promises to overcome some of the fundamental
limitations of optical instruments [3]. For instance, in a
seminal work by Pendry [4], it was shown that a slab with
negative refractive index can create a two-dimensional (2D)
image with a spatial resolution that is not bounded by the
conventional diffraction limit [3]. The basic idea can be
generalized to cylindrical lenses, in order to achieve image
magnification [5,6]. The enabling concept for such “perfect
lenses” is the possibility to recover the subwavelength infor-
mation encoded in the evanescent waves, which is typically
lost at wavelength-sized distances from the source. In the
quasielectrostatic regime, for a given polarization, a plasmonic
material exhibiting negative permittivity (e.g., a noble metal
at optical wavelengths) is sufficient to attain “superlensing”
effects [4]. In the dynamic case, the negative-refractive-index
requirement can be met by metamaterials engineered in various
ways [7–9] depending on the operational frequency of interest.

In the superlensing effect, the evanescent-wave enhance-
ment relies on the excitation of surface plasmons, and hence
the possible applications are limited to near-field effects.
To achieve far-field subwavelength imaging, the “hyperlens”
concept was put forward [10,11], which relies on hyperbolic
metamaterials [12] capable of transforming the (otherwise
evanescent) high-transverse-wavenumber components into
propagating waves inside the lens. In conjunction with a suit-
ably shaped (e.g., obliquely cut or curved) output surface, this
makes it possible to attain far-field imaging with subdiffractive
resolution and magnification.

In spite of the promising theoretical predictions, experi-
mental demonstrations of superlenses [13,14] and hyperlenses
[15–17] have evidenced the inherent practical limitations,
and most notably the detrimental influence of material losses

[18,19]. On the other hand, alternative low-loss implementa-
tions of superlenses, e.g., based on photonic crystals [20–23],
exhibit inherent resolution limitations due to the crystal-lattice
periodicity. Against this background, the idea of exploiting ma-
terial constituents featuring optical gain has recently emerged
as a viable route to engineer effectively lossless metamaterials
[24,25]. For instance, in Ref. [26], a gain-assisted hybrid
superlens-metalens was proposed, and subdiffraction spatial
resolution was numerically demonstrated.

Within this framework, the emerging field of non-Hermitian
optics, inspired by the parity-time (PT) symmetry concept
in quantum mechanics [27–29], has shaken the conventional
wisdom of gain-induced loss compensation, opening entirely
new, and largely unexplored, perspectives in the physics
and engineering of gain-loss interactions. The reader is
referred to Ref. [30] for a recent review of PT symmetry
in optics and to Refs. [31–49] for a sparse sampling of
studies on the implications and applications of non-Hermitian
optics, including metamaterials, plasmonics, and lasers, just
to mention a few. In particular, of special interest for this
paper is a series of recent investigations [45,48–51] on the
negative-refraction, focusing, and imaging effects achievable
by means of PT-symmetric metasurface pairs. Moreover, in
Ref. [49], it was demonstrated analytically and numerically
that a pair of planar metasurfaces featuring balanced loss and
gain and tailored nonlocal properties can act as a transversely
invariant, planar lens with the potential to perform volume-to-
volume imaging, with reduced aberrations and loss sensitivity.
In such a system, gain and loss do not merely compensate, but
rather interplay in an anomalous fashion. More specifically,
the passive metasurface is tailored to act as an omnidirectional
coherent perfect absorber, while the active one acts as an
omnidirectional coherent emitter. While this general concept
looks attractive and promising, the inherent afocal character
of the assumed planar configuration prevents the possibility
to perform image magnification, which may be desirable in
many application scenarios.
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To overcome the above limitation, this paper explores the
imaging capabilities of non-Hermitian cylindrical concentric
metasurfaces. More specifically, in Sec. II, we describe the
problem geometry and outline its formulation. In Sec. III, we
analytically derive the ideal properties of the metasurfaces that
are required to attain “perfect” cylindrical imaging. Moreover,
we illustrate the non-Hermitian and nonlocal properties of
the metasurfaces and address some issues concerning the
attainable spatial resolution. In Sec. IV, we explore possible
implementations, numerically validate our theoretical predic-
tions, and address stability- and implementation-related issues.
Finally, in Sec. V, we discuss implications and perspectives of
our results.

II. GEOMETRY OF THE PROBLEM

Referring to the schematic in Fig. 1, we consider a
cylindrical geometry embedded in vacuum, infinitely long and
invariant along the z direction of the associated coordinate
system (r,φ,z). We consider a “source” (virtual) surface at r =
Rs where a transversely magnetic polarized, time-harmonic
field distribution [with implied exp(−iωt) time dependence]
is assigned in terms of the z-directed electric field

Ez(Rs,φ) ≡ Esz(φ). (1)

As anticipated (see also the schematic in Fig. 1), we are
interested in reproducing this field distribution at an “image”
(virtual) surface located at r = Ri > Rs , so as to attain an
inherent geometrical magnification by a factor Ri/Rs > 1,
without monochromatic aberrations. By letting

Ez(Ri,φ) ≡ Eiz(φ), (2)

z

r

Rs
R1

R2

Ri

source

image

z

x yrφ

FIG. 1. Problem schematic: A cylindrical lensing system com-
posed of two concentric metasurfaces of radii R1 and R2 and
impedances Z1 and Z2, respectively, embedded in vacuum. An
assigned field distribution at a surface of radius Rs < R1 is imaged
at a surface of radius Ri > R2, thereby attaining a geometrical
magnification by a factor Ri/Rs > 1. Also shown are the associated
Cartesian and cylindrical references systems. Geometry and field
quantities are assumed as invariant along the z direction.

the field distribution at the image surface, our problem can be
stated in mathematical terms as attaining the condition

Eiz(φ) = αEsz(φ), (3)

with α denoting a real-valued constant, henceforth assumed as
α = 1.

To realize the magnified-imaging condition implied by
Eq. (3), we consider a cylindrical lensing system composed
of two idealized (zero-thickness) concentric metasurfaces
placed at r = R1 and r = R2 > R1, with homogeneous (i.e.,
φ independent) surface impedances Z1 and Z2, respectively.
While this system may appear, at first glance, as a direct
generalization of the planar lens considered in Ref. [49], there
are some important caveats to consider. Most notably, although
the PT symmetry condition assumed in Ref. [49] (with the
two planar metasurfaces characterized by balanced positive
and negative resistances) admits some possible generalizations
[52,53] to cylindrical scenarios, these are not apt for our
metasurface-based formulation and for the magnification
goal at hand. Accordingly, although we intuitively expect
a non-Hermitian and nonlocal character for the required
metasurfaces, we do not make any prior assumption on their
nature. Instead, we analytically derive the general conditions
that they need to satisfy in order to realize ideal magnification
as described by the condition in Eq. (3).

III. THEORY AND DESIGN IMPLICATIONS

A. Analytical derivations

In each of the vacuum regions of interest (Fig. 1), the z-
directed electric field can be represented in terms of a Fourier-
Bessel series expansion [54]

Ez(r,φ) =
∞∑

n=−∞

[
A(n)

ν H (1)
n (k0r) + B(n)

ν H (2)
n (k0r)

]
exp(inφ),

Rν−1 < r < Rν, (4)

where ν = 1,2,3, and we have defined R0 ≡ Rs and R3 ≡ ∞
for notational compactness. Moreover, A(n)

ν and B(n)
ν are sets

of unknown expansion coefficients, H (1)
n and H (2)

n denote
the nth-order Hankel function of first and second kind [55],
respectively, and k0 = ω/c = 2π/λ0 is the vacuum wave
number (with c and λ0 denoting the corresponding speed
of light and wavelength, respectively). From Eq. (4), the
corresponding tangential magnetic field follows from the
relevant Maxwell’s curl equation

Hφ(r,φ) = i

k0η0

∂Ez(r,φ)

∂r
, (5)

with η0 = √
μ0/ε0 ≈ 377� denoting the vacuum characteris-

tic impedance. By enforcing impedance matching (i.e., zero
reflection in the region Rs < r < R1), so that the source signal
is not perturbed, and the radiation condition (for r > R2), it
readily follows that

B
(n)
1 = B

(n)
3 = 0. (6)

Moreover, by particularizing the series expansions in
Eq. (4) at the source (r = Rs) and image (r = Ri) surfaces,
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we obtain

Esz(φ) = Ez(Rs,φ) =
∞∑

n=−∞
A

(n)
1 H (1)

n (k0Rs) exp(inφ), (7)

Eiz(φ) = Ez(Ri,φ) =
∞∑

n=−∞
A

(n)
3 H (1)

n (k0Ri) exp(inφ), (8)

respectively, which directly relate the sets of expansion coef-
ficients A

(n)
1 and A

(n)
3 to the Fourier coefficients of the source-

and image-field distributions, respectively. By enforcing the
magnified-imaging condition in Eq. (3) (with α = 1), we
therefore obtain

A
(n)
3 = A

(n)
1

H (1)
n (k0Rs)

H
(1)
n (k0Ri)

. (9)

The remaining sets of unknown expansion coefficients need
to be calculated by enforcing the electric-field continuity and
impedance boundary conditions at the metasurfaces,

Ez(R
−
ν ,φ) = Ez(R

+
ν ,φ), ν = 1,2, (10)

Hφ(R+
ν ,φ) − Hφ(R−

ν ,φ) = Ez(Rν,φ)

Zν

, ν = 1,2, (11)

where the superscripts “−” and “+” denote the conventional
one-sided limits. This yields four (countably infinite) sets
of linear equations, with the unknowns A

(n)
2 , B

(n)
2 and the

surface impedances Z1 and Z2. It becomes apparent that,
for local metasurfaces (i.e., Z1 and Z2 independent of the
angular-momentum order n), the overall system of equations
is inherently overdetermined and can only be solved in a weak
(e.g., least-square) sense. On the other hand, by assuming
n-dependent surface impedances (i.e., nonlocal metasurfaces),
the system can be solved analytically in closed form, and we
obtain

Z
(n)
1 = −Sn

k0η0πR1

4

H (1)
n (k0R1)H (1)

n (k0Ri)

H
(1)
n (k0R2)

, (12)

Z
(n)
2 = Sn

k0η0πR2

4

H (1)
n (k0R2)H (1)

n (k0Rs)

H
(1)
n (k0R1)

, (13)

where the superscript “(n)” has been added to highlight
the nonlocal character, i.e., the fact that the metasurfaces
present an impedance that changes with the momentum of
the impinging harmonic, and

Sn = H (1)
n (k0R1)H (2)

n (k0R2) − H (2)
n (k0R1)H (1)

n (k0R2)

H
(1)
n (k0Ri) − H

(1)
n (k0Rs)

. (14)

By recalling the symmetry properties of the Hankel func-
tions with respect to their order [55], it can be verified that

Z(−n)
v = Z(n)

v , ν = 1,2. (15)

B. Nonlocality, non-Hermiticity, and resolution issues

Although it is evident from Eqs. (13) and (14) that
our cylindrical scenario inherently requires complex-valued
impedances, it is not straightforward to analytically ascertain
the non-Hermitian requirements in terms of gain and loss
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FIG. 2. Geometry as in Fig. 1, with k0Rs = 10, k0Ri = 20,
k0R1 = 13, and k0R2 = 17. (a) and (b) Real and imaginary part,
respectively, of the surface impedances Z

(n)
1 (red circles) and Z

(n)
2

(blue squares), numerically computed from Eqs. (12) and (13),
respectively, as a function of the angular-momentum order n [in
view of the symmetry condition in Eq. (15), only n � 0 orders
are displayed]. Values are normalized with respect to the vacuum
characteristic impedance η0. Continuous curves are guides to the eye
only.

distribution and to assess the actual degree of required
nonlocality. Accordingly, in what follows, we illustrate these
effects and their implications on the imaging capabilities by
exploring representative numerical examples.

We start by considering a configuration with source and
image surfaces at k0Rs = 10 and k0Ri = 20, respectively (i.e.,
a geometrical magnification factor Ri/Rs = 2), and metasur-
faces at k0R1 = 13 and k0R2 = 17. Figure 2 shows the required
surface-impedance values [from Eqs. (13) and (14)] pertaining
to the first 31 angular-momentum orders [in view of the sym-
metry condition in Eq. (15), only n � 0 orders are displayed].
We observe that the real parts can assume both negative and
positive values (i.e., gain and loss), thereby confirming the
expected non-Hermitian character. However, unlike the planar
case [49], there is no clear balance and symmetry between the
inner and outer surface. In fact, due to the nonlocality, it is
generally not even possible to associate to the two impedances
a clear-cut active or passive character (see, for example, the
sign inversions in the impedance real-parts occurring around
the modal order n = 10). Moreover, the nonlocal character ap-
pears very pronounced in some regions and somewhat milder
in others. To gain some physical insights into this behavior, it is
worth recalling that (see Ref. [11] and Sec. 9.3.1 in Ref. [55])
the generic nth order angular-momentum mode in the Fourier-
Bessel field expansion in Eq. (4) decays as ∼(k0r/n)−n for

n � k0r, (16)

thereby implying that the cylindrical surface k0r = n effec-
tively represents a caustic, inside which the mode is essentially
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evanescent. The different color shadings in Fig. 2 identify three
regions across the two relevant caustics at n = k0Rs (source)
and n = k0Ri (image). More specifically, the purple-shaded
regions (n < k0Rs) contain the angular-momentum modes
that exhibit a propagating character within the entire lens
domain (k0Rs < r < k0Ri). For these modal orders, the
nonlocal character does not appear very pronounced, and
the two surface impedances exhibit a clear-cut passive (Z1)
or active (Z2) behavior, with real parts that are (in absolute
value) fractions of the vacuum characteristic impedances.
Conversely, in the cyan-shaded regions (k0Rs < n < k0Ri),
containing modal orders that exhibit a caustic between the
source and image surfaces, nonlocality is significantly more
pronounced, with wider dynamics and faster variations. In this
case, the real part of the surface impedances can change sign,
thereby implying gain at some modal orders and loss at others.
Finally, the orange-shaded region (n > k0Ri) contains modal
orders that are evanescent within the entire lens domain.
In this case, we observe vanishingly small real parts of the
surface impedances and asymptotically decreasing imaginary
parts. As a matter of fact, by exploiting in Eqs. (12) and (13)
the large-order asymptotic expansion of the Hankel functions
[55] and retaining the dominant terms, it can be shown that the
surface impedances pertaining to these higher-order modes
behave as

Z
(n)
1 ∼ − iη0

2n
k0R1

(
RsR

2
2

RiR
2
1

)n

, (17)

Z
(n)
2 ∼ i

η0k0R2

2n
, (18)

thereby confirming the essentially reactive character observed
in Fig. 2.

For a deeper understanding, Fig. 3 shows the field (mag-
nitude) radial distributions pertaining to three representative
angular-momentum modal orders, for the parameter configu-
ration as in Fig. 2. For a low-order mode [n = 2, Fig. 3(a)],
which is propagating everywhere, the two non-Hermitian
surface impedances act as an open resonating cavity (with a
visible standing-wave pattern), which essentially compensates
the cylindrical spreading, so as to recover at the image surface
the original amplitude (and phase, not shown) enforced at the
source surface. For a moderately high-order [n = 15, Fig. 3(b)]
mode, whose caustic is located within the lens domain, the
decaying field is significantly amplified in the cavity region
between the two non-Hermitian surface impedances, and
then propagates to the image surface. For a higher-order
[n = 30, Fig. 3(c)] mode, which is everywhere evanescent,
the amplification effects in the cavity region are even more
dramatic (note the semilog scale in the graph), even though, in
this case, the two metasurfaces are essentially reactive.

From the above discussion, it emerges that a perfect
reconstruction at the image surface of the source-field distribu-
tion, including possible subwavelength details transported by
high-order angular-momentum modes, would require a precise
tailoring of the non-Hermitian and nonlocal response of the
two metasurfaces that appears to be beyond the current and
near-future technological capabilities. Within this framework,
it should also be highlighted that our assumption to enforce
an arbitrary source-field distribution is highly idealized. In
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FIG. 3. (a)–(c) Electric-field (magnitude) radial distributions
pertaining to the angular-momentum modal orders n = 2, n = 15,
and n = 30, respectively, for the parameter configuration in Fig. 2.
Field values are normalized with respect to amplitudes at the source
surface (r = Rs). The red and blue dashed vertical lines indicate the
locations of the metasurfaces. The corresponding surface-impedance
values [from Eqs. (12) and (13)] are Z

(2)
1 = (0.162 + i0.270)η0,

Z
(2)
2 = (−0.262 + i0.362)η0, Z

(15)
1 = (0.277 + i0.089)η0, Z

(15)
2 =

(−1.742 + i0.553)η0, Z
(30)
1 = −i0.004η0, and Z

(30)
2 = i0.344η0.

practice, if we realistically assume that the source-field
distribution at r = Rs is generated by finite-energy current
sources contained in the inner cylindrical region r < Rs

filled by a conventional dielectric medium, the number of
degrees of freedom [i.e., significantly nonzero A

(n)
1 coefficients

in the Fourier series in Eq. (7)] is inherently limited by
the low-pass character of the propagation operator (see, for
example, the discussion in Ref. [56]). Remarkably, if we
neglect the moderate- to high-order angular-momentum modes
(cyan- and orange-shaded regions in Fig. 2) and focus on
the modal orders that exhibit a propagating character within
the entire lens domain (purple-shaded regions in Fig. 2), the
arising metasurface synthesis turns out to be significantly more
approachable, since the corresponding surface impedances
exhibit a milder nonlocality and an unambiguous (active or
passive) character. Such an operational scenario resembles
the one considered for the planar case [49], in terms of
diffraction-limited imaging and implementation complexity,
but it adds the geometrical-magnification capability. Also in
that scenario, in fact, the evanescent contribution to the image
was neglected, and its reconstruction would have required
superoscillatory reactive surfaces for the large transverse wave
numbers associated with the evanescent spectrum of the spatial
distribution to be imaged.

In what follows, with reference to diffraction-limited mag-
nified imaging, we explore possible implementation strategies
for the nonlocal cylindrical metasurfaces.
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IV. REPRESENTATIVE RESULTS

A. Quasilocal implementation

The possibly simplest strategy to cope with the inherent nonlocal character of the impedance surfaces is to somehow mitigate
the degree of nonlocality so that local metasurfaces can be utilized. To illustrate this concept, we define a “nonlocality indicator”

F (k0R1,k0R2) = 1

2N (N + 1)

N∑
n,m=0
m>n

⎧⎨
⎩

∣∣Z(n)
1 − Z

(m)
1

∣∣2

∣∣Z(n)
1

∣∣2 + ∣∣Z(m)
1

∣∣2 +
∣∣Z(n)

2 − Z
(m)
2

∣∣2

∣∣Z(n)
2

∣∣2 + ∣∣Z(m)
2

∣∣2

⎫⎬
⎭, (19)

which quantifies the degree of nonlocality as a nondimensional
parameter ranging from zero (locality) to one (extreme
nonlocality), as a function of the metasurface positions, for
given electrical radii of the source and image surfaces. Figure 4
shows the nonlocality indicator (on a decibel scale) for the
previously considered parameters k0Rs = 10 and k0Ri = 20,
a maximum angular-momentum modal order N = 5, and
with k0R1 and k0R2 spanning geometrically feasible ranges.
We observe a three-order-of-magnitude dynamic range, with
alternating minima and maxima for this nonlocality measure.
In particular, we identify a specific parameter configuration
(k0R̂1 = 11.64, k0R̂2 = 16.43, marked with a cyan cross in
the figure), for which the indicator is as small as −35 dB,
thereby indicating a particularly mild nonlocality. For this
configuration, a local approximation of the surface impedances
in terms of average values

Z̄ν = 1

N + 1

N∑
n=0

Ẑ(n)
ν , ν = 1,2, (20)

may provide acceptably good results. Here and henceforth,
the caret and overline are utilized to indicate the “optimal”
parameters and their average values, respectively.

FIG. 4. Nonlocality indicator in Eq. (19) (in decibel scale) for
k0Rs = 10, k0Ri = 20, and N = 5, as a function of k0R1 and
k0R2. The cyan-cross marker indicates the parameter configuration
k0R̂1 = 11.64, k0R̂2 = 16.43, which minimizes the nonlocality (F ≈
−35 dB). The magenta-circle marker indicates the parameter configu-
ration k0R1 = 11.40, k0R2 = 14.50, which yields a sensibly stronger
nonlocality (F ≈ −7 dB). The study is restricted to metasurface
distances k0(R2 − R1) > 1, thereby excluding the gray-motif region.

Figures 5(a) and 5(b) show the ideal surface impedances
for the modal orders up to N = 5 for the case at hand. As
expected, the variations are rather mild, especially in the
real parts of the impedances, which are much larger than
the corresponding imaginary parts. For this case, the local
approximation in Eq. (20) yields Z̄1 = (0.418 + i0.102)η0 and
Z̄2 = (−0.599 + i0.109)η0. By comparison with the planar
scenario in Ref. [49], we observe that, also in our case, the
surface impedances exhibit gain and loss. However, there is
no apparent symmetry between gain and loss, and a reactive
(capacitive) part is also present; these differences can be ex-
pected and attributed to the cylindrical spreading of the wave,
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FIG. 5. Geometry as in Fig. 1, with k0Rs = 10, k0Ri = 20,
k0R1 = 11.64, and k0R2 = 16.43. (a) and (b) Real and imaginary
parts, respectively, of the surface impedances Z

(n)
1 (red circles) and

Z
(n)
2 (blue squares), numerically computed from Eqs. (12) and (13),

respectively, as a function of the angular-momentum order n, up to
N = 5 [in view of the symmetry condition in Eq. (15), only n � 0
orders are displayed]. Values are normalized with respect to the
vacuum characteristic impedance η0. Continuous curves are guides
to the eye only. (c) and (d) Real and imaginary parts, respectively,
of the enforced source-field profile in Eq. (7) (with A

(n)
1 = 1 for n =

−5, . . . ,5, and A
(n)
1 = 0 otherwise; red-dashed curves), compared

with the imaged-field profile [computed via Eq. (8); blue-solid curves]
obtained via the local approximation in Eq. (20), yielding constant
values of the surface impedances Z̄1 = (0.418 + i0.102)η0 and Z̄2 =
(−0.599 + i0.109)η0. Also shown, as a reference (magenta-dotted
curves), is the field profile at the image surface in the absence of the
cylindrical lens (Z̄1,2 → ∞).

115114-5



SILVIO SAVOIA et al. PHYSICAL REVIEW B 95, 115114 (2017)

(arb. units)

FIG. 6. Geometry and parameters as in Fig. 5. (a) and (b) Real-part field distributions over the entire cylindrical lens domain, in the presence
and absence of the metasurfaces, respectively. The black dashes indicate the locations of the source and image surfaces, while the white-dashed
circles indicate the locations of the two metasurfaces.

which breaks the PT symmetry of the desired field distribution
in the planar scenario (the fact that one metasurface is entirely
contained in the other rules out the position requirement for
PT symmetry). From the implementation viewpoint, similar
considerations as in Ref. [49] hold. At microwave frequencies,
the required gain may be attained by exploiting classical
amplification schemes based on operational amplifiers and
Gunn diodes [57–59]; at optical frequencies, semiconductor-
based active media [60–63] or parametric effects may be
exploited.

To test the magnified-imaging capabilities, we consider
a diffraction-limited, real-valued source-field distribution
[see Eq. (7)] with constant coefficients (A(n)

1 = 1 for
n = −5, . . . ,5, and A

(n)
1 = 0 otherwise). The corresponding

field profile is shown (red-dashed curves) in Figs. 5(c) and
5(d) (real and imaginary parts, respectively) and is compared
with the imaged field profile (blue-solid curves) obtained by
exploiting the local approximation above and calculated via
the Fourier-Bessel series expansion in Eq. (4). To facilitate
the comparison, the field profiles are plotted as a function
of the angle φ; however, a geometrical-magnification factor
Ri/Rs = 2 needs to be accounted for at the image surface. The
(dominant) real parts of the source and imaged profiles are in
excellent agreement, while there is a slight residual imaginary
part in the imaged profile (about an order of magnitude
smaller than the real-part peak value) attributable to the local
approximation. Also shown, as a reference (magenta-dotted
curves) is the field profile at the image surface in the absence
of the cylindrical lens (Z̄1,2 → ∞). It is clear that, in this
case, results would be drastically different.

For the same parameter configuration, Fig. 6 shows the (real
part) field distributions over the entire cylindrical lens domain,
in the presence [Fig. 6(a)] and absence [Fig. 6(b)] of the
metasurfaces. As already illustrated in Fig. 3(a) with reference
to a generic propagating mode, the two metasurfaces act as
an open cavity system which corrects the propagation-induced
distortions and recreates at the image surface a geometrically
magnified version of the enforced source-field profile.

As a further representative example, Fig. 7 shows the
results pertaining to another parameter configuration (k0Rs =

13, k0Ri = 18, k0R1 = 13.40, k0R2 = 15.65), identified via
a parametric study. By comparison with the previous example,
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FIG. 7. Geometry as in Fig. 1, with k0Rs = 13, k0Ri = 18,
k0R1 = 13.40, and k0R2 = 15.65. (a) and (b) Real and imaginary
parts, respectively, of the surface impedances Z

(n)
1 (red circles) and

Z
(n)
2 (blue squares), numerically computed from Eqs. (12) and (13),

respectively, as a function of the angular-momentum order n, up to
N = 5 [in view of the symmetry condition in Eq. (15), only n � 0
orders are displayed]. Values are normalized with respect to the
vacuum characteristic impedance η0. Continuous curves are guides to
the eye only. (c) and (d) Real and imaginary parts, respectively, of the
enforced source-field profile in Eq. (7) (with A

(−5)
1 = A

(−2)
1 = A

(1)
1 =

A
(3)
1 = 0.1, A

(−4)
1 = A

(0)
1 = 0.6,A

(−3)
1 = A

(−1)
1 = −A

(4)
1 = 0.2,A

(2)
1 =

−A
(5)
1 = 0.5, and A

(n)
1 = 0 otherwise; red-dashed curves), compared

with the imaged field profile [computed via Eq. (8); blue-solid curves]
obtained via the local approximation in Eq. (20), yielding constant
values of the surface impedances Z̄1 = (0.557 + i0.205)η0 and Z̄2 =
(−0.690 + i0.103)η0. Also shown, as a reference (magenta-dotted
curves), is the field profile at the image surface in the absence of the
cylindrical lens (Z̄1,2 → ∞).
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this configuration features a smaller magnification factor
Ri/Rs = 1.38 and a weaker nonlocality, as clearly observable
from the surface impedances [Figs. 7(a) and 7(b)] and wit-
nessed by the value of the nonlocality indicator (F ≈ −50 dB).
In this case, the local approximation in Eq. (20) yields Z̄1 =
(0.557 + i0.205)η0 and Z̄2 = (−0.690 + i0.103)η0, and we
select a diffraction-limited complex-valued source-field profile
(with coefficients given in the caption). As a consequence of
the particularly weak nonlocality, the source- and imaged-field
profiles are now in excellent agreement for both the real
[Fig. 7(c)] and imaginary [Fig. 7(d)] parts. Once again, this
is in stark contrast with the results that would be obtained in
the absence of the lens.

Overall, the above results indicate that, within suitable
parameter ranges, non-Hermitian, local cylindrical metasur-
faces can provide magnified imaging with reasonably small
aberrations. Remarkably, this leads to particularly simple
implementations of the required metasurfaces, in terms of
thin cylindrical layers of homogeneous, isotropic materials
featuring loss or gain.

B. Multilayered implementation

It is evident from Fig. 4 that nonlocality is generally
nonnegligible, and therefore the quasilocal approach is not
necessarily applicable for arbitrary scenarios. The synthesis
of metamaterials and metasurfaces with tailored nonlocal
(i.e., spatially dispersive) responses has recently received
considerable attention in view of its increasing relevance in
several application scenarios. For instance, in Refs. [64–66],
a systematic approach based on a nonlocal generalization of
the transformation-optics [67,68] paradigm was proposed. In
Ref. [49], in order to deal with similar nonlocality issues
(angle-dependent surface impedances) in the planar case, a
multilayered implementation of the metasurfaces was suc-
cessfully carried out, based on a general synthesis procedure
originally put forward in Ref. [69] for the design of compu-
tational metamaterials. Here, we explore the generalization of
this planar implementation to our cylindrical scenario.

To this aim, as schematized in Fig. 8, each of the idealized
(i.e., zero thickness) cylindrical metasurfaces is replaced by a
physical structure composed of subwavelength material layers.
With a view toward technological feasibility, the material
constituents are assumed as homogeneous, isotropic, and
nonmagnetic, so that the only optimization parameters avail-
able are the layer thicknesses and their (suitably constrained)
dielectric permittivities. Moreover, we consider a number
of four layers as a reasonable tradeoff between response
complexity (and hence, nonlocality-tailoring capabilities) and
computational burden (as well as fabrication complexity).
Details on the synthesis procedure are given in Appendix A.

As a representative example, we consider a parameter
configuration (magenta-circle marker in Fig. 4) with k0Rs =
10, k0Ri = 20, k0R1 = 11.40, k0R2 = 14.50, characterized
by a sensibly stronger nonlocality (F ≈ −7 dB), for which
the multilayer-synthesis procedure yields the parameters given
in Table I. We observe that, for both metasurfaces, the
multilayered implementation features alternating layers made
of lossy negative-permittivity and active positive-permittivity
constituents, with total thickness of about 0.25λ0. Although

ε2ε1 ε3 ε4

d 1
d 2
d 3
d 4

FIG. 8. Schematic of the multilayered implementation. Each of
the idealized (i.e., zero thickness) metasurfaces is implemented
as a physical structure composed of four layers of homogeneous,
isotropic, nonmagnetic material constituents, with subwavelength
thicknesses dj and relative permittivities εj , j = 1,2,3,4.

the emphasis of this prototype paper is on a proof-of-concept
demonstration and on the illustration of the phenomenology,
rather than technological and fabrication-related aspects, the
permittivity values are constrained within realistic bounds.
For instance, the parameters of the negative-permittivity con-
stituents are consistent with those of plasmonic materials (e.g.,
transparent conductive oxides [70]) at optical wavelengths,
and the level of gain is comparable with those attainable in
quantum-dot-based active media [62,71].

Figure 9 shows the corresponding results. As it can be
expected, the ideal modal surface-impedances [Figs. 9(a)
and 9(b)] now exhibit more significant variations (i.e., more
pronounced nonlocality). As a source field, we consider the
same diffraction-limited, real-valued profile as in Fig. 5. To
provide an independent validation, the field imaged by the
multilayered structure is now computed via finite-element-
based numerical simulations (see Appendix B for details). As
we can observe, the agreement with the source-field profile
is excellent for the (dominant) real part, with some residual
oscillations around the ideally zero imaginary part. It is also
interesting to observe that, for this parameter configuration,
the local approximation [with Z̄1 = (0.017 − i0.056)η0 and

TABLE I. Synthesis parameters for the multilayered implemen-
tation of the nonlocal metasurfaces (see the schematic in Fig. 8), for
k0Rs = 10, k0Ri = 20, k0R1 = 11.4, k0R2 = 14.5, and N = 5.

Metasurface 1 Metasurface 2

Layer εr d/λ0 εr d/λ0

1 4.665 − i0.4658 0.096 5.139 − i0.504 0.089
2 −0.1402 + i0.379 0.032 −0.727 + i0.325 0.042
3 5.179 − i0.518 0.100 3.917 − i0.391 0.097
4 −0.523 + i0.089 0.022 −0.377 + i0.228 0.030
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FIG. 9. (a) Geometry as in Fig. 1, with k0Rs = 10, k0Ri = 20,
k0R1 = 11.4, and k0R2 = 14.5. (a) and (b) Real and imaginary
part, respectively, of the surface impedances Z

(n)
1 (red circles) and

Z
(n)
2 (blue squares), numerically computed from Eqs. (12) and (13),

respectively, as a function of the angular-momentum order n, up
to N = 5 [in view of the symmetry condition in Eq. (15), only
n � 0 orders are displayed]. Values are normalized with respect
to the vacuum characteristic impedance η0. Continuous curves are
guides to the eye only. (c) and (d) Real and imaginary parts,
respectively, of the enforced source-field profile in Eq. (7) [with
A

(n)
1 = 1 for n = −5, . . . ,5, and A

(n)
1 = 0 otherwise; red-dashed

curves], compared with the imaged field profile (blue-solid curves)
obtained via multilayered implementation of the metasurfaces (see
Fig. 8 and Table I) and computed via finite-element simulations. Also
shown, as a reference (magenta-dotted curves), is the imaged field
profile obtained via the local approximation in Eq. (20), yielding
constant values of the surface impedances Z̄1 = (0.017 − i0.056)η0

and Z̄2 = −(0.022 + i0.080)η0.

Z̄2 = −(0.022 + i0.080)η0, from Eq. (20)], which is used
here as a reference case like the vacuum case was used in
Figs. 5 and 7, yields remarkably poorer results, as a further
confirmation of the nonnegligible nonlocal effects.

Overall, the four-layer optimized geometry works reason-
ably well for the moderate degree of required nonlocality that
we have considered in this example. This demonstrates that,
even for designs involving nonnegligible levels of nonlocality,
the metasurface implementation remains fairly simple, in
terms of few cylindrical layers, without requiring extreme-
parameter media. Clearly, more complex designs, featuring
additional degrees of freedom, may be necessary in order to
capture stronger desired nonlocal responses.

C. Stability analysis

The results illustrated above are derived through a time-
harmonic wave-scattering formalism, and therefore pertain
to the steady-state response of the system. However, the
presence of gain in our non-Hermitian configuration can give
rise to optical instability; in other words, the structure may
support self-oscillations. In Ref. [49], with reference with the
PT-symmetric planar counterpart, it was shown that the system

can be made unconditionally stable by suitably choosing the
dispersion of the two metasurfaces. A similar analysis is
carried out here for our cylindrical scenario. To this aim, we
revisit the scattering model in Eqs. (4)–(11), but now assuming
the two surface impedances Z1 and Z2 as known terms, and
the coefficients A

(n)
1 and A

(n)
3 as unknowns. By solving the

resulting linear system of equations, we can calculate the
scattering parameters (transfer functions)

Tn(ω) = A
(n)
3 [Z1(ω),Z2(ω)]

A
(n)
1 [Z1(ω),Z2(ω)]

, (21)

which relate the angular-momentum modes at the source
and image surfaces [cf. Eqs. (7) and (8)]. The analytical
expressions of the transfer functions in Eq. (21) are provided
in Appendix C. In Eq. (21), only the frequency dependence
is explicitly highlighted and related to the dispersion models
of the surface impedances Z1(ω) and Z2(ω). Such dispersive
models are constrained by causality (namely, they satisfy
Kramers-Kronig-like equations), but their specific details
inherently depend on the physical metasurface implemen-
tation. Along the lines of Ref. [49], here, we consider
a simple metasurface implementation in terms of a thin,

FIG. 10. Geometry and parameters as in Fig. 7. (a) and (b) Real
and imaginary parts, respectively, of the dispersive laws pertaining to
the surface impedances Z1 (red-dashed curves) and Z2 (blue-solid
curves). The dispersive models are detailed in Appendix C and
are computed via Eqs. (C10)–(C12), with d = λc/20, ε

(∞)
r1 = 2.852,

ε
(∞)
r2 = 1.674, ω01 = ω02 = ωc, ωp1 = 0.709ωc, ωp2 = 0.672ωc, and

�1 = �2 = 0.1ωc; this parameter configuration satisfies the nominal
design conditions in Eqs. (22) and (23) at the center angular
frequency ωc.

115114-8



MAGNIFIED IMAGING BASED ON NON-HERMITIAN . . . PHYSICAL REVIEW B 95, 115114 (2017)

FIG. 11. Geometry and parameters as in Fig. 7, with surface-impedance dispersion laws as in Fig. 10. (a)–(f) Magnitude of transfer
functions in Eq. (21), |Tn(ω)|, over the complex ω plane, for angular-momentum modal orders n = 0,1,2,3,4,5, respectively. The complex
angular frequency is normalized by its center value ωc, at which the nominal design is attained [see Eqs. (22) and (23)].

subwavelength cylindrical layer made of a homogeneous,
isotropic, nonmagnetic material characterized by a causal
dispersion law. The resulting dispersive model, detailed in
Appendix C, is especially suited for the quasilocal implemen-
tation illustrated in Sec. IV A. Accordingly, as a representative
example, we consider the parameter configuration in Fig. 7.

Figure 10 shows an example of causal dispersive laws
(see Appendix C for details) for the two surface impedances,
obtained by enforcing at a center angular frequency ωc the
corresponding average values [from Eq. (20)]

Z1(ωc) = Z̄1 = (0.557 + i0.205)η0, (22)

Z2(ωc) = Z̄2 = (−0.690 + i0.103)η0. (23)

For this configuration, Fig. 11 shows the transfer functions
(magnitude) in Eq. (21), over the complex ω plane, for
the (0 � n � 5) angular-momentum modal orders relevant
to the example in Fig. 7. As it can be qualitatively observed,
the responses are only weakly dependent on the modal
order, and all poles are confined to the lower half of the
complex plane Im(ω) < 0, which, in view of the implied
exp(−iωt) time-harmonic convention, guarantees that the
system is unconditionally stable for any temporal excitation.
More in detail, we numerically verified the presence of poles at
ω ≈ (0.83 − i0.6)ωc, with variations on the second significant
digits depending on the angular-momentum modal order n.
However, it is worth stressing that different parameter choices
in the dispersion laws, as well as in the lens configuration,
may give rise to transfer functions exhibiting poles in the
upper half-plane Im(ω) > 0, thereby driving the system to
an unstable (self-radiating) regime. Therefore, care should be
exerted in ascertaining the stability on a case-by-case basis.
Overall, the main indications emerged for the planar scenario
[49] remain valid for the cylindrical geometry considered here.

D. Remarks

In connection with the practical feasibility of our proposed
configuration, it should be stressed that the infinite extent
(along the z direction) assumed in this paper is not a relevant
constraint. In fact, in view of the assumed z-directed electric
field, the structure can be longitudinally truncated with two
perfectly electric conducting (PEC) parallel planar walls (in
the x-y plane) placed at an arbitrary distance, without affecting
the validity of our in-plane mathematical formulation. In this
case, the excitation given by Eq. (3) may be mimicked by
a sheet distribution of axial electrical currents enforced at
the source surface (r = Rs) and extending up to the PEC
walls. At microwave frequencies, where the PEC condition
is well approximated by metals, this parallel-plate wave guide
setup represents a typical implementation of 2D metamaterial
configurations. At optical frequencies, where metals behave
quite differently, a PEC-like truncation condition may be
attained by using photonic crystals operating in the bandgap. In
a practical scenario, provided that the cylinder is sufficiently
long, the imaging properties described here would hold far
enough from the edges of the finite structure.

Another relevant question is whether the inherently nonlo-
cal and non-Hermitian (with gain and loss regions) nature
of our proposed configuration poses insurmountable chal-
lenges for its realization. Within this framework, it makes
sense to compare our proposed configuration with alternative
metamaterial strategies for imaging and magnification, based
on transformation optics [5,6], negative refraction [7–9],
or hyperbolic dispersion [15–17]. From the implementation
viewpoint, all these strategies eventually rely on multilayered
structures featuring thin material layers and/or resonating
elements. In addition, transformation-optics-based strategies
typically require complex spatial tailoring of the constitu-
tive parameters. By comparison, in its simplest quasilocal
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configuration, our proposed strategy can be implemented
via only two thin material layers. Even in those cases
where nonlocality is nonnegligible, each metasurface can
be implemented via only few material layers (e.g., four, in
the case considered in Fig. 9). Therefore, we argue that, in
terms of structural complexity, our implementation is certainly
comparable with the above alternatives; in fact, it could
become even simpler than the alternatives for those parameter
configurations featuring weak nonlocality.

In connection with the inherent non-Hermitian character of
our proposed design and, in particular, the presence of gain, it
is worth stressing that a comparison with idealized (lossless)
metamaterial alternatives would be quite unfair. In fact, for
all the aforementioned alternative strategies, the inevitable
presence of losses substantially curtails the resolution and
transmittance [18,19]. Transformation-optics-based designs
leading to negative-permittivity and negative-permeability
media [5,6] are particularly sensitive to the detrimental
effects of losses [72,73]. As previously mentioned, a possible
strategy to overcome these effects is to introduce gain-material
constituents so as to compensate for losses [24,25].

In our design, loss and gain are not considered as second-
order effects to compensate for. Instead, they are contemplated
from the very beginning, and their tailored interplay is
instrumental to attain the desired functionality. Therefore, we
argue that our proposed non-Hermitian design is comparable
with loss-compensated alternative implementations in terms
of realization complexity, and it broadens the conventional
framework of gain-induced effects in metamaterials.

We also emphasize that our proposed design can readily be
extended to other kinds of waves, such as acoustics, for which
large levels of gain/amplification are easier to attain (see, e.g.,
Ref. [50]).

A final remark is related to the issue of bandwidth: while
passive metamaterials are fundamentally limited by constraints
on their frequency dispersion stemming from Kramers-Kronig
relations for passive media, and therefore the unusual imaging
properties of negative-index or transformation-optics lenses
are typically limited to a narrow range of frequencies,
active metamaterials may overcome these limitations. While a
detailed study on the bandwidth performance of the proposed
imaging system is beyond the scope of this paper, and the
stability issues mentioned above may fundamentally limit
the overall achievable bandwidth of a practical device, it is
expected that the bandwidth of operation of the proposed
loss-gain cylindrical lens may be superior to the one of
metamaterial devices based on only passive elements.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have shown that magnified, diffraction-
limited imaging with reduced aberrations can be attained by
means of a cylindrical lensing system relying on a pair of non-
Hermitian, nonlocal metasurfaces. Within certain parameter
ranges, nonlocality can be suitably mitigated so that fairly good
results can be achieved by employing local metasurfaces. For
the more general case, we have demonstrated a multilayered
implementation whose nonlocal response can be tailored so
as to approximately capture the idealized response. We have
also addressed the relevant issue of stability, showing that

metasurface dispersion laws can be chosen in such a way
to render the system unconditionally stable for any temporal
excitation.

The above results complement and expand the previous
study in Ref. [49] on PT-symmetric planar lenses and set the
stage for the development of a rather general platform for
field manipulation and processing, not necessarily restricted to
electromagnetics. Within this framework, current and future
investigations are aimed at exploring more in detail the
implementation-related issues, in terms of specific material
constituents and sensitivity to fabrication tolerances. Also of
great interest are possible extensions of the field-manipulation
capabilities, along the lines of the computational-metamaterial
paradigm introduced in Ref. [69].
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APPENDIX A: DETAILS ON THE MULTILAYERED
IMPLEMENTATION

Assuming the two metasurfaces in Fig. 1 implemented
by multilayered structures as schematized in Fig. 8, the
electromagnetic response can still be calculated via the general
Fourier-Bessel representation in Eqs. (4) and (5), which needs
to be extended in each of the homogeneous, isotropic material
layers with proper adjustments in the wave number and
characteristic impedances. Instead of the impedance boundary
conditions in Eq. (11), now the electric field continuity must be
enforced at each interface. From the computational viewpoint,
it is expedient to utilize a transfer-matrix method [74,75],
which allows us to systematically relate the field-expansion
coefficients at the two ends (source and image) of the
structure. By maintaining the same notation as in Sec. III A,
we keep referring to A

(n)
1 , B

(n)
1 , and A

(n)
3 as the expansion

coefficients at the source and image surfaces, respectively, with
B

(n)
3 = 0 due to the radiation condition. Unlike the idealized

impedance-surface-based synthesis in Sec. III A, we are now
interested in synthesizing the actual multilayers, in terms of the
layer thicknesses and permittivities. This renders the problem
nonlinear and not solvable analytically in closed form. In other
words, the impedance-matching condition at the source surface
[cf. Eq. (6)] as well as the magnified-imaging condition [cf.
Eq. (9)] can no longer be enforced analytically, but only in a
weak fashion. Accordingly, we define a cost function

J (εr ,d−) = 1

N + 1

N∑
n=0

∣∣∣∣A
(n)
3 H (1)

n (k0Ri) − A
(n)
1 H (1)

n (k0Rs)

A
(n)
1 H

(1)
n (k0Rs)

∣∣∣∣
2

+ ∣∣B(n)
1

∣∣2
, (A1)

whose global minimum (zero) corresponds to the exact
enforcement of the above conditions [cf. Eqs. (6) and (9)].
In Eq. (A1), εr and d− compactly denote two arrays embed-

ding the relative permittivities and thicknesses of the two
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multilayers implementing the metasurfaces, which constitute
the optimization parameters in our procedure. Due to the
aforementioned nonlinear character of the problem, the cost
function in Eq. (A1) is likely to exhibit many local minima
(corresponding to false solutions), and there is no guarantee
that the optimization procedure will converge to the sought
global minimum.

Our optimization strategy is similar to that successfully
utilized in Refs. [49,69] and relies on a standard Nelder-Mead
(downhill-simplex) unconstrained minimization algorithm im-
plemented in the MATLAB optimization toolbox [76]. To en-
sure that the search space is adequately explored, we randomly
move the initial guess across a reasonably broad parameter
range. Moreover, we enforce some feasibility-related con-
straints on the optimization parameters. In particular, besides
the aforementioned nonmagnetic character, we constrain the
positive real part of the relative permittivities within the
range 1 � Re(εr ) � 10, with the negative imaginary part
(representative of gain) restricted as −Im(εr ) � 0.1Re(εr ). No
explicit constraint is assumed on the negative real part as well
as on the positive imaginary part (representative of losses)
of the permittivities, but negative-permittivity constituents are
constrained to be lossy. The thicknesses are constrained within
the range [0.015λ0,0.1λ0]. The above constraints are enforced
in a soft fashion, by suitably choosing the initial-guess
parameter ranges, and discarding a posteriori those candidate
solutions falling outside the allowed ranges.

While the convergence to the global minimum cannot be
guaranteed, we found that, for moderate degrees of nonlocality,
the above strategy typically led to reasonably low levels of the
cost function (∼0.05), corresponding to satisfactorily good
imaging accuracy. However, we also found some particularly
high degrees of nonlocality that are not accurately captured
by the four-layer structures and might require more complex
implementations.

APPENDIX B: DETAILS ON THE
NUMERICAL SIMULATIONS

The field distributions pertaining to the idealized (zero-
thickness metasurface) structures are computed via the
Fourier-Bessel series in Eq. (4), while the one pertaining to
the multilayered implementation is computed via the finite-
element-based commercial software COMSOL Multiphysics
[77]. In this case, the structure is excited by enforcing at
the source surface r = Rs the field distribution computed via
Eq. (7), and a perfectly matched layer is used as a termina-
tion, in order to avoid fictitious scattering. The structure is
discretized by means of an adaptive discrete mesh, with size
ranging from a minimum of λ0/300 (in the thin material layers)
to a maximum of λ0/60 (in the vacuum regions), resulting in
about 3 million degrees of freedom. The MUMPS direct solver
(with default parameters) is utilized.

APPENDIX C: DETAILS ON THE STABILITY ANALYSIS

The transfer functions in Eq. (21) are computed by solving
the linear system of equations arising from Eqs. (10) and (11)
[with Eq. (6)], by assuming the surface impedances Z1 and
Z2 as known terms, and the coefficients A

(n)
1 and A

(n)
3 as

unknowns. We obtain

Tn = A
(n)
3

A
(n)
1

= a0

a
(n)
1 + a

(n)
2 + a

(n)
3

, (C1)

with

a0 = 16Z1Z2

π2k2
0R1R2

, (C2)

a
(n)
1 = Z2Ḣ

(1)
n (k0R2)H (2)

n (k0R2)
{
Z1H

(1)
n (k0R1)Ḣ (2)

n (k0R1)

−H (2)
n (k0R1)

[
Z1Ḣ

(1)
n (k0R1) + iη0H

(1)
n (k0R1)

]}
, (C3)

a
(n)
2 = H (1)

n (k0R2)
[
η0H

(2)
n (k0R2) + iZ2Ḣ

(2)
n (k0R2)

]
× {

H (1)
n (k0R1)

[
η0H

(2)
n (k0R1) + iZ1Ḣ

(2)
n (k0R1)

]
− iZ1Ḣ

(1)
n (k0R1)H (2)

n (k0R1)
}
, (C4)

a
(n)
3 = −[

η0H
(1)
n (k0R2)H (2)

n (k0R1)
]2

, (C5)

where the frequency dependence in the surface impedances
is omitted for notational compactness, the overdot denotes
differentiation with respect to the argument, and all other
symbols have already been defined.

The dispersive model of the surface impedances is derived
assuming a physical implementation in terms of a thin,
subwavelength cylindrical layer made of a homogeneous,
isotropic, nonmagnetic material with relative permittivity εr .
For illustration, we can refer to the schematic in Fig. 8,
assuming only one layer of thickness d, extending over the
annular region R− < r < R+, with R− = R − d/2, R+ =
R + d/2, and R denoting the nominal radial position of the
ideal metasurface. By solving the arising scattering problems
and matching (in the limit d � λ0) the transmission coefficient
relating the angular-momentum modal orders at the surfaces
r = R− and r = R+ with that obtained in the presence of an
ideal metasurface at r = R, we can calculate the equivalent
surface impedance

Z = b
(n)
0 η0

k0Ḣ
(2)
n (k0R−)b(n)

1 + kH
(2)
n (k0R−)b(n)

2

, (C6)

with

b
(n)
0 = 16k0RH (1)

n (k0R)H (2)
n (k0R)

π (4R2 − d2)
, (C7)

b
(n)
1 = H (1)

n (kR+)
[
kH (1)

n (k0R−)Ḣ (2)
n (kR+)

− k0Ḣ
(1)
n (k0R+)H (2)

n (kR−)
]

+H (1)
n (kR−)

[
k0Ḣ

(1)
n (k0R+)H (2)

n (kR+)

− kH (1)
n (k0R+)Ḣ (2)

n (kR+)
]

+ kḢ (1)
n (kR+)

[
H (1)

n (k0R+)H (2)
n (kR−)

−H (1)
n (k0R−)H (2)

n (kR+)
]
, (C8)

b
(n)
2 = Ḣ (2)

n (kR+)
[
kH (1)

n (k0R+)Ḣ (1)
n (kR−)

− k0Ḣ
(1)
n (k0R−)H (1)

n (kR+)
]

+ Ḣ (2)
n (kR−)

[
k0Ḣ

(1)
n (k0R+)H (1)

n (kR+)
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− kH (1)
n (k0R+)Ḣ (1)

n (kR+)
]

+ k0H
(2)
n (kR+)

[
Ḣ (1)

n (k0R−)Ḣ (1)
n (kR+)

− Ḣ (1)
n (k0R+)Ḣ (1)

n (kR−)
]
, (C9)

where k = k0
√

εr .
We observe that the expression in Eq. (C6) depends on the

angular-momentum modal order n. However, for the assumed
parameter configuration (as in Fig. 7), such dependence is
quite mild. We verified that, by approximating the equivalent
surface impedance via local (tangent plane) application of the
expression utilized in the Ref. [49] planar case,

Z ≈ 1

iωd(1 − εr )ε0
, (C10)

we obtain a reasonably (�8%) small error over the parameter
range of interest.

To introduce a causal dispersion law, we assume for the
passive metasurface (Z1) a Lorentz-type dispersion model for

the material layer

εr1(ω) = ε
(∞)
r1 − ω2

p1

ω2 − ω2
01 + i�1ω

, (C11)

whereas for the active metasurface (Z2), we consider anti-
Lorentz dispersion model

εr2(ω) = ε
(∞)
r2 + ω2

p2

ω2 − ω2
02 + i�2ω

. (C12)

The dispersion laws in Fig. 10 are obtained assuming d =
λc/20 (with λc = 2πc/ωc denoting the vacuum wavelength
at the center frequency) and a parameter configuration in
Eqs. (C11) and (C12) (given in the figure caption) that satisfies
the nominal design conditions in Eqs. (22) and (23) at the
center angular frequency ωc. Clearly, given the number of
adjustable parameters in Eqs. (C11) and (C12), there are
infinite parameter configurations that would yield the same
desired impedance values at ωc. However, the stability of the
system is not always guaranteed and should be independently
assessed for each case.
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Engheta, Science 343, 160 (2014).
[70] G. V. Naik, J. Kim, and A. Boltasseva, Opt. Mater. Express 1,

1090 (2011).
[71] C. A. Valagiannopoulos, IEEE J. Select. Topics Quantum

Electron. 22, 5000409 (2016).
[72] D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A.

Ramakrishna, and J. B. Pendry, Appl. Phys. Lett. 82, 1506
(2003).

[73] N. Fang and X. Zhang, Appl. Phys. Lett. 82, 161 (2003).
[74] M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, and G. S.

Sokolovski, J. Mod. Opt. 46, 875 (2009).
[75] C. A. Valagiannopoulos and P. Alitalo, Phys. Rev. B 85, 115402

(2012).
[76] Matlab Optimization Toolbox reference guide, available

at:www.mathworks.com/products/optimization/index.html
[77] COMSOL Group, COMSOL Multiphysics: Version 5.1 (COM-

SOL, Stockholm, 2015).

115114-13

https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1103/PhysRevA.89.033829
https://doi.org/10.1103/PhysRevB.89.075136
https://doi.org/10.1103/PhysRevB.89.075136
https://doi.org/10.1103/PhysRevB.89.075136
https://doi.org/10.1103/PhysRevB.89.075136
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1126/science.1258004
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1038/nphys2927
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.112.143903
https://doi.org/10.1103/PhysRevLett.113.023903
https://doi.org/10.1103/PhysRevLett.113.023903
https://doi.org/10.1103/PhysRevLett.113.023903
https://doi.org/10.1103/PhysRevLett.113.023903
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1126/science.1258480
https://doi.org/10.1103/PhysRevX.4.031011
https://doi.org/10.1103/PhysRevX.4.031011
https://doi.org/10.1103/PhysRevX.4.031011
https://doi.org/10.1103/PhysRevX.4.031011
https://doi.org/10.1103/PhysRevApplied.4.014005
https://doi.org/10.1103/PhysRevApplied.4.014005
https://doi.org/10.1103/PhysRevApplied.4.014005
https://doi.org/10.1103/PhysRevApplied.4.014005
https://doi.org/10.1103/PhysRevX.6.041018
https://doi.org/10.1103/PhysRevX.6.041018
https://doi.org/10.1103/PhysRevX.6.041018
https://doi.org/10.1103/PhysRevX.6.041018
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1038/ncomms6905
https://doi.org/10.1109/JSTQE.2016.2549512
https://doi.org/10.1109/JSTQE.2016.2549512
https://doi.org/10.1109/JSTQE.2016.2549512
https://doi.org/10.1109/JSTQE.2016.2549512
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1088/0305-4470/35/31/101
https://doi.org/10.1088/1751-8113/41/5/055304
https://doi.org/10.1088/1751-8113/41/5/055304
https://doi.org/10.1088/1751-8113/41/5/055304
https://doi.org/10.1088/1751-8113/41/5/055304
https://doi.org/10.1088/0266-5611/10/3/004
https://doi.org/10.1088/0266-5611/10/3/004
https://doi.org/10.1088/0266-5611/10/3/004
https://doi.org/10.1088/0266-5611/10/3/004
https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1109/22.798002
https://doi.org/10.1103/PhysRevE.67.065601
https://doi.org/10.1103/PhysRevE.67.065601
https://doi.org/10.1103/PhysRevE.67.065601
https://doi.org/10.1103/PhysRevE.67.065601
https://doi.org/10.1016/j.metmat.2008.03.005
https://doi.org/10.1016/j.metmat.2008.03.005
https://doi.org/10.1016/j.metmat.2008.03.005
https://doi.org/10.1016/j.metmat.2008.03.005
https://doi.org/10.1063/1.1306662
https://doi.org/10.1063/1.1306662
https://doi.org/10.1063/1.1306662
https://doi.org/10.1063/1.1306662
https://doi.org/10.1364/OPEX.12.004072
https://doi.org/10.1364/OPEX.12.004072
https://doi.org/10.1364/OPEX.12.004072
https://doi.org/10.1364/OPEX.12.004072
https://doi.org/10.1155/2012/368786
https://doi.org/10.1155/2012/368786
https://doi.org/10.1155/2012/368786
https://doi.org/10.1155/2012/368786
https://doi.org/10.1364/OME.2.000496
https://doi.org/10.1364/OME.2.000496
https://doi.org/10.1364/OME.2.000496
https://doi.org/10.1364/OME.2.000496
https://doi.org/10.1103/PhysRevLett.108.063902
https://doi.org/10.1103/PhysRevLett.108.063902
https://doi.org/10.1103/PhysRevLett.108.063902
https://doi.org/10.1103/PhysRevLett.108.063902
https://doi.org/10.1364/OPTICA.3.000179
https://doi.org/10.1364/OPTICA.3.000179
https://doi.org/10.1364/OPTICA.3.000179
https://doi.org/10.1364/OPTICA.3.000179
https://doi.org/10.1051/epjam/2016003
https://doi.org/10.1051/epjam/2016003
https://doi.org/10.1051/epjam/2016003
https://doi.org/10.1051/epjam/2016003
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1126493
https://doi.org/10.1126/science.1125907
https://doi.org/10.1126/science.1125907
https://doi.org/10.1126/science.1125907
https://doi.org/10.1126/science.1125907
https://doi.org/10.1126/science.1242818
https://doi.org/10.1126/science.1242818
https://doi.org/10.1126/science.1242818
https://doi.org/10.1126/science.1242818
https://doi.org/10.1364/OME.1.001090
https://doi.org/10.1364/OME.1.001090
https://doi.org/10.1364/OME.1.001090
https://doi.org/10.1364/OME.1.001090
https://doi.org/10.1109/JSTQE.2015.2511582
https://doi.org/10.1109/JSTQE.2015.2511582
https://doi.org/10.1109/JSTQE.2015.2511582
https://doi.org/10.1109/JSTQE.2015.2511582
https://doi.org/10.1063/1.1554779
https://doi.org/10.1063/1.1554779
https://doi.org/10.1063/1.1554779
https://doi.org/10.1063/1.1554779
https://doi.org/10.1063/1.1536712
https://doi.org/10.1063/1.1536712
https://doi.org/10.1063/1.1536712
https://doi.org/10.1063/1.1536712
https://doi.org/10.1080/09500349908231310
https://doi.org/10.1080/09500349908231310
https://doi.org/10.1080/09500349908231310
https://doi.org/10.1080/09500349908231310
https://doi.org/10.1103/PhysRevB.85.115402
https://doi.org/10.1103/PhysRevB.85.115402
https://doi.org/10.1103/PhysRevB.85.115402
https://doi.org/10.1103/PhysRevB.85.115402
http://www.mathworks.com/products/optimization/index.html



