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Abstract

Abstract

Classical statistical and signal processing techniques are not generally

useful in situations wherein the dimensionality (p) of observations is compa-

rable or exceeding the sample size (n). This is mainly due to the fact that

the performance of these techniques is guaranteed through classical notion of

statistical consistency, which is itself fashioned for situations wherein n >> p.

Statistical consistency has been viogorously used in the past century to develop

many signal processing and statistical learning techniques. However, in recent

years, two sets of mathematical machineries have emerged that show the possi-

bility of developing superior techniques suitable for analyzing high-dimensional

observations, i.e., situations where p >> n. In this thesis, we refer to these

techniques, which are grounded either in double asymptotic regimes or sparsity

assumptions, as high-dimensional techniques.

In this thesis, we examine and develop a set of high-dimensional tech-

niques with applications in classification. The thesis is mainly divided to three

parts. In the first part, we introduce a novel approach based on double asymp-

totics to estimate the regularization parameter used in a well-known technique

known as RLDA classifier. We examine the robustness of the developed ap-

proach to Gaussianity, an assumption used in developing the core estimator.

The performance of the technique in terms of accuracy and efficiency is verified

against other popular methods such as cross-validation. In the second part of

the thesis, the performance of the newly developed RLDA and several other

classifiers are compared in situations where p is comparable or exceeding n.

While in the first two parts of the thesis, we focus more on double asymp-
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totic methods, in the third part, we study two important class of techniques

based on sparsity assumption. One of these techniques known as LASSO has

gained much attention in recent years within the statistical community, while the

second one, known as compressed sensing, has become very popular in signal

processing literature. Although both of these techniques use sparsity assump-

tions as well as L1 minimization, the objective functions and constrains they are

constructed on are different. In the third part of the thesis, we demonstrate the

application of both techniques in high-dimensional classification and compare

them in terms of shrinkage rate and classification accuracy.
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Introduction

Chapter 1 – Introduction

Trying to predict an outcome from the past observations was always fascinating

humankind in many problems such as everyday life weather forecast, currency

exchange rates or medical classification based on gene expression profiles. The

mathematical field that accomplishes such tasks is called pattern recognition or

machine learning. The set of machineries used in pattern recognition can be

divided into three intertwined parts: error estimation, feature extraction, and

classification [1]. Giving a thorough discussion on each of them is not a feasible

task, but readers may refer to [2–5] for more information. What concerns us here

in this thesis is classification problems and their applications in high-dimensional

settings, i.e., situations where the dimensionality of observations (the number

of variables) is comparable or exceeding the sample size.

Throughout the last century, the classification rules were developed re-

lying on a classical statistical notion of statistical consistency which is shaped

under assumptions that number of observations (n) increases unboundedly while

observation dimensionality (p) is held fixed [1]. Many classification techniques,

known as classifiers, have been developed under such assumptions and the fact

that these assumptions guarantee that classifiers should converge to the optimum

classifier (Bayes classifier) in very large sample settings has been a tempting

idea for many practitioners to use them. In contrary to the idea behind these

methods, the modern databases have much more variables (features) compared

to the available sample size. For example, consider an image processing applica-

tion where each pixel can be viewed as one feature, while the amount of sample

images of the object is strictly limited; or in gene microarray-based classification
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of phenotypes where each gene (out of tens of thousands genes) is a potential

feature, while the number of available subjects (individuals) is very limited.

Analyzing such datasets using classical techniques requires dimensionality re-

duction procedures that transforms the original high-dimensional data into a new

low dimensional feature space. Another major factor that repulses community

from using high-dimensional settings is related to the “curse of dimensionality”

phenomenon (also known as the “peaking phenomenon"), which states that for

a given sample size adding more feature variables to a classifier improves the

predictive capacity only up to a certain point, after which the performance starts

to deteriorate [6].

A solid example of the classifier operating in high-dimensions outper-

forming the one that use classical notion of statistical consistency is given in [1],

where EuclideanDistance Classifier (EDC,will be discussed later) was used on a

multinomial Gaussian distributed synthetic dataset with various configurations.

As stated in [1], suppose θ0 = −θ1, θ0 = [0.2T
(10), 0.05T

(190), 0.03T
(1200), 0

T
(300)]

T

and Σ = I1700, where Ip is a p dimensional identity matrix. As it is a common

(e.g., see [7]), the “best” features were added first to the classifier and the accu-

racy of classifier was examined to see the validity of the peaking phenomenon.

This choice of θi also provides an opportunity to extract features easily since

larger mean values of features more discriminative and will be picked first. The

training data has 200 samples in total with n = 100 observations for each class.

The expected true error of the EDC classifier is given in [8]:

E[εn,p] ≈ Φ
©«
−δ2p√
δ2p + 2J

ª®®¬ , (1.1)
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where J = p/n, and

δ2p = (θ0 − θ1)T Σ−1 (θ0 − θ1) , (1.2)

is known as Mahalanobis distance. It is notable that the optimum true error is

obtained when p = 1400 (E[ε100,1440] = 0.254), while feeding all 1700 features

to the model results in a lower misclassification rate than the first local minima

(E[ε100,1700] = 0.273 > E[ε100,10] = 0.276). This means that using classifiers in

high-dimensional setting would not certainly result in poor performance, instead

it can reveal new unexpected findings.

Exploring high-dimensional space using tools that were originally de-

signed for classical statistical assumptions is not always probable. EDC being a

modification of popular Linear Discriminant Analysis (LDA, will be discussed

later), can classify data in any positive p/n ratio (p/n > 0), while its original

counterpart LDA is not defined when data dimensionality reaches the sample

size (p/n ≥ 1). This implies that scientists should not rely (but still consider)

on classical statistical notion when looking for classifiers that operate in high-

dimensions and shift towards new frameworks in designing high-dimensional

classifiers.

One of the ways to design a high-dimensional classifier is to apply the

Girko analysis (general statistical analysis of observations also known as G-

analysis) [9], which deploys double asymptotic assumptions n → ∞, p → ∞,

p/n → c, where 0 < c < ∞. This framework is also the groundwork of the

Random Matrix Theory (RMT) that has been used successfully in recent years

in wireless communications [10]. Nevertheless, not much research has been

3



conducted on applications of double asymptotics in machine learning area [1],

despite its usage is well justified by numerous examples from other fields such

as nuclear physics and signal processing (see [1, 11]).

Another technique to design a classifier for high-dimensional analysis

is called shrinkage. Generally, shrinkage methods are useful when there is a

sparsity of the model, i.e., only a certain number of feature variables account for

the response variable [12]. Unlike themethods that use explicit feature extraction

procedure, the process of feature extraction remains implicit in shrinkage-based

techniques [13].

The relevance of high-dimensional classification, whether based on double

asymptotics or shrinkage, lies in a continuously increasing amount of informa-

tion that is needed to be analyzed. For example, in medicine, studying many

genes simultaneously is helpful in classifying and revealing new types of can-

cer [14], drug development [15], or estimating cancer survival rate according to

the probability of cancer relapse (see [16] for more information). This thesis dis-

cusses the mathematical tools that stand behind these discoveries, particularly:

Chapter 2 introduces a new methodology to estimate the regularization parame-

ter of Regularized Linear Discriminant Analysis (RLDA). In Chapter 3 one can

find a comprehensive performance comparison of several classifiers designed

under classical and double asymptotic assumptions, and Chapter 4 details two

classification schemes based on model sparsity assumptions.

Throughout the report, a uniform mathematical consistency of variables

is used. A bold greek or latin symbol written in lowercase represents a column

vector, e.g., x or β; a bold capital letter stands for matrix, e.g., A; Ip stands

for the p dimensional identity matrix; a super index T , e.g., xT , denotes the

4



transpose operation; | |x| |2 indicates the L2 norm distance; and finally, tr[.] is a

trace operator (sum of diagonal elements).
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An Efficient Methodology of Estimating Regularization Parameter in RLDA

Chapter 2 – An Efficient Methodology of

Estimating Regularization Parameter in

RLDA

2.1 Introduction

Linear Discriminant Analysis (LDA) is a popular classification scheme that can

be applied in situations where the dimensionality of observations is less than

the sample size, i.e., when p < n. In situations where p ≥ n, one of the

building blocks of the LDA (the covariance matrix) becomes ill-conditioned,

and as a result LDA is not defined. To overcome that Di Pillo [17] replaced the

ill-conditioned inverse estimated covariance matrix of LDA with a modified one

that is stabilized by introducing a regularization parameter, and constructed a

classifier known as the Regularized LDA (RLDA). Di Pillo based his work on the

idea of Hoerl and Kennads who stabilized the ill-conditioned ridge regression

suffering from the same problem [18–20]. However, as stated by Di Pillo,

careful selection of the regularization parameter is important because it can

substantially change the performance of RLDA [21]. According to Peck and

Ness [22], Di Pillo came to the conclusion that the analytical solution of the

optimum regularization parameter (γ) in RLDA is intractable and in practice it

should be estimated from empirical observations.

Currently, popular cross-validation (CV) techniques can be deployed to

estimate the optimum γ; however, due to repetitive nature of CV, the classifi-

cation rule is applied on training data for each value of γ during the search and

6



repeated several times, thereby this approach is not computationally efficient. In

this chapter, we introduce an efficient methodology to estimate the regularization

parameter in RLDA and compare the performance of the estimation technique

with conventional techniques that use plug-in estimator or CV schemes such

as 5 fold, 5 repetitions CV (CV5F-5R) and leave-one-out CV (LOO). The new

methodology is based on a recently developed RLDA true error estimator devel-

oped in [23] and computes the expected true error with a pre-defined exponential

range of γ, after which the γ with the lowest error can be estimated.

2.2 Methodology

LDAwas firstly introduced by Ronald. A. Fisher in 1936 [24] to classify different

plants in taxonomic data. Fisher founded his idea based on maximizing the ratio

of between class to within class scattering matrices. The same principle is

used in the modern LDA but with an assumption of the common covariance

matrix between classes. Since the LDA was first introduced in 1936s, it has

found many applications in face recognition [25], cancer genomics [26], finance

problems [27], and others.

Consider a binary classification problem with common covariance matrix

[28]. The samples for each class, Xi = {xini} are driven with a class mean

value x̄0 and x̄1 with p amount of features, n0 and n1 samples for classes 0 and

1 respectively. Let the difference between the mean vectors d = x0 − x1, the

sample covariance matrix

S =
1

n0 + n1 − 2
A,

7



where

A =
∑
i=0,1

ni∑
j=1

(xi − x̄i) (xi − x̄i)T .

The arbitrary linear combination

Z = bTx,

the its difference between the sample means

Z̄0 − Z̄1 = bTx

and its variance is

var (Z) = bTSb.

Original LDA (Fisher’s LDA) objective was to maximize the ratio(
Z̄0 − Z̄1

)2
var (Z) =

(
bTd

)2
bTSb

with respect to b. The solution to this problem is

b = S−1d.

The classification rule (bTx =
1

2
(x̄0 + x̄1) can be assigned to either class) is

given by

ψ (x) =


0 if bTx >

1

2
(x̄0 + x̄1)

1 if bTx ≤ 1

2
(x̄0 + x̄1)

Modern LDA (LDA hereafter) classifier is grounded in the following

8



assumptions [29]. Suppose a binary classification problem in which data from

class i (i = 0, 1) follows a multivariate Gaussian distributionN(µi,Σ) for i = 0, 1.

Note that Σ does not depend on i and is identical across both classes. The sample

space S0 and S1with n0 and n1 amount of samples are driven fromRp populations

Π0 and Π1 respectively. Let n = n0 + n1 and n0, n1 being predefined constants,

i.e., case of separate sampling is considered. The true error of classifier, ε, is

defined as

ε = α0ε0 + α1ε1, (2.1)

where αi is a prior probability of class i and εi is the misclassification rate the

classifier commits on future sample point coming from class i. Since αi’s are

unknown in many cases, they are estimated as αi = ni/n, which converge to

the population values as number of observations increases unboundedly. The

modern LDA uses the same principle as was described by R. Fisher in [24], but

with the assumption of Gaussianity of data with a common covariance matrix

across classes, it can be represented as Anderson’s statistics [29] given by:

W LDA(x̄0, x̄1,C, x) =
(
x − x̄0 + x̄1

2

)T

C−1 (x0 − x1) , (2.2)

where x̄i =
1

ni

∑
xl∈Si xl is sample mean for class i, C is the pooled sample

covariance matrix,

C =
(n0 − 1)C0 + (n1 − 0)C1

n0 + n1 − 2
, (2.3)

with

Ci =
1

ni − 1

∑
xl∈Si

(xl − x̄i)(xl − x̄i)T . (2.4)

The RLDA discriminant modifies the inverse pooled sample covariance matrix
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used in LDA by defining,

W RLDA (x̄0, x̄1,C, x) = κ
(
x − x̄0 + x̄1

2

)T

H (x̄0 − x̄1) , (2.5)

where κ > 0, γ > 0 and,

H =
(
Ip + γC

)−1
. (2.6)

The classification rule for LDA and RLDA is given by

ψn(x) =


1, if W ≤ c

0, otherwise
, (2.7)

where c = log 1−α0
α1

and W indicates the discriminant functions given by (2.2)

or (2.5) for LDA or RLDA, respectively. The generalized consistent estimator

introduced in [23] provides an analytical expression to estimate the true error

that an RLDA classifier commits on class i as:

ε̂D
i = Φ

©«
(−1)i+1 G (x̄i, x̄0, x̄1,H) + (n0+n1−2)δ̂

ni
+ (−1)−i c

κ√(
1 + γδ̂

)2
D (x̄0, x̄1,H,C)

ª®®®®¬
, (2.8)

where

δ̂ =

p
n0+n1−2 −

tr[H]
n0+n1−2

γ
(
1 − p

n0+n1−2 +
tr[H]

n0+n1−2

) , (2.9)

while

G (µi, x̄0, x̄1,H) =
(
µi −

x̄0 + x̄1
2

)T

H (x̄0 − x̄1) , (2.10)

10



and

D (x̄0, x̄1,H,C) = (x̄0 − x̄1)T HCH (x̄0 − x̄1) . (2.11)

Then the overall estimated error of RLDA is

ε̂D = α0ε̂
D
0 + α1ε̂

D
1 . (2.12)

where ε̂D
0 is defined in (2.8). This estimator is based on the concept of generalized

consistent estimation, which is itself based on double asymptotic framework (see

[23] for more information). Later in this chapter, we employ the estimator in a

one-dimensional range search to estimate the optimum regularization parameter

and compare the performance of estimation to cross-validation (CV5F-5R and

leave-one-out) and plug-in estimator. For a sample data of size n, the leave-one-

out estimation technique is summarized below:

Step 1: Set j = 0

Step 2: Set aside one of the sample points from the training data

Step 3: Use all other sample points to train the classifier

Step 4: Apply the classifier (in our case RLDA) to classify the held-out sample
point

Step 5: Increment j if the held-out sample point is misclassified

Step 6: Repeat Steps 2-4 for any sample point that has not been held out yet.
Go to the next step when all sample points have been held out once.

Step 7: Estimate the true error as j/n

To find the γopt using leave-one-out (loo), we need to estimate the true error for

each γ and trace the γ value that corresponds to the minimum error estimate.

The CV5F-5R is similar to leave-one-out with a difference in the number

11



of held-out samples and repetitions to perform. As the name suggests, CV5F-5R

breaks the training data to 5 folds and repeats the main process 5 times. The

steps to conduct CV5F-5R are given below:

Step 1: Randomly divide the training data into 5 folds

Step 2: Set aside one fold

Step 3: Use other folds to train the classifier

Step 4: Apply the trained classifier to the held-out sample and estimate the error

Step 5: Repeat steps 3 and 4 and for any fold that has not been held out yet

Step 6: Repeat all previous steps 5 times

Step 7: Estimate the true error as the average of all estimated errors

The γopt is the one that corresponds to the least estimated error using CV5F-5R.

The plug-in estimator was derived in [30] and is given by

ε̂P
i = Φ

(
(−1)i+1 G (x̄i, x̄0, x̄1, x) + (−1)−1 c

κ√
D (x̄0, x̄1,H,C)

)
, (2.13)

This estimator has the property that under classical large sample assumptions

(n → ∞ and p is fixed) it converges to the true error of RLDA (statistical

consistency). This is different from (2.8) that converges to true error under

double asymptotic assumptions, n→∞, p→∞, p/n→ c, where 0 < c < ∞.

In order to compare the performance of the aforementioned estimation

techniques in estimating the optimum value of regularization parameter used in

RLDA, we conduct a set of simulations and examine which estimator results in

the smallest average true error. This means that in each scenario that we consider

(i.e., for each n, p, and each dataset), we need to have a knowledge of the true
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error of the constructed classifier as well. In simulations using real datasets,

we have no knowledge of class conditional probability distributions and the true

error per se needs to be estimated from the data in hand. This can be done via

the hold-out estimator, i.e., randomly divide the full dataset into two different

sets, the training and testing sets. Estimate γopt and train the RLDA classifier

using the training set, and apply the classifier on test data to estimate the true

error. Repeating this process many times and taking the average of the estimated

hold-out error converges to the expected true error of the classifier conditional

on n, p, and the dataset.

We have deployed Monte-Carlo simulations using synthetic and real

datasets to study the performance of the aforementioned estimators, namely,

CV5F-5R, loo, plug-in (ε̂P), and ε̂D (in figures identified by “dasym”), in es-

timating γopt. In experiments using real datasets, the initial large number of

features has been reduced to a number comparable to the sample size. This was

done by a two sample t-test and selecting those features which the least p-values.

In our simulation study, we have used the following protocol in experiments

using real data:

Protocol 2.1:

Step 1: Let r = N0/N1 express the ratio of the number of observations in class
0 and class 1, and N = N0 + N1 be the total number of samples in the
data. Select a set of observations of size n (n < N) and generate a
training set such that the proportion of sample points from either class
follows the value of r obtained from the full dataset. Let n0 = brn1c,
where b.c indicates the floor function. Setting n = n0 + n1 and having
n0 leads to n1 = b n

r+1c. Randomly select a set of training data of size
n = {30, 40, ..., 100} and set aside the rest for testing.

Step 2: Let γ = γi
base for i = {−10,−9, ..., 0, 1, ...10}, where γbase = (1000)1/10.

The choice of an exponential function for possible range of γ is justified
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because for small (large) values of γ a small change can have potentially
a large (small) impact on the performance of RLDA. This exponential
range of γ allows us to skip too many unnecessary computations in our
search for optimal γ.

Step 3: For each value of γ determine CV5F-5R, loo, εD, and εP error estimates
as well as the true error (via hold-out estimator).

Step 4: Find the γopt from the range of γ via given estimators. For each
estimator, γopt is the γ that corresponds to the least value of the estimate
in the pre-determined exponential range. Record the value of true error
corresponding to γopt (the value of true error is available from the
previous step).

Step 5: Repeat Steps 1-4 500 times and determine the average expected error
rate of the classifier.

The set of real datasets used in our experiments is provided in Table 2.1.

All real databases were collected from [31], [32] and [33]. Description for each

database is given in Appendix A.

Table 2.1: Microarray studies used in Chapter 2 experiments

Dataset Features n0/n1

Chen [34] 10, 237 75/82

Desmedt [35] 22, 215 98/77

Natsoulis [36] 8, 491 120/61

Rosenwald [37] 5, 013 114/89

Valk [38] 22, 215 116/157

Vijver [39] 5, 003 180/115

Yeoh [40] 5, 077 149/99

The synthetic data used in our experiments have been generated by Gaus-

sian and skewed-normal distributions. In experiments conducted usingGaussian
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distributed data, the sample size ranged from 30 to 300 and the number of features

was p = {5, 20, 50, 150}. The protocol (pseudo-code for γopt estimation algo-

rithm is given in D) for synthetic data experiments using Gaussian distributions

is given below:

Protocol 2.2:

Step 1: Let Σ be 1 on the diagonal and 0.1 off the diagonal elements, µ1 = −µ0,
where µ0 = (a, a, . . . , a) and a is selected according toMahalanobis dis-
tance, ∆, between classes [∆2 = (µ0 − µ1)T Σ−1 (µ0 − µ1)]. By varying
the Mahalanobis distance we change the lower bound on the true error
rate of the classifier, also known as Bayes error. For ∆2 = {9, 5, 2, 0.75}
the Bayes error εBayes = {0.066, 0.131.0.239, 0.332}, respectively.

Step 2: Generate a set of samples of size n0 and n1 from populations Π0 =
N (µ0,Σ) and Π1 = N (µ0,Σ) respectively, such that n0 = n1 = n

2 . Note
that in this case α0 = α1 = 1

2 .

Step 3: For each value of γ in a pre-determined exponential range, determine
CV5F-5R, loo, εD, and εP error estimates. As before in our experiments
we used γ = γi

base, where γbase = (1000)1/10, and i = {−10,−9, . . . , 10}.

Step 4: Compute the true error of the classifier using (2.1) and (2.13) by replac-
ing the sample parameters by their corresponding population values.

Step 5: Find the γopt from the range of γ via given estimators. For each
estimator, γopt is the γ that corresponds to the least value of the estimate
in the pre-determined exponential range. Record the value of true error
corresponding to γopt (the value of true error is available from the
previous step).

Step 6: Repeat Steps 1-5 500 times and determine the average expected error
rate of the classifier.

The skewed-normal (z SN (µ,Σ, β)) distribution is amodification ofGaus-

sian distribution, but it adds the skewness factor to the overall data according

to

2φp (z; µ,Σ)Φ
(
βT (z − µ)

)
, (2.14)
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where φ (z; µ,Σ) is a p dimensional normal density with mean vector of µ and

covariance matrix of Σ, Φ
(
βT (z − µ)

)
is standard normal distribution, and

β = {β, β, . . . } is a p-dimensional “shape parameter vector” [41] which adds

the skewness to the normal distribution. The real mean and covariance matrix

of skewed-normal distribution are not µ and Σ, and letting β = 0 leads to a

Gaussian distribution with such population parameters.

The experiments for skewed-normal and Gaussian distributions are very

similar. We just replace the Gaussian distributions in Protocol 2.2 with skewed-

normal distribution given in (2.14) with parameters β = {2, 4}, and choose

n = {30, 40, . . . , 100}, and p = {20, 50}. The values of µ1 = −µ0, where

µ0 = (a, a, . . . , a) is chosen such that the Mahalanobis distance, ∆ = 2, and Σ

having 1 on the diagonal and 0.1 as the off diagonal elements.

2.3 Results and Discussion

Fig. 2.1 and 2.2 show the γopt for real databases when feature size p = 50 and p =

150, respectively. In these figures, each dataset listed in Table 2.1 is represented

in a single row with four columns corresponding to various estimators and a

single column corresponding to the true error itself (hold-out estimator). Each

plot includes eight different curves corresponding to different training sample

size. The vertical axis in each figure were scaled (except the plugin estimator)

to facilitate the comparison of the performance of each estimator in estimating

the actual γopt, which correspond to the γ with least true error in the right most

column. It is seen that the plugin estimator’s error has a monotone decreasing

function as γ increases, and eventually converges to zero. This suggests that the
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Figure 2.1: Expected estimated and true error (y-axis) versus regularization parameter
log(γ) (x-axis) for several real datasets listed in Table 2.1 when p = 50.
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Figure 2.2: Expected estimated and true error (y-axis) versus regularization parameter
log(γ) (x-axis) for several real datasets listed in Table 2.1 when p = 150.
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Figure 2.3: Expected true error as a function of sample size when p = 50 (left) and p = 150
(right).

plugin estimator is not a good estimator of regularization parameter (compare

with the curves of true error in the right most column). All other estimators

show the non-linear behavior of the expected true error as a function of the

regularization parameter γ. Depending on the real data type, the γopt lies

in a different range which is well identified by dasym-est, CV5F-5R, and loo

estimators.

Figures 2.3 to 2.5, 2.6 and 2.7 show the expected true error rates with

estimated γopt for real, Gaussian and skewed-normally distributed synthetic

data respectively. Even though that at a relatively large sample size, the plug-in

estimator shows a relatively good performance and sometimes outperforms other

estimators (e.g., see 2.4c and 2.5c), it is in general inferior to other estimators.

In all real databases, regardless of the training sample size and number of

features, ε̂D (dasym-est in figures) has a similar or better performance compared

to CV estimators (loo or CV5F-5R). The result of experiments using synthetic

data generated either from normal distributions (Fig. 2.6) or skewed-normal
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Table 2.2: Time Calculations p = 50

Sample
size

Total time for all iterations, s Average time for each iteration, ms

ε̂D CV5F-
5R

loo ε̂P true ε̂D CV5F-
5R

loo ε̂P true

30 3.8 159.1 81.4 3.4 56.6 7.5 318.2 162.8 6.8 113.2

40 3.8 172.3 109.0 3.4 53.5 7.6 344.7 218.0 6.7 107.0

50 3.6 179.5 136.1 3.3 47.1 7.2 359.1 272.1 6.6 95.5

60 3.6 196.2 161.3 3.3 47.1 7.2 392.4 322.6 6.6 90.9

70 3.6 209.1 189.7 3.3 45.5 7.3 418.3 379.4 6.7 94.2

80 3.7 223.1 217.6 3.3 44.3 7.3 446.2 435.2 6.7 88.7

90 3.6 236.1 245.7 3.3 42.8 7.3 472.2 491.4 6.6 85.5

100 3.7 249.7 274.6 3.3 41.2 7.3 499.4 549.1 6.5 82.3

distributions (Fig. 2.7) suggest a similar trend. Even though one of the primary

assumptions in developing ε̂D is the Gaussianity of data, good performance on

skewed-normal distributions as well as real data demonstrate the robustness of

ε̂D to the non-Gaussian distributions.

Since the cross-validation estimators are based on constructing a set of

surrogate classifiers and resampling procedure, the overall computational time

of the range search for γopt is significant and increases as a function of sample

size and the number of features. On the other hand, ε̂D is calculated through a

closed-form expression given in (2.8) avoiding highly computationally intensive

procedure similar to those used in CV estimation. Tables 2.2 and 2.3 show the

computational time spent to apply all estimators on one of the real datasets (Chen

dataset [34]) when feature size p = 50 and p = 150, respectively. As the sample

20



Table 2.3: Time Calculations p = 150

Sample
size

Total time for all iterations, s Average time for each iteration, ms

dasym-
est

CV5F-
5R

loo plugin true dasym-
est

CV5F-
5R

loo plugin true

30 16.1 445.4 425.3 15.9 43.1 80.7 2227.0 2126.7 79.4 215.4

40 16.0 462.4 567.6 15.8 41.1 80.2 2312.1 2837.8 79.0 205.3

50 16.0 482.0 713.0 15.9 40.1 80.0 2409.9 3565.1 79.6 204.8

60 16.0 498.4 857.5 16.1 41.2 79.8 2492.2 4287.3 80.5 206.1

70 16.2 521.4 1006.3 16.4 40.4 80.9 r2607.1 5031.7 82.0 202.2

80 16.0 542.1 1156.2 15.9 41.1 80.1 2710.3 5780.8 79.6 205.6

90 16.2 565.8 1310.7 16.3 41.2 81.0 2828.8 6553.3 81.7 206.1

100 16.1 586.1 1459.7 16.0 41.4 80.7 2930.5 7298.3 80.0 207.2

size and the number of feature increases, the CV-based search needs more time

to estimate γopt, while the computational time of ε̂D-based search did not show

any substantial change with larger sample sizes. This is also clear from Fig. 2.8,

which shows the ratio of the average compute time of range searches based on

CV and loo to ε̂D and ε̂P. To summarize, the results show that the proposed

ε̂D-based search of the optimum regularization parameter can potentially result

in a RLDA classifier with a comparable or better accuracy than RLDA classifiers

constructed using CV-based search scheme, while at the same time, being tens

to hundreds of times faster to compute.
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2.4 Conclusions

Efficient estimation of regularization parameter in RLDA is essential in high-

dimensional settings, where LDAbecomes degenerate and either cannot perform

well or not defined at all. This chapter aimed to introduce a new methodology to

estimate the optimum regularization parameter in RLDA by using the concepts

of generalized consistent estimation. In this regard, a generalized consistent

estimator of RLDA true error (ε̂D) is proposed to be used in estimating the

optimum regularization parameter. This estimator is constructed using double

asymptotic assumptions (n → ∞, p → ∞, p/n → c, 0 < c < ∞). The

performance of a range search technique based on the estimator was compared

to a similar search technique based on cross-validation procedures such asCV5F-

5R (five folds, five repetitions) and leave-one-out (loo) as well as the simple plug-

in estimator designed under classical assumptions used in statistics (n→∞, p is

fixed). The proposedmethodology is based on searching for the optimum γ from

the exponential grid and its performancewas verified on seven real databases and

a set of synthetic data generated usingGaussian and skewed-normal distributions

for various settings which represent both the low- and high-dimensional spaces.

In all experiments ε̂D shows a performance (expected true error) that is better

or comparable to CV estimators. Having an analytical closed form expression

and the absence of a resampling procedure in ε̂D result in a low computational

time. The results confirm that the proposed ε̂D-based search technique is tens to

hundreds of times faster than a similar search technique that uses CV estimators.

The downside of the search scheme lies in the pre-defined range of possible

optimum γ. Future work needs to be done to better elucidate the possible
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range of γopt. Nevertheless, as it was mentioned before, analytical solution for

the exact value of γopt depends on class conditional distributions, which are

virtually unknown in practice, and, so might be the possible range of γopt.
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Figure 2.4: Expected true error as a function of sample size for several real datasets listed in
Table 2.1 when p = 50 (left) and p = 150 (right).
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Figure 2.5: Expected true error as a function of sample size for several real datasets listed in
Table 2.1 when p = 50 (left) and p = 150 (right).
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(d) p = 150

Figure 2.6: Expected true error as a function of sample size obtained using synthetic data:
case of Gaussian distributions
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Figure 2.7: Expected true error as a function of sample size obtained using synthetic data:
case of skewed-normal distributions
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A Comparison of Linear Classifiers when the Sample Size is Comparable to the Dimensionality of Observations

Chapter 3 – A Comparison of Linear

Classifiers when the Sample Size is

Comparable to the Dimensionality of

Observations

3.1 Introduction

Classification is one of the main features that is offered by machine learning

community. Over the last century scientists were attracted by the classical

statistical notion of statistical consistency which assumes that the number of

observation points are infinitely large, while the dimensionality of observations

is fixed (n → ∞, p is fixed). Even though in many modern applications obser-

vations possess a dimension comparable to the sample size, many practitioners

still attempt to apply the classical techniques.

A simple example of Euclidean Distance Classifier (EDC) given in Chap-

ter 1 and [1] demonstrates the possible potential of high-dimensional machine

learning. This example shows depending on the probability structure of obser-

vations, there exists classifiers operating in a high dimensional settings that can

have better performance than when being used in lower dimension. One poten-

tial machinery to construct a classifier well suited for high-dimensional analysis

is to use Girko analysis (G-analysis) which is based on the double asymptotic

assumptions [1]. The working principle of this analysis is based on having a

sample size that is comprable to the magnitude of dimesnion in an asymptotic
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sense, i.e., n → ∞, p → ∞, p/n → c, 0 < c < ∞. Since the constant c in

p/n → c can be any finite positive number, the classifiers designed under the

double-asymptotic assumptions can potentially operate well in a wide range of

sample size and dimension. Wymen et.al [42] conducted a comparison of the

analytical expressions designed under classical and double asymptotic assump-

tions and concluded that the double asymptotic expressions are more accurate

than the classical ones, even when n/p < 3. Another comparison study was

conducted by Raudys and Young [8], who reviewed the analytical expressions

of various linear and quadratic discriminant analysis derived under the double

asymptotic assumptions. The conclusion of their work reiterates the so called

“scissors effect”, which means that for a small training sample size, it is more

beneficial to apply simple classifiers than complex ones.

A comparative study conducted by Dudoit et.al [14] made a similar con-

clusion. They compared LDA, Diagonal Linear and Quadratic Discriminant

Analysis (DLDA and DQDA), k-nearest neighbor classifiers, classification and

regression trees (CART), and aggregating classifiers such as bagging and boost-

ing. They conducted the study on several datasets and set the training sample size

as one-third for test and two-third for training, data dimension was picked be-

tween p = 10 and p = 200. This study did not include Support Vector Machines

(SVM) and several other classifiers developed based on double asymptotics even

though comparable p and n conditions were applied for the experiments. They

conclude that the simpler the classifier, the better its performance in small-

sample settings. The question that remains is whether constructing a classifier

in situations where the sample size and dimension are comparable in magnitude

is practically important.
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Consider a typical genomic datasets where thousands of genes are studied

from a limited number of subjects across various phenotypic groups and the

task is to classify individuals based on expression profiles. Regardless of the

machinery used, it is now the general consensus that complex traits are com-

monly characterised by an interplay of many genomic factors. Several studies

have cataloged the implicated list of genes in various complex traits and the

result show that the number of implicated factors is more or less in the same

order of magnitude as a typical genomic dataset, e.g., 500 genes reflecting hu-

man melanoma [43] and cervical cancer [44], 240 genes responsible for renal

cancer, and more than 100 genes accounting for prostate cancer [45]. The classi-

cal statistical approach cannot handle this problem appropriately, while double

asymptotic assumptions can potentially lead to an appearance of better analyzing

tools.

In this Chapter, we conduct a comprehensive study of several linear clas-

sifiers on a set of sample size and dimension that are comparable in magnitude.

We consider linear classifiers because they are simple, and consider binary clas-

sification as it is very practical. We not only consider popular classifiers such as

SVMs, LDA, and RLDA, but also few other relatively unknown linear classifiers

developed under a double asymptotic framework.

3.2 Methodology

This section provides a brief overview of nine classifiers used in this chapter.

The comparison will be conducted on a samples size varying from 30 to 100

and data dimensionality ranging from 5 to 200. The list includes LDA [23],

30



DLDA [14], EDC [1,14], RLDA [23], G13 [9], Serdobolskii [46], Zarutskij [47]

classifiers, linear and non-linear (Gaussian) support vector machines. For all

classifiers consider the following points unless specified otherwise: firstly, a

binary classification problem is sampled separately from multivariate Gaussian

distribution N(µi,Σ) for i = 0, 1. secondly) the sample spaces S0 and S1 with n0

and n1 (n = n0+n1) amount observation vectors are driven from Rp populations

Π0 and P1 that have the covariance matrix Σ in common. The true error of

each classifier in the computational simulations are estimated using hold-out

estimator

3.2.1 Classifiers considered in this study

Linear Discriminant Analysis (LDA)

The objective of linear discriminant analysis is to maximize the ratio of the

between-class to within-class scattering matrices (see also Section 2.2). The

LDA was initially proposed in 1936 in a taxonomic applications [24] and has

found various applications today. LDA is represented byAnderson’s statistic [23]

given by,

W LDA(x̄0, x̄1,C, x) =
(
x − x̄0 + x̄1

2

)T

C−1 (x0 − x1) , (3.1)

where x̄i is sample mean for class i,

C =
(n0 − 1)C0 + (n1 − 0)C1

n0 + n1 − 2
, (3.2)
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where

Ci =
1

ni − 1

∑
xl∈Si

(xl − x̄i)(xl − x̄i)T . (3.3)

Using the discriminant in (3.1), the LDA classifier is then given by

ψn(x) =


1, if W LDA ≤ c

0, otherwise
, (3.4)

where c = log α1
α0
.

Diagonal LDA (DLDA)

DLDA is a simple modification of LDA, where the non-diagonal elements in the

pooled covariance matrix are replaced by zero:

CDLDA
i, j =


Ci,i if i = j

0 otherwise
, (3.5)

where Ci, j is given by (3.2). The DLDA classifier is obtained from (3.4) by

replacing LDA discriminant with DLDA discriminant.

Euclidean Distance Classifier

As the name suggests the Euclidean Distance Classifier (EDC) calculates the

Euclidean distance rather than the Mahalanobis distance (see (1.2) and (3.1)) in

LDA. Another way to describe the connection between LDA and EDC lies in the

sample pooled covariance matrix modification: the pooled covariance matrix in

LDA is replaced by the identity matrix. Either description of EDC is represented
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by,

W EDC(x̄0, x̄1, x) =
(
x − x̄0 + x̄1

2

)T

(x0 − x1) . (3.6)

The EDC follows the same classification rule as LDA shown in (3.4).

G13 Classifier

G13 classifier resembles LDAmuch stronger than all other modifications present

in this chapter. EDC, DLDA, RLDA and Zarutskij classifiers are related to LDA

via the modified inverse sample pooled covariance matrix, while G13 classifier

scales the whole discriminant value by a certain factor

WG13(x̄0, x̄1,C, x) =
(
x − x̄0 + x̄1

2

)T

C−1 (x0 − x1)
(
n0 + n1 − 2 − d

n0 + n1 − 2

)
. (3.7)

G13 classifier is then obtained from (3.4) by replacing the discriminant by (3.7).

Regularized LDA Classifier

Regularized LDA was originally designed by Di Pillo [17], who based his work

on ridge regression (Tikhonov regression) and its regularization parameter. The

problem of LDA starts when the observation dimensionality becomes compa-

rable to the sample size or even larger. Such cases produce the ill-conditioned

inverse pooled covariance matrix of LDA (see Eq. 3.3). The RLDA replaces

the ill-conditioned pooled covariance matrix by a new one:

H =
(
Ip + γC

)−1
, (3.8)
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which transforms linear discriminant to

W RLDA (x̄0, x̄1,C, x) = κ
(
x − x̄0 + x̄1

2

)T

H (x̄0 − x̄1) , (3.9)

where κ > 0, γ > 0. The RLDA classifier is obtained from (3.4) by replacing

(3.9) as the discriminant. The generalized consistent estimator introduced in [23]

gives an expression to estimate the true error of RLDA:

ε̂D
i = Φ

©«
(−1)i+1 G (x̄i, x̄0, x̄1,H) + (n0+n1−2)δ̂

ni
+ (−1)i c

κ√(
1 + γδ̂

)2
D (x̄0, x̄1,H,C)

ª®®®®¬
, (3.10)

where

δ̂ =

p
n0+n1−2 −

tr[H]
n0+n1−2

γ
(
1 − p

n0+n1−2 +
tr[H]

n0+n1−2

) , (3.11)

while

G (µi, x̄0, x̄1,H) =
(
µi −

x̄0 + x̄1
2

)T

H (x̄0 − x̄1) (3.12)

and

D (x̄0, x̄1,H,C) = (x̄0 − x̄1)T HCH (x̄0 − x̄1) . (3.13)

The optimum γ which results in the lowest expected true error is estimated via a

one dimensional range search for γ, and retrieving the one corresponding to the

least estimated true error. The total procedure of γopt estimation and procedure

comparison with popular cross-validation estimators is given in [48] and the

previous chapter in this thesis.
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Serdobolskii Classifier

Even though Serdobolskii classifier is a modification of LDA, it is not based on

the idea of replacing the covariance matrix only. In fact, the classifier original

proposal did not include the covariance matrix suggesting that Serdobolskii is

generally a modified version of EDC. Serdobolskii in [46] suggests to reduce the

dimensionality of the data by simply averaging the data in a feature wise manner

to obtain k groups with m elements each and apply EDC:

ā j,i =
1

m

∑
s∈Rj

µs,i

z j =
1

m

∑
s∈Rj

xs,

(3.14)

where µi is the population (or sample) mean for class i, R j denote a set of

numbersR j = {um, um+1, um+2, . . . , um+m−1} for u = {0, 1, 2, . . . , k−1}, and

āi = {a0,i, a1,i, a2,i, . . . , ak,i} and z = {z0, z1, z2, . . . , zk−1} for classes i = {0, 1}.

The discriminant function in Serdobolskii classifier is given by,

WSERD (ā0, ā1, z,m) = m
(
z − ā0 + ā1

2

)T

(ā0 − ā1) . (3.15)

To see the performance of the Serdobolskii approach by considering the

covariance matrix, we have also devised a heuristic a Serdobolskii-based clas-

sifier, by applying the dimensionality reduction strategy first and construct the

pooled sample covariance matrix as given in (3.2) and (3.3). Prior constructing

it, the whole training data should be translated into lower-dimensional space by
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using the bottom expression of (3.14) or:

a j,l =
1

m

∑
s∈Rj

Xs,l, (3.16)

for classes l = {0, 1}, where X = {x0, x1, ..., xn−1} is training data matrix and xl

is observation vector. The discriminant function for Serdobolskii LDA classifier

is given by:

WSE RD
C (ā0, ā1, z,CSERD,m) = m

(
z − ā0 + ā1

2

)T

C−1SERD (ā0 − ā1) . (3.17)

The decision rule for both Serdobolskii classifiers follow the same strategy as

LDA given in (3.4).

Zarudskij Classifier

DLDA classifier uses the diagonal elements of LDA covariance matrices drop-

ping all correlation elements among the features, while EDC simply drops all the

relations. Zarudskij classifier suggests the use of a covariance matrix that uses

the first order tree-type (FOTT) dependence among variables. The discriminant

function of Zarudskij classifier is given by,

W Z AR
(
x, x̄0, x̄1,Σ

−1
Tree

)
=

(
x − x̄0 + x̄1

2

)T

Σ−1Tree (x̄0 − x̄1) , (3.18)
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where Σ−1Tree = CTC is a p × p symmetrical FOTT matrix with 3p − 2 distinct

non-zero elements. The C = {ci j} and is given by

ci j =



(
σ̂ii

(
1 − r2imi

))−1
2 if j = i

−rimi√
σmimi

(
1 − r2imi

) if j = mi

0 if otherwise,

(3.19)

where ri j =
σi j
√
σiiσj j

and m = {1,m1,m2,m3, . . . ,mp−1} (m0 = 1 by definition)

is a set of numbers indicating the dependence structure among features. To

estimate m, Zarudskij suggested to apply the Kruskal’s stepwise algorithm

which was used to find minimum-spanning tree [47]. The proposed algorithm,

firstly, should compute total correlation matrix, and find the maximum absolute

value among all branches (rows in a lower triangle in our case). Set m0 = 1,

and estimate m1 to be the next greatest absolute value in the correlation matrix

which was not selected before and does not form a cycle with all previous

selected branches. This process should be repeated until p elements in m are

not filled. A numerical example showing how to calculate Σ−1Tree is given in

Appendix C.

Linear SVM

The idea behind support vector machines is to find the optimum separation

hyperplane between two classes (see [49] for full explanation). Unlike LDA

and its modifications, SVM does not use all observation vectors of the training

data, instead only the “representatives” of both classes construct the hyperplane
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which splits the space into two distinct regions. Assume that the space is

linearly separable, xi is an observation vector, yi = ±1 is a SVM decision, where

i = {0, 1, . . . , n − 1}. Let the discriminant function be

g(x) = wTx + w0, (3.20)

with the decision rule

g(x)


> 0 if x corresponds to class 0, then set yi = 1

< 0 if x corresponds to class 1, then set yi = −1,

(3.21)

where

wTx + w0 = 0, (3.22)

indicates the between-class separation hyperplane, and

yi(wTxi + w0) = 1, (3.23)

show the support vectors if observation vector xi from each class is the closest

one to the separation plane, i.e., the class “representative”. SVM objective is to

maximize the distance between the support vectors, which is given by 2/| |w| |.

Maximizing the distance in this case is equivalent to minimizing the | |w| | to the

constraints given in (3.23):

min
w
| |w| |2 subject to yi(wTxi + w0) = 1, (3.24)

where | |a| |2 indicates L2 norm distance of an arbitrary vector a.
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Lagrange formalism can solve the optimization problem, the primal form

is given by

Lp =
1

2
wTw −

n∑
i=1

αi

(
yi

(
wTx + w0

)
− 1

)
, (3.25)

for i = 0, 1, . . . , n − 1, where αi ≥ 0 are Lagrange multipliers. Minimizing wTw

is equivalent to minimizing LP with respect to w and w0, and maximizing it with

respect to αi. Differentiating the primal form (3.25) with respect to w and w0

and equating them to zero leads to

n∑
i=1

αiyi = 0 and w =
n∑
i

αiyixi . (3.26)

Substitute (3.26) into (3.25) constructs the dual form given by

LD =

n−1∑
i=0

αi −
1

2

n−1∑
i=0

n−1∑
j=0

αiα j yiy jxix j . (3.27)

The dual form reformulates the original problem (3.24) to a new one

max(LD) subject to αi ≥ 0
n−1∑
i=0

αiyi = 0, (3.28)

with a solution given by

w =
n−1∑
i=0

αiyixi . (3.29)

Non-linear SVM

The difference between linear and non-linear SVM is in the one additional step

of transforming the original vector to a higher dimension and then solving for

the linear SVM, i.e., linearize the non-linear function and then apply the linear
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SVM. The Lagrange dual form for non-linear SVM is given by

Lp =

n−1∑
i=0

αi −
1

2

n−1∑
i=0

n−1∑
j

αiα j yiy jφ(xi)φ(x j), (3.30)

where φ(.) is some linearization function. Non-lienar SVM optimization prob-

lem is the same as for linear SVM (3.28)

max(LD) subject to αi ≥ 0
n−1∑

i

αiyi = 0

and solution for the problem is given by

w =
n−1∑
i=0

αiyiφ(xi). (3.31)

In this project we used the Gaussian linearization function given by

K(a, b) = φ(aT )φ(b) = exp

(
−|a − b|2

σ2

)
, (3.32)

for arbitrary vectors a and b, other linearization functions can be found from

p.191 in [49]. The popularity of SVM with kernel functions over many other

classifiers is related to its optimal hyperplane estimation feature, which provides

a “curse of dimensionality” robustness property (formore information read p.432

in [50]). This means that this type of classifiers are expected to not follow the

“curse of dimensionality” phenomenon in high-dimensional settings, but still

the question [51] is: “For a specific task what is the optimal kernel function to

be deployed and how to select a kernel function (kernel selection guidelines)?”
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3.2.2 Experiment Models

The classifiers performancewere compared on several real datasets under various

set of sample sizes and number of features. The sample size varies from

n = {30, 40, . . . , 100}, while feature size is p = {5, 20, 50, 100, 200}; this is

equivalent to p/n variation from 20/3 to 0.05, which covers a wide range of the

ratio between sample size and dimension. Eight sample sizes, five feature sizes,

and eight datasets we have had in this investigation results in 320 experiments

in total. In each setting, we consider all 10 classifiers: LDA, DLDA, EDC, G13,

RLDA, Serdobolskii original proposal (identified by “sorg" in figures) and with

the covariance matrix addition (identified by “scov"), Zarutskij, Linear SVM,

and Gaussian kernel SVM. The experimental procedure is described below

(pseudo-code is provided in E:

Protocol 3.1:

Step 1: Let r = N0/N1 express the ratio of the number of observations in class
0 and class 1, and N = N0 + N1 be the total number of samples in the
data. Select a set of observations of size n (n < N) and generate a
training set such that the proportion of sample points from either class
follows the value of r obtained from the full dataset. Let n0 = brn1c,
where b.c indicates the floor function. Setting n = n0 + n1 and having
n0 leads to n1 = b n

r+1c. Randomly select a set of training data of size n
and set aside the rest for testing.

Step 2: Apply all classifiers and determine the true error from the set of held-out
samples in Step 1.

Step 3: Repeat Steps 1-2, 500 times and find the average true error for each
classifier.

For the feature selection we used t-test as it was done in Chapter 2. Prior
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Table 3.1: Microarray studies used in Chapter 3 experiments

Dataset Features n0/n1

Bhattacharjee [52] 12, 600 139/64

Chen [34] 10, 237 75/82

Desmedt [35] 22, 215 98/77

Natsoulis [36] 8, 491 120/61

Rosenwald [37] 5, 013 114/89

Valk [38] 22, 215 116/157

Vijver [39] 5, 003 180/115

Yeoh [40] 5, 077 149/99

to applying the t-test analysis, data has been standardized according to,

zi =
xi − x̄i

V (xi) /
√

N − 1
, (3.33)

where X = {x0, x1, . . . , xN−1} is original data, and Z = {z0, z1, . . . , zN−1} is the

new data, N is the data sample size, and V (x) is the standard deviation of x.

All set of experiments in this Chapter were conducted on datasets de-

scribed in Table 3.1. All databases were collected from [31], [32] and [33].

Description for each database is given in Appendix A.

3.3 Results and Discussion

Fig. 3.1 and 3.2 show the expected true error of each classifier at different

sample and feature sizes and for different datasets: Bhattacharjee et al. [52],

Chen et al. [34], Desmedt et al. [35] and Natsoulis et al. [36], Rosenwald et
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Figure 3.1: Estimated true error of classifiers at different sample sizes

al. [37], Valk et al. [38], Vijver et al. [39] and Yeoh et al. [40] datasets. Each plot

has five columns showing the classifier performance at a particular dimension:

from left to right p = 5, p = 20, p = 50, p = 100 and p = 200. Each row in

these figures depicts the results for a particular dataset. Nevertheless, in order

to simplify the comparison between different classifiers, we have attempted to

rank classifiers based on the number of times they outperform others across

all experiments (Tables 3.2-3.6). Ranking the classifier performance at each

sample and feature size on a particular dataset gives an opportunity to check the

superiority of the classifier with respect to others. The full set of tables can be

found in the Appendix B.
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Figure 3.2: Expected true error of classifiers at different sample and feature sizes across
different datasetss

One can clearly see that Serdobolskii (sorg and scov) classifiers have

non-uniform performance across all feature sizes (for Chen dataset they were

omitted). It is unclear how the averaging of features should be accomplished to

reflect the optimal classification rates since no feature ordering or ranking was

defined by Serdobolskii in [46]. As expected LDA and G13 have relatively good

performance when n >> p is met (see left column of Fig. 3.1 and 3.2), however,

as soon as data dimension rises, LDA and G13 deteriorates drastically, and their

results are omitted from the graphs for p = 100, p = 200 and partly from p = 50

plot. Note that all tables still show the relatively poor performance of these two
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Table 3.2: Median value of classifier rank across databases when p = 5

Classifiers
Sample Size

30 40 50 60 70 80 90 100

LDA 7 7 6.5 6 6 6 6 6

DLDA 4.5 4.5 4.5 6 6 6 7 7

EDC 1.5 1.5 1.5 1.5 2 2 2.5 2.5

G13 10 10 10 10 10 10 10 10

RLDA 6 6 6 6 6 6 6.5 6.5

Serd 2.5 2.5 3 3 4 4.5 4.5 4.5

Serdc 4.5 4.5 6 6.5 6.5 6.5 6.5 7

LSVM 6 6 6 6 6.5 6.5 6 5.5

KSVM 4 4 4 3.5 3.5 3 2.5 2.5

Zar 7 6.5 6.5 6.5 6.5 6.5 6.5 6.5

classifiers with respect to others.

DLDAandEuclideanDistanceClassifiers have very similar performances.

For all datasets (except Bhattacharjee dataset), the difference between their

expected true error rates does not exceed 5%. A close look at the true error rate

tendency as the feature size increases might reveal the presence of the “curse

of dimensionality” phenomenon at Natsoulis and Vijver datasets. It was shown

by EDC example in Chapter 1 and [1] that further increase in dimension might

actually result in a better performance, i.e., the true error rate curve beyond

the minimum point does not monotonously increase, it can have several local

minima, and in our case its global minima might lie outside of the testing feature
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Table 3.3: Median value of classifier rank across databases when p = 20

Classifiers
Sample Size

30 40 50 60 70 80 90 100

LDA 8.5 8.5 7.5 7 6 5.5 5 4.5

DLDA 3 3.5 4.5 4.5 4.5 4.5 5 6

EDC 2 3 4 4 4 4.5 4.5 5

G13 10 10 10 10 8 8 8 8

RLDA 5.5 4.5 4.5 5 5 6 6 6

Serd 5.5 6.5 7 7 8 8 8 8

Serdc 7 7.5 8 8.5 8.5 8.5 8.5 8.5

LSVM 4.5 4.5 4.5 4.5 4.5 3.5 4 4

KSVM 1 1 1 1 1 1 1 1

Zar 6 5.5 5 4 4 5 5 5

size range. Expected true error rate on other datasets showa uniformly increasing

function as feature size increases, probably their misclassification rates reached

the local minima and now the curve values rise to hit the local maxima in order

to go down again. It is interesting to note that expected true error rates of DLDA

and EDC do not always decrease as sample size increases, in some cases, as the

sample size increases the classifiers performance deteriorates.

Zarudskij classifier uses the FOTT to generate inverse sample pooled co-

variance matrix. The modification allows the classifier to be used with larger

dimensionality and sample size without much deterioration such as those ob-

served in G13 and LDA. Depending on dataset p/n settings, the true error
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Table 3.4: Median value of classifier rank across databases when p = 50

Classifiers
Sample Size

30 40 50 60 70 80 90 100

LDA 10 10 9 9 8 7.5 7 7

DLDA 3.5 5 5 5 5 5 5 5.5

EDC 3 3.5 4.5 4.5 4.5 4.5 4.5 4.5

G13 9 9 10 10 9 9 9 9

RLDA 5 4 4 3 3 3 3 3

Serd 7 7 7 7 8 8.5 8.5 9

Serdc 8 8 7.5 8 9 9 8.5 9

LSVM 2 2.5 3 3 3 3 3 3.5

KSVM 1.5 1 1 1 1 1 1 1

Zar 5 4.5 4.5 4 4 4 4 3.5

of Zarudskij classifier might outperform DLDA and EDC, for larger p and n,

Zarudskij is considered to be a better choice than EDC and DLDA.

The objective of RLDA is to eliminate the ill-conditioned inverse covari-

ance matrix from LDA by applying stabilization process (regularization). This

results in a classifier that has a good performance in wide range of dimension-

ality. In larger dimensional feature space, RLDA is in many cases superior to

Zarudskij, Serdobolskii, DLDA and EDC. Ironically, the drawback of RLDA

is in the regularization parameter, since the γ search boundaries are selected

heuristically. To be sure that the RLDA performs well, the classifier should

be tested at several γ values around presumed γopt to see that the estimation
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Table 3.5: Median value of classifier rank across databases when p = 100

Classifiers
Sample Size

30 40 50 60 70 80 90 100

LDA 9 10 9.5 9 9 9 9.5 10

DLDA 5 5 4.5 4.5 5 5 5 5

EDC 3 5 5 5 5 5 5 5

G13 9.5 9 9 10 10 10 9 9

RLDA 4 4 3 3.5 3 3 2.5 2.5

Serd 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 8 8 7.5 7.5

LSVM 2 2 2 2.5 3 2.5 2.5 3

KSVM 2 1 1 1 1 1 1 1

Zar 5 4.5 4.5 4.5 4 4 4 4

procedure has found the local minimum value. This might be the case for the

Vijver database, since the RLDA performance significantly differs from all other

results.

The best performance in most of the simulations was achieved by KSVM

(see Tables 3.2-3.6 and Tables in Appendix B). Although LSVM also shows

a relatively good performance, but the underlying assumption in LSVM is that

sample space is linearly separable, which might not be case for the particular

dataset. Constructing an optimal hyperplane to separate the classes embeds [50]

a robustness to the KSVM which results in the best performance achieved in the

our simulations.
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Table 3.6: Median value of classifier rank across databases when p = 200

Classifiers
Sample Size

30 40 50 60 70 80 90 100

LDA 10 10 10 10 10 10 9 9

DLDA 5 4.5 4.5 4.5 4.5 4.5 5 5

EDC 4.5 4.5 4.5 5 5 5 5 5

G13 9 9 9 9 9 9 10 10

RLDA 3.5 3 3 3 3 3 3 2

Serd 7 7 7 7 7 7 7 7

Serdc 7.5 7.5 8 7.5 7.5 8 7.5 7.5

LSVM 1 1 1.5 1.5 1.5 2 2 2

KSVM 2 2 1.5 1.5 1.5 1.5 1.5 1.5

Zar 4.5 4.5 4.5 4.5 4.5 4.5 4 4

It was expected that Serdobolskii, Zarutskij and G13 classifiers would

show interesting and possibly good performance in our experiments. However,

results show that G13 classifier simply follows LDA in terms of expected true

error values. Serdobolskii classifier is not fully applicable for classification

problems since no strategy is given on how feature averaging should be accom-

plished, i.e., whether the ranking or any other feature extraction procedure must

be applied before taking the averge among feature set. The Zarutskij classifier

was designed to eliminate the ill-conditioned inverse covariance matrix, and the

results have shown that for high-dimensional problems Zarutskij classifier is a

good choice to try.
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3.4 Conclusions
Exploring the performance of high-dimensional classifiers is an important topic

since in many modern applications we are facing problems where number of

observations (samples) is extremely lower that the data dimension. In this

Chapter we conduced a comparative study between several popular as well

as some relatively unknown linear classifiers. The results show that in many

cases, linear and Gaussian kernel SVMs are superior to other classifiers, and

the robustness of KSVM to high ratios of p/n allows to avoid the curse of

dimensionality problems. The usage of G13 and Serdobolskii classifiers are

in question because G13 performs almost similarly to the LDA and they (LDA

and G13) both are inapplicable when dimension is comparable to sample size.

Although Serdobolskii can have many potential applications, but the averaging

procedure used should be reconsidered to reflect the optimal discriminative

power of the classifier. Zarutskij classifier shows promising results as it does

not have the ill-conditioned covariance matrix and performs well compared to

many other classifiers. The RLDA classifier demonstrated good results and as

expected it can operate well in high dimensional situations.
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Sparsity Based Classifiers

Chapter 4 – Sparsity Based Classifiers

4.1 Introduction

High-dimensional nature of modern databases is a challenging task for many

classifiers which were designed under classical statistical assumptions, i.e., the

number of samples being much higher than the dimensionality of observations.

In a finite sample regime this means that in order to expect an acceptable

performance from a classical method, the sample size should be much larger

than the dimensionality of observations. This discrepancy between the nature of

modern datasets and the underlyingworking principle ofmany classical methods

have led practitioners to reduce the potential dimensionality of the data in the

first stage of an analysis to be able to use classical methods. However, this

practice may potentially ignore many important features that contribute to the

response variable.

Another machinery for analyzing high-dimensional data is based on the

shrinkage idea and the sparsity assumption. In this way, it is assumed that the

predictive model is sparse in the sense that only a certain number of features

contribute to the response variable, while others can be nullified. This approach

might resemble the combinatorial analysis which is infeasible in our case and is

generally a NP hard problem [53, 54]. Let us momentarily assume a genomic

dataset with 5000 genes (features). Suppose one is to find a set of five genes that

can reflect the lowest possible error by using a particular classifier. There are(
5000

5

)
≈ 2.599 × 1016
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number of different combinations of five genes (order does not matter). Trying

to identify the optimal set of of features by an explicit feature selection strategy

is not simply feasible because of the computational time it takes to consider all

these configurations of variables. Although many sub-optimal feature selection

strategies have been proposed in the past century, shrinkage in conjunction with

sparsity assumption provides an alternative approach for feature selection. In

this way, the feature selection process is embedded in the model construction

stage, hence, performing both processes at the same time.

In 2004 Candes, Tao, Romberg and Donoho [55] discovered that if the

signal is sparse, it can be fully restored when the sampling frequency is below

the minimum value that is dictated by Shannon theorem. Even though, under-

sampling methodologies were already discovered in 1970’s in connection with

some seismic applications (mineral searching), it was Candes, Tao, Romberg

and Donoho who proved that the signal can be restored perfectly with underlying

assumptions of signal sparsity.

L1 minimization is also the main working principle used in the elastic

net and lasso regressions. In compressed sensing, a sparse enough signal can

be recovered exactly and under certain assumptions the L1 minimization is the

same as L0 (count of non zero elements) [55]. Basis pursuit and elastic net

regression uses L1 minimization to solve the optimization problems by applying

similar approach but on different objective functions, basis pursuit standing [56]

for

min
x
| |x| |1 s.t. Ax = y (4.1)
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and elastic net [57, 58]

min
(β0,β)

| |y − β0 −Aβ | |22 + λ
(
1 − α

2
| |β | |22 + α | |β | |1

)
. (4.2)

Note that when α = 1, elastic net is the same as lasso, while α = 0 resembles

the ridge regression.

Both the basis pursuit optimization and lasso regression will be used in

this chapter in a classification setting applied in high-dimensional scenarios. The

basis pursuit optimization is used in sparse representation classifier (SRC) [59],

which was originally designed for face recognition problems. The lasso regres-

sion will be converted to a classifier through the logistic regression function [58].

The lasso and logistic regressions methodologies are implemented via glmnet

package in R, thus this classifier will be referred as glmnet (binomial glmnet). To

successfully apply SRC on image databases, authors in [59] suggested the use of

feature extraction methodologies to reduce the data dimensionality. In addition,

they propose the “randomfaces” extraction technique which simply generates

Gaussian distribution matrix and utilizes the compressed sensing principles.

The objective of this section is not to study the feature extraction techniques and

their performance on face databases, but to compare different classification rules

conducted on high-throughput genomic datasets using SRC and glmnet, where

SRC performs the dimensionality reduction via compressed sensing principles.
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4.2 Methodology

This section describes the theory behind the Sparse Representation (see original

paper [59]) and lasso-based classification (see original papers [57, 58]). A

general (not to be confusedwith generalized) linearmodel represents an arbitrary

response variable y as a sum of arbitrary feature vector x and β:

y = xTβ, (4.3)

where y can be treated as a representation of x and β is treated as weights for

each element in the vector x. Extending the linear model to a prediction problem

results in the regression analysis, where ŷ is a predicted value of the input x and

β are the regression coefficients. This means that the linear regression model

given in (4.3) attempts to predict y given x and β should be estimated before the

prediction, thus there is a training dataset, which trains β and a test data, where

ŷ is predicted.

4.2.1 Binomial glmnet

Consider a binary classification problem, where y is the sample label and X

is a [p × n] matrix, where p is the data dimensionality and n is the number of

observations. Samples for each class, n0 and n1 for class 0 and 1 respectively,

are driven separately from Rp distribution. Let β represent the vector of optimal

features represent, which has near-zero values for unnecessary features, and non-

zero values for selected variables, and let y show the vector classified testing

samples. The elastic net, lasso and ridge regressions estimate the possible
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outcome value yi of input xi, which cannot predict data label. Predicting data

outcome label is the primary task of the logistic regression given by:

y =
1

1 + e−(β0+Xβ), (4.4)

where β are the regression coefficients. The combination of the logistic and

linear regressions gives us the binomial generalized (not to be confused with

general) linear model, which can be extended to multiple classes and elastic net

regression as well. For classification task we deploy the binomial Generalized

Linear Model of elastic Net regression (binomial glmnet) which is given by

min
(β0,β)
−

[
1

N
y (β0 +Xβ) − log

(
1 + eβ0+Xβ

)]
+ λ

[
1 − α

2
| |β | |22 + α | |β | |1

]
, (4.5)

where selecting α to be extreme values 0 or 1 results in ridge and lasso regres-

sions, respectively. The glmnet package provided in R quadratically approx-

imates the log-likelihood and then applies coordinate descent to estimate the

β. This section does not provide the full methodology on coordinate descent

algorithm and readers may refer to [58] for more information. Throughout this

chapter, we set α = 1 to see the difference between basis pursuit (left) and the

lasso (right):

min
x
| |x| |1 s.t. Ax = y min

(β0,β)
| |y − β0 −Aβ | |22 + λ | |β | |1.
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4.2.2 Sparse Representation Classifier

In 2009 Wright et al. [59] proposed a sparse representation classifier (SRC),

which is based on sparsity of the training data sample vector and linear regression

given in (4.3). Consider a multiclass problem with K classes, n total sample

size, ni is the number of sample points for class i, and A is a [p× n]matrix with

p features. In (4.3), β term is replaced by x for convenience and ideally x should

be a [n × 1] vector containing ones and zeros only, y is a [p × 1] testing sample

vector. The linear regression equation for SRC with prescribed definitions is

given by

y = Ax + ε . (4.6)

where ε describes the tolerance to errors and for simplicity it can be set to zero.

Since A is a matrix representing the training samples across all classes (p × n

matrix) and y is a testing sample, the x can be considered as a vector which

decides what samples in A are contributing the testing sample, and ideally ones

should be at those entries which indicate the affiliation (class) of y and zeros

anywhere else. The SRC statement is

min
x
| |x| |1 s.t. Ax = y (4.7)

or

min
x
| |x| |1 s.t. | |Ax − y| |22 ≤ ε, (4.8)

which is the same as basis pursuit given in (4.1). The former expression assumes

no error is present inA and y, while the latter one is amore realistic as it accounts

for the error in data and tries to minimize the error power. One can use any
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algorithm which solves (4.8). In this thesis, we use a package called l1magic1,

which was originally provided by Dr. Candes and written in MatLab (although

we partially imported the package into R). Since it is likely that the approximate

solution x̂ obtained by L1 contains non-zero entries representing several classes,

the classifier should select the class shown in x̂ that is dominant. To do that, the

L2 difference between the class i representatives in A and testing sample y is

calculated:

ri (y) = | |y −Aδi(x̂)| |2, (4.9)

for i = {0, 1, . . . ,K − 1}, where ri(y) is the residual function of test sample

y at class i, δi(â) is an indicator function, which has non-zero values in â at

entries that correspond to samples of class i. The estimated class label is the

one that results in the minimum residual value. The SRC methodology can be

summarized as following:

• Construct matrix A and normalize its column entries to a unit vector

• Solve L1 normalization problem given by

min
x
| |x| |1 s.t. Ax = y

or
min

x
| |x| |1 s.t. | |Ax − y| |22 ≤ ε,

• Find the residual values according to

ri (y) = | |y −Aδi(x̂)| |2,

• Select expected class to be arg mini (ri).

Similar to LDA classifier, SRC cannot operate (basis pursuit solver) in

1https://statweb.stanford.edu/ candes/l1magic/
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cases when data dimensions is comparable or greater than the number of sam-

ples. The original study [59] compared SRC and several other classifiers with

different feature extraction techniques such as eigenfaces, laplacianfaces, fish-

erfaces and so called “randomfaces”, which was proposed by the same authors.

The results show that for a particular usage with SRC, the best feature extraction

is randomfaces, which does not have the best performance with other examined

classifiers such as Nearest Neighbor, Nearest Space, or SVM. This suggests that

the sparsity utilization in SRC is well aligned with compressed sensing theory.

The randomfaces extraction method is based on a normally distributed matrix

that is featurewise normalized to a unit vector which should be multiplied by all

samples available in the data.

A good symbiosis between randomfaces and SRC might be the result of

the compressed sensing applications and theory. Even though SRC and the

compressed sensing have different objectives (classification and signal recon-

struction), the overall methodology is very similar. Assume that in (4.6) y is

the data that is sensed with a sampling frequency that is far lower than the one

that is dictated by Shannon theorem, x be an original signal which should be

reconstructed, and let A be a dictionary matrix, i.e., the transformation matrix

that converts the readings into the desired representation of the signal. A dictio-

nary matrix might be thought of a domain transformation matrix, for example

the transformation from frequency domain to a time domain or from wavelet

domain to a spatial (pixel) domain. This resembles the SRC methodology of

finding the x given A and y, and if the randomly generated dictionary matrix is

well suited for the reconstruction problems, then so the randomfaces should be.

Assume that the original signal has K non zero coefficients (K-sparse) out
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of T total amount of coefficients, where T >> K , the amount of measurements

performed is M . In order to apply compressed sensing theory [55], the number

of measurements should satisfy following condition:

M ≈ K log

(
T
K

)
, (4.10)

which means that for sample size of 50 and 2-sparse (one best representative

of each class) x of SRC (see Eq. 4.7), theoretically it is enough to have 7

coefficients in y to reconstruct the x showing that SRC can operate in a very

low-dimensional space.

4.3 Systems and Models

Table 4.1: Microarray studies used in Chapter 4 experiments

Dataset Features n0/n1

Bhattacharjee [52] 12, 600 139/64

Chen [34] 10, 237 75/82

Desmedt [35] 22, 215 98/77

Natsoulis [36] 8, 491 120/61

Rosenwald [37] 5, 013 114/89

Su [60] 12, 553 83/91

Valk [38] 22, 215 116/157

Vijver [39] 5, 003 180/115

Classification rules comparison was conducted on eight real databases,

Table 4.1 provides a short summary of each them, for total descriptions one may
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refer to Appendix A. We are interested in comparison of the lasso regression

and basis pursuit optimization problems, thus α is set to 1 in (4.5). Both of the

classifiers do feature selection procedures and the optimum amount of feature

is estimated via k-fold cross validation techniques, glmnet deploys 10 fold CV,

SRC uses 10 fold 10 repetition CV. For SRC the feature selection procedure was

selected as the factor of the sample size, while glmnet package estimates the β

via coordinate descent algorithm and β can have any amount of non-zero coef-

ficients unless data sample size is not exceeded. Protocol used for experiments

described below (the pseudo-codes are provided in F:

Protocol 4.1:

Step 1: Let r = N0/N1 express the ratio of total amount of features of class 0
and 1. Let n1 = bn/(r + 1)c and n0 = n − n1, where n is the learning
set sample size and known prior the experiment and sample randomly
training and testing sets. Let α0 = N0

N and α1 = N1
N , this kind of learning

set separation ensures that training set closely follows the parameters
of total database.

Step 2: Estimate β via glmnet package (cv.glmnet function)

Step 3: Let fv = {10, 8, 5, 3, 2, 1.5, 1.25}, let SRC dimensions to be learned
with pv = n/fv, i.e., divide sample size by each value of fv. Apply
CV10F-10R with SRC and estimate optimum dimension.

Step 4: Compute the true error of SRCand binary glmnet using values estimated
before.

Step 5: Repeat all previous Steps 500 times. The estimated expected true error
is the mean value of all repetitions.
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Table 4.2: Dimension Frequency on Bhattacharjee Dataset
D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 24 5 7 6 3 2 3 0 87 29 43 39 25 38 30 38

8 0 9 4 2 3 3 3 7 0 62 53 56 50 45 52 36

5 56 36 48 43 52 53 67 83 88 98 106 103 99 129 117 111

3 127 123 141 182 191 203 215 225 112 133 117 142 167 153 138 169

2 174 233 241 236 225 232 205 184 100 85 107 108 117 94 124 121

1.5 112 88 59 31 26 7 7 1 77 68 63 44 35 33 38 22

1.25 7 6 0 0 0 0 0 0 36 25 11 8 7 8 1 3

4.4 Results and Discussion

Fig. 4.1 and 4.2 show the expected true error of binomial glmnet and SRC on

all tested datasets. In most of the cases except the “Desmedt" and “Rosenwald"

ones (Fig. 4.1c and 4.2a), the glmnet outperforms the SRC regardless of the

sample size. The possible reason for glmnet’s poor performance in two datasets

might be data themselves, the Desmedt and Rosenwald datasets have a relatively

high true error rate (around 45% when n = 30), this might imply that for difficult

classification it is more beneficial to utilize the SRC rather than the binomial

glmnet.

Tables 4.2-4.9 show the frequency of estimated optimal amount of features.

The optimal dimension selection procedure for SRC allows us to define the

distinct values of dimensions to search through, while the glmnet attempts to
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Figure 4.1: Expected estimated and true error (y-axis) at different sample sizes (x-axis)

estimate the optimum βmeaning that every dimension that is less than the sample

size has a chance to be selected. This implies that the tables for binomial glmnet

calculate the histogram values, i.e., the number of times when dimensions were

selected within a certain range of values, while SRC tables show the counts of

distinct dimension value. It is seen that in the case of Desmedt and Rosenwald

datasets and for the SRC, none of the possible dimensions is dominant as it is

the case for all other databases. For Valk and Vijver datasets the distributions of

optimumdimension between glmnet and SRCdiffer in terms of the themaximum
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Figure 4.2: Expected estimated and true error (y-axis) at different sample sizes (x-axis)

frequency value, for glmnet the lowest dimensions dominates all others, while for

SRC the most frequent optimum dimension is shifted towards n/2 values. The

same tendency of low optimum dimensions in binomial glmnet is observed for

Desmedt and Rosenwald datasets, however the true error values and its behivour

versus the sample size between Desmedt-Rosenwald and Valk-Vijver datasets

differ significantly.

Another significant difference between two classification rules is related

to the peak values of optimum dimension distribution, regardless of the glmnet
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Table 4.3: Dimension Frequency on Chen Dataset
D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 55 39 20 18 19 9 5 2 92 33 41 25 14 10 9 10

8 0 12 9 5 7 11 5 3 0 30 34 29 28 14 17 13

5 53 49 65 46 45 51 42 45 69 67 58 54 51 65 64 58

3 80 89 98 143 133 148 173 188 83 106 116 131 124 126 144 151

2 128 167 192 200 228 248 257 250 106 125 128 136 170 161 172 177

1.5 134 121 110 85 68 33 18 12 83 95 85 98 90 111 79 81

1.25 49 23 6 3 0 0 0 0 67 44 38 27 23 13 15 10

true error performance, the distribution variances for glmnet at all datasets

except the Valk’s one are much smaller comparing to SRC, i.e., the frequency of

dominant dimension selection via glmnet is much higher than the SRC ones. The

possible explanation for than might lie in the optimum frequency range selection

procedure. There might be the situation when the optimum dimensions that can

be calculated by SRC lies on the edge between two consecutive factors predefined

in fv.

4.5 Conclusions

The usage of L1 minimization algorithms in machine learning is very well

justified if data is assumed to be sparse. Although the basis pursuit and elastic

net (lasso in our case) expressions deploy the L1minimization, they have different

objective functions. Based on that, this chapter shows howbasis pursuit and lasso
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Table 4.4: Dimension Frequency on Desmedt
D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 265 278 236 286 274 254 276 248 151 77 66 82 77 78 78 76

8 0 10 8 6 5 13 10 8 0 62 85 81 78 70 66 50

5 43 31 43 37 28 33 42 37 76 84 75 60 72 66 61 78

3 40 46 38 37 42 42 38 41 72 65 67 78 62 81 81 88

2 51 48 69 48 50 48 35 45 65 68 67 68 82 65 87 82

1.5 55 33 53 53 45 47 54 45 70 77 73 64 79 73 76 60

1.25 35 44 48 27 47 54 40 69 66 67 67 67 50 67 51 66

are used for classification problems. The lasso (and elastic net as well) construct

the binomial generalized linear model of elastic net (binomial glmnet), while

the basis pursuit is the foundation of sparse representation classifier (SRC). The

binomial glmnet is based on shrinking the data and assuming that only several

features can best represent the data response, while SRC assumes that only

several samples from training set best represent the testing sample, thus training

sample vector is assumed to be sparse. Both of the classifiers cannot operate

in cases when data dimension is comparable or greater than the sample size

implying that feature extraction procedure should be used. This is not required

for binomial glmnet as its objective is to find the optimum dimension, while for

SRC the dimension reduction strategy was defined on trial and test manner, and

the estimating procedure is based on a k-fold, r-repetition cross validation.

The experiments conducted on eight real datasets show that in general in
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Table 4.5: Dimension Frequency on Natsoulis
D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 97 27 12 6 1 0 0 0 84 28 24 18 8 6 4 3

8 0 7 2 5 0 1 0 0 0 24 27 24 10 11 6 12

5 43 48 30 24 13 7 14 7 65 44 53 34 43 38 35 46

3 109 88 94 88 74 91 96 86 80 102 101 89 105 89 105 106

2 118 163 198 214 274 282 305 361 100 111 112 134 152 166 180 183

1.5 115 146 154 156 138 118 85 46 98 106 122 144 128 140 141 116

1.25 16 21 10 7 0 1 0 0 73 85 61 57 54 50 29 34

simpler classification problems (low true error of classifier), binomial glmnet

uniformly outperforms the SRC. The performance of two datasets (Desmedt

and Rosenwald) show that when the classification is difficult (relatively high

misclassification rate) it is beneficial to use SRC. The dimensionality reduction

strategy of SRC mostly points to n/2 or n/3 as the optimum dimension, where n

is the sample size. The optimum dimesnion determined by the binomial glmnet

is not uniform across all datasets. In some cases glmnet has optimum dimension

frequency distribution very similar to SRC, but for others the distribution mean

value is shifted towards lower dimensions. It is certain that the peaks of distri-

bution mean value is much sharper for the glmnet. The possible future work in

this field is related to replacing the basis pursuit framework used in SRC by the

elastic net or lasso and study their performances.
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Table 4.6: Dimension Frequency on Rosenwald
D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 216 219 207 166 175 139 133 158 159 81 81 92 79 75 80 65

8 0 14 13 12 21 15 17 19 0 86 86 62 67 65 71 78

5 46 39 42 49 57 50 50 49 70 78 78 70 69 83 79 86

3 57 52 53 93 62 73 76 61 64 75 68 72 68 71 70 82

2 56 77 83 63 74 74 78 74 64 69 56 69 85 78 72 58

1.5 71 54 61 82 69 99 109 96 72 61 73 70 69 68 60 80

1.25 48 41 39 31 41 45 37 43 71 50 58 65 63 60 68 51

Table 4.7: Dimension Frequency on Su

D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 24 23 16 6 11 4 1 1 76 23 23 21 25 22 14 14

8 0 14 1 7 2 7 1 1 0 34 38 35 31 29 32 26

5 42 24 22 21 16 14 11 13 79 75 73 87 72 77 92 84

3 60 75 58 72 73 74 69 67 105 100 115 111 129 125 123 137

2 97 124 139 151 172 168 187 245 100 121 118 128 143 134 156 164

1.5 157 141 201 209 202 220 227 172 76 88 88 89 76 99 75 69

1.25 100 94 61 34 24 13 4 1 64 59 45 29 24 14 8 6
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Table 4.8: Dimension Frequency on Valk
D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 177 152 116 117 96 113 115 108 128 62 55 58 50 43 41 58

8 0 18 9 19 17 26 21 21 0 52 68 62 69 65 56 61

5 44 46 64 53 91 77 76 85 61 75 69 80 79 86 100 85

3 69 68 76 83 93 78 81 93 86 97 85 79 84 88 97 86

2 81 96 98 86 88 97 78 73 74 83 78 93 87 97 89 102

1.5 78 54 78 83 63 71 83 84 79 88 79 87 84 78 81 61

1.25 41 59 56 53 50 36 46 36 72 43 66 41 47 43 36 47

Table 4.9: Dimension Frequency on Vijver

D
im

en
sio

n

Binomial glmnet SRC

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

10 328 304 258 289 277 256 263 268 132 41 39 48 40 43 33 35

8 0 13 13 11 13 12 9 17 0 53 45 48 57 43 62 32

5 41 47 40 48 42 38 66 48 73 70 63 81 76 72 79 89

3 52 49 59 59 64 85 77 74 94 97 104 120 109 110 106 127

2 51 54 91 64 76 79 55 73 92 119 119 106 112 126 124 120

1.5 26 29 37 29 27 29 30 20 67 78 98 69 82 82 79 71

1.25 2 4 2 0 1 1 0 0 42 42 32 28 24 24 17 26
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Conclusions

Chapter 5 – Conclusions

High-dimensionality of observations poses the signal processing commu-

nities with great challenges. This is because many classical methods developed

in the past are grounded in classical asymptotic conditions (n → ∞, p fixed).

In a finite sample regime, this means having many more sample points than

the number of variables; however, today we are facing with many datasets in

which the number of dimensions is much larger than the sample size. As a result

the performance of many classical techniques needs to be re-examined and new

techniques need to be developed.

In three chapters, we show that high-dimensionality should not repulse

the community from deploying classification techniques directly in a high-

dimensional setting. In Chapter 2, we introduce a novel approach to estimate

the regularization parameter γ in Regularized Linear Discriminant Analysis

(RLDA). Our approach is based on a general consistent estimation which is a

mathematical framework designed to create estimators, which converge to the

actual parameters in a double-asymptotic regime (n → ∞, p → ∞, p/n → c,

0 < c < ∞). We compared the performance of the proposed range search of

optimum regularization parameter based on our estimator with several other

popular schemes such as five folds, five repetitions and leave-one-out cross val-

idation as well as the plug-in estimator. While the performance of constructed

RLDA classifiers using the proposed search strategy is similar or better than

cross-validation-based search, the analytical expression of the core estimator

in our appraoch provides an opportunity to avoid repetitive computations per-

formed by CV. As a result the proposed search scheme is tens to hundreds of
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times faster to compute.

Chapter 3 conducts a comprehensive comparative analysis between sev-

eral classifiers designed for low- and high-dimensional settings including LDA,

Diagonal LDA, RLDA, Euclidean Distance Classifier (EDC), G13, Serdobol-

skii, Zarutskij as well as Linear and Gaussian Kernel Support Vector Machines

(LSVM and KSVM). Experiments were conducted for cases where the ratio of

dimension to sample size varies between 0.05 and 7 (approximately). The re-

sults show that the best performance is generally achieved by KSVM and LSVM,

while Serdobolskii classifier that was deliberately designed for high-dimensions

did not show satisfactory results. Nevertheless, in the case of Serdobolskii

classifier further research needs to be conducted to propose an optimal feature-

wise averaging scheme. This might lead to significant increase in classification

accuracy of this classifier.

Another set of machinery to design classifiers that are applicable in high-

dimensional settings is based on L1 minimization and model sparsity. Chapter 4

compares two classification rules based on this idea, namely, classification based

on lasso and basis pursuit. The generalized linear model of lasso regression-

based (binomial glmnet) classifier assumes that only certain number of features

are required to represent the response variable, thereby shrinking the data di-

mension. Sparse representation classifier (SRC) is based on basis pursuit and

assumes that only a number of samples of a particular class are needed to rep-

resent the test data. Results show that in general binomial glmnet is superior to

SRC, while for difficult classification problems the performance is vice versa.

To summarize, this thesis provides concrete applications of two high-

dimensional mathematical machineries, namely, double asymptotics and L1
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minimization in conjunction with sparsity. Further research needs to be done to:

1) extend the applications of these machineries to Bayesian settings; 2) better

clarify the working principle behind the feature selection process implicit in L1

minimization; and 3) investigate the possibility of integrating these two potential

approach together.
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Appendicies

Appendix A

Bhattacharjee et al. [52] dataset describes different types of lung tumors
collected from mRNA expression levels. In total, dataset contains 12600 gene-
expression levels for 139 adenocarcinomas, 21 squamous cell lung carcinomas,
20 pulmonary carcinoids, 6 small-lung carcinomas and 17 normal lung (203

samples in total). The dataset was obtained from snap-frozen specimens and
gene-expression levels were hybridized to human U95A oligonucleotide probe
arrays (Affymetrix, Santa Carla, CA). For binary classification purpose, the
tumors and normal lung labels were divided into two classes: 139 samples of
adenocarcinomas are labeled as a single class, and all other labels (21 squamous
cell lung carcinomas, 20 pulmonary carcinoids, 6 small-lung carcinomas, and
17 normal lung) are grouped to second class (64 samples in total).

Chen [34] database consists of 82 tumor and 75 non-tumor liver classes
collected from Queen Mary Hospital, Stanford University and University of
Hong Kong during surgical resections or transplants. The dataset were pre-
proccesed to remove genes with more than 25% data missing resulting in 10237

genes left from original 24168.
Desmedt [35] dataset contains the gene profiles in frozen samples of 198

systematically untreated patients. The original data labeling included survival
rates for less than 5 years and more than 5 years, and less than 10 years and
more than 10 years which is not balanced for binary classification problem. The
dataset labeling was changed to a patient survival rate for less than 10 years and
more than 10 years, resuling in 77 patients for former class and 98 patients for
the latter class.

Natsoulis [36] dataset describe the drug and toxicants test results con-
ducted on rats. The male rats were continuously fed 22 different drugs and
toxicants resulting in up to 12 tissues. To apply the database to a binary classifi-
cation problem, 4 types of treatment were divided into two classes (strategy was
adopted from [61]), the toxicant class of 61 samples and non-toxicant (fibrates
36, statin 31 and azoles 53 samples each) of 120 samples in total. The database
is available at NIH Gene Expression Omnibus (GEO), the accession number is
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GSE2187.
Rosenwald [37] microarray data consists of 240 samples of diffuse large-

B-cell lymphoma and 12196 complementary DNA clones. The DNA clones
constructed lymphochip DNA and were used to quantify mRNA expressions
in the genes. The original database were clustered into three classes: germinal
center B-cell like (115 samples), type 3 (52 samples) and activated B-cell like (73

samples) lymphomas. To apply the database in binary classification problems,
[31] divided all the results into two sections according to survival rate within
three years (alive or not) leading to 89 and 114 samples respectively. The features
with more than 10% missing data were removed from database, and all other
missing points were filled with corresponding feature mean values.

Su et al. [60] studied human carcinomas classification via human gene-
expression profiles. The gene-expression profiles were assessed by H&E frozen
section examination, the rich tumor area were cut from the frozen blocks. The
complete processing of RNA extraction and hybridization (U95a GeneChip,
Affymetix Incorporated, Santa Carla, CA) is described in [60]. The dataset
consists of 174 sample points, 12533 features and 11 different tumor cells, for
binary classification problem they were divided as follows: 8 bladder/ureter
carcinomas, 26 infiltrating ductal breast adenocarcinomas, 23 colorectal ade-
nocarcinomas, 26 prostate adenocarcinomas as class one (83 samples points in
total), 12 gastroesophageal adenocarcinomas, 27 serous papillary ovarian ade-
nocarcinomas, 11 clear cell carcinomas of kidney, 7 hepatocellular carcinomas,
6 pancreatic adenocarcinomas, 14 lung adenomacarcinomas carcinomas, and 14

lung squamous carcinomas as class two (91 samples points in total).
Valk [38] dataset contains 22215 features of 116 normal and 157 abnormal

karyotype samples. The missing values were filled with the average values
calculated feature wise across all samples. The dataset is publicly available at
the NIG GEO under accession number GSE1159.

van der Vijver [39] dataset is constructed from breast cancer prognosis
studies [39, 62] of gene-expression profile. There are 5003 human genes taken
from breast cancer prognosis dataset of 180 and 115 samples from poor- and
good-prognosis groups, where a poor-prognosis label predicts a distant metas-
tasis within 5 − 10 years of initial diagnosis.
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Yeoh [40] database describes the pediatric acute lymphoblastic leukemia
(ALL) disease, which has several subtypes. Original data was collected using
Affymetric Human Genome HGU95Av2 array (Santa Clara, CA) and contained
six labels: T-ALL (43 samples points), E2A-PBXI (27 sample points), TEL-
AML1 (79 sample points), BCR-ABL (15 sample points), MLL (20 sample
points), and hyperploidwithmore than 50 chromosomes (64 sample points). The
data is freely distributed at: http://www.stjuderesearch.org/data/ALL1. Features
with more 10% missing points were removed from database reducing the dataset
dimension to 5077, the left missing points were filled with the mean value across
all samples. For binary classification purposes, all labels were divided into
two classes, BCR-ABL, MLL and hyperploid with more than 50 chromosomes
belonging to one class (99 samples) and all other ALL subtypes (T-ALL, E2A-
PBX1 and TEL-AML1) constructing the second class (149 samples).
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Appendix B

This Appendix section shows the rank tables computed in Chapter 3. Each
of the table show which classifier had the best performance compared to others.

Table B.1: Classifier ranking for p = 5 and p = 20 on Bhattacharjee Database

Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 6 6 6 6 6 6 6 6 9 9 7 7 7 3 2 2

DLDA 8 8 8 8 8 8 8 8 7 7 8 8 9 9 9 9

EDC 3 3 3 4 4 4 4 3 2 2 2 2 2 2 3 3

G13 10 10 10 10 10 10 10 10 10 10 10 10 8 8 8 8

RLDA 9 9 9 9 9 9 9 9 8 8 9 9 10 10 10 10

Serd 1 1 1 1 1 1 1 1 4 4 4 5 5 7 7 7

Serdc 2 2 2 2 2 2 2 2 3 3 3 4 4 6 6 6

LSVM 5 5 5 5 5 5 5 5 5 5 6 6 6 4 4 4

KSVM 4 4 4 3 3 3 3 4 1 1 1 1 1 1 1 1

Zar 7 7 7 7 7 7 7 7 6 6 5 3 3 5 5 5
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Table B.2: Classifier ranking for p = 50 and p = 100 on Bhattacharjee Database
Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 9 9 9 9 9 6 6 6 10 10 9 9 10 10 10 10

DLDA 8 8 8 8 8 9 9 7 8 8 8 8 8 8 8 8

EDC 3 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5

G13 10 10 10 10 10 10 10 10 9 9 10 10 9 9 9 9

RLDA 5 5 5 5 5 5 5 5 3 3 3 3 3 3 3 2

Serd 7 7 7 7 7 8 8 9 7 7 7 7 7 7 7 7

Serdc 6 6 6 6 6 7 7 8 6 6 6 6 6 6 6 6

LSVM 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3

KSVM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Zar 4 3 3 3 3 3 3 2 5 4 4 4 4 4 4 4

Table B.3: Classifier ranking for p = 200 on Bhattacharjee Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 9 9 10 10 10 10 9 9

DLDA 8 8 8 8 8 8 8 8

EDC 5 5 5 5 5 5 5 5

G13 10 10 9 9 9 9 10 10

RLDA 3 3 3 3 3 3 3 2

Serd 7 7 7 7 7 7 7 7

Serdc 6 6 6 6 6 6 6 6

LSVM 1 1 2 2 2 2 2 3

KSVM 2 2 1 1 1 1 1 1

Zar 4 4 4 4 4 4 4 4

83



Table B.4: Classifier ranking for p = 5 and p = 20 on Chen Database
Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 5 5 5 5 5 5 5 5 8 8 8 8 6 5 5 5

DLDA 4 4 4 4 4 4 4 4 5 6 6 6 8 8 8 8

EDC 1 1 1 1 2 2 2 2 3 5 5 5 7 7 7 7

G13 7 7 6 7 6 6 7 7 7 7 7 7 5 4 4 4

RLDA 2 3 3 3 3 3 3 3 6 4 4 4 4 6 6 6

Serd 9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10

Serdc 10 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9

LSVM 6 6 7 6 7 7 6 6 2 2 2 2 2 2 2 2

KSVM 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

Zar 8 8 8 8 8 8 8 8 4 3 3 3 3 3 3 3

Table B.5: Classifier ranking for p = 50 and p = 100 on Chen Database

Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 10 10 10 9 8 8 6 6 8 7 7 8 8 8 7 7

DLDA 6 6 6 6 6 6 8 8 6 6 6 6 6 6 6 6

EDC 5 5 5 5 5 5 7 7 5 5 5 5 5 5 5 5

G13 9 9 9 10 7 7 5 4 7 8 8 7 7 7 8 8

RLDA 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 3

Serd 7 7 8 7 9 9 10 9 10 10 10 10 10 9 9 9

Serdc 8 8 7 8 10 10 9 10 9 9 9 9 9 10 10 10

LSVM 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

KSVM 2 2 2 2 2 2 2 1 3 3 3 3 3 3 3 2

Zar 4 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4
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Table B.6: Classifier ranking for p = 200 on Chen Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 9 10 10 10 10 9 9 9

DLDA 6 6 6 6 6 6 6 6

EDC 5 5 5 5 5 5 5 5

G13 10 9 9 9 9 10 10 10

RLDA 2 2 2 2 2 2 1 1

Serd 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 8 8 8 8

LSVM 1 1 1 1 1 1 2 2

KSVM 3 3 3 3 3 3 3 3

Zar 4 4 4 4 4 4 4 4

Table B.7: Classifier ranking for p = 5 and p = 20 on Desmedt Database

Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 7 7 6 6 6 6 6 6 7 7 7 6 6 6 5 4

DLDA 3 4 4 7 7 7 7 7 2 4 5 5 5 5 6 7

EDC 1 1 1 1 1 2 3 3 1 1 4 4 4 4 4 5

G13 10 10 10 10 10 10 10 10 8 8 8 8 7 7 7 6

RLDA 9 8 8 8 8 8 8 8 4 3 2 3 3 3 3 3

Serd 2 2 2 2 4 5 5 5 10 10 10 10 10 10 10 10

Serdc 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9

LSVM 6 6 5 4 3 1 1 1 6 6 6 7 8 8 8 8

KSVM 8 9 7 5 5 3 2 2 3 2 1 1 1 1 1 2

Zar 4 3 3 3 2 4 4 4 5 5 3 2 2 2 2 1
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Table B.8: Classifier ranking for p = 50 and p = 100 on Desmedt Database
Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 10 10 9 7 7 7 7 7 9 10 10 9 9 9 10 10

DLDA 2 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5

EDC 1 3 5 5 5 5 5 5 3 5 6 6 6 6 6 6

G13 9 9 10 8 8 8 8 8 10 9 9 10 10 10 9 9

RLDA 6 4 3 3 2 1 1 1 2 3 3 4 2 1 1 1

Serd 7 7 7 9 9 9 9 9 7 7 7 7 7 7 8 8

Serdc 8 8 8 10 10 10 10 10 8 8 8 8 8 8 7 7

LSVM 4 5 4 4 4 4 4 4 1 1 2 3 4 3 3 3

KSVM 3 1 1 2 3 3 3 3 4 2 1 1 1 2 2 2

Zar 5 2 2 1 1 2 2 2 5 4 4 2 3 4 4 4

Table B.9: Classifier ranking for p = 200 on Desmedt Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 10 10 10 9 9 10 9 9

DLDA 6 5 5 5 5 5 5 5

EDC 5 6 6 6 6 6 6 6

G13 9 9 9 10 10 9 10 10

RLDA 2 2 2 2 2 1 1 1

Serd 8 8 7 8 8 7 8 8

Serdc 7 7 8 7 7 8 7 7

LSVM 1 1 1 1 1 2 2 2

KSVM 4 3 3 3 3 3 3 3

Zar 3 4 4 4 4 4 4 4
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Table B.10: Classifier ranking for p = 5 and p = 20 on Natsoulis Database
Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 7 7 7 7 7 7 7 6 9 9 7 7 5 5 5 4

DLDA 1 1 1 1 1 1 1 1 2 2 2 2 4 4 4 5

EDC 2 2 2 2 2 2 2 2 3 5 5 5 7 7 7 7

G13 10 10 9 9 8 8 8 8 10 10 10 10 8 8 8 8

RLDA 3 3 3 3 3 4 5 5 5 4 4 4 3 3 3 3

Serd 8 8 8 8 9 9 9 9 6 7 8 8 9 9 9 9

Serdc 9 9 10 10 10 10 10 10 7 8 9 9 10 10 10 10

LSVM 5 5 5 6 6 6 6 7 4 3 3 3 2 2 2 2

KSVM 4 4 4 4 4 3 3 3 1 1 1 1 1 1 1 1

Zar 6 6 6 5 5 5 4 4 8 6 6 6 6 6 6 6

Table B.11: Classifier ranking for p = 50 and p = 100 on Natsoulis Database

Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 9 9 9 9 7 7 7 7 9 9 9 9 9 9 10 10

DLDA 3 3 4 4 4 4 4 4 3 3 4 4 5 5 5 5

EDC 4 5 5 5 6 6 6 6 4 5 5 6 6 6 6 6

G13 10 10 10 10 8 8 8 8 10 10 10 10 10 10 9 9

RLDA 5 4 3 3 3 3 3 3 5 4 3 3 3 3 3 3

Serd 7 7 7 7 9 9 9 9 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 10 10 10 10 8 8 8 8 8 8 8 8

LSVM 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

KSVM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Zar 6 6 6 6 5 5 5 5 6 6 6 5 4 4 4 4
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Table B.12: Classifier ranking for p = 200 on Natsoulis Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 10 10 10 10 9 9 10 9

DLDA 3 4 4 4 4 4 5 5

EDC 5 5 5 5 6 6 6 6

G13 9 9 9 9 10 10 9 10

RLDA 4 3 3 3 3 3 3 3

Serd 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 8 8 8 8

LSVM 1 1 1 1 1 1 1 1

KSVM 2 2 2 2 2 2 2 2

Zar 6 6 6 6 5 5 4 4

Table B.13: Classifier ranking for p = 5 and p = 20 on Rosenwald Database

Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 8 8 8 8 7 7 7 7 9 9 9 9 9 9 9 9

DLDA 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4

EDC 1 1 1 1 1 1 1 1 4 4 4 4 4 5 5 5

G13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

RLDA 6 5 5 4 3 3 3 3 6 6 6 6 6 6 6 6

Serd 3 3 3 3 4 4 4 4 1 1 1 1 1 1 1 1

Serdc 4 4 4 5 5 5 5 5 2 2 2 2 2 2 2 2

LSVM 9 9 9 9 9 9 9 9 8 8 8 8 8 8 8 8

KSVM 5 7 7 7 8 8 8 8 5 5 5 5 5 4 3 3

Zar 7 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
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Table B.14: Classifier ranking for p = 50 and p = 100 on Rosenwald Database
Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 10 10 9 9 9 9 9 9 9 10 10 10 9 9 9 9

DLDA 1 1 1 2 3 3 3 3 1 2 2 2 2 2 3 3

EDC 2 2 3 4 4 4 4 4 2 3 3 3 3 4 4 4

G13 9 9 10 10 10 10 10 10 10 9 9 9 10 10 10 10

RLDA 6 4 4 3 2 2 2 2 4 4 4 4 4 3 2 2

Serd 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6

Serdc 5 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5

LSVM 7 8 8 8 8 8 8 8 7 7 7 7 7 8 8 8

KSVM 3 3 2 1 1 1 1 1 3 1 1 1 1 1 1 1

Zar 8 7 7 7 7 7 7 7 8 8 8 8 8 7 7 7

Table B.15: Classifier ranking for p = 200 on Rosenwald Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 9 10 10 9 10 10 10 10

DLDA 1 2 2 2 2 2 2 3

EDC 3 3 3 3 3 3 3 4

G13 10 9 9 10 9 9 9 9

RLDA 4 4 4 4 4 4 4 2

Serd 6 7 7 7 6 6 7 7

Serdc 7 6 6 6 7 7 6 6

LSVM 5 5 5 5 5 5 5 5

KSVM 2 1 1 1 1 1 1 1

Zar 8 8 8 8 8 8 8 8
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Table B.16: Classifier ranking for p = 5 and p = 20 on Valk Database
Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 9 9 8 8 8 8 8 8 9 9 9 9 9 9 9 9

DLDA 5 5 5 6 6 6 7 7 3 3 3 3 3 3 4 4

EDC 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

G13 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

RLDA 6 6 6 5 5 4 4 4 4 4 4 4 4 4 3 3

Serd 2 2 3 3 3 3 3 3 5 5 5 5 5 6 6 6

Serdc 3 4 4 4 4 5 5 6 6 6 6 6 6 7 7 7

LSVM 7 7 7 7 7 7 6 5 8 8 8 8 8 8 8 8

KSVM 4 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1

Zar 8 8 9 9 9 9 9 9 7 7 7 7 7 5 5 5

Table B.17: Classifier ranking for p = 50 and p = 100 on Valk Database

Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 10 10 9 9 9 9 9 9 9 10 10 9 9 9 9 9

DLDA 3 3 3 4 4 4 4 5 3 3 4 4 4 4 5 5

EDC 2 2 2 3 3 3 3 3 2 2 2 2 3 3 3 4

G13 9 9 10 10 10 10 10 10 10 9 9 10 10 10 10 10

RLDA 4 4 4 2 2 2 2 2 4 4 3 3 2 2 2 2

Serd 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

LSVM 5 6 6 6 6 6 6 6 5 5 6 6 6 6 6 6

KSVM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Zar 6 5 5 5 5 5 5 4 6 6 5 5 5 5 4 3
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Table B.18: Classifier ranking for p = 200 on Valk Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 10 9 9 9 10 10 9 9

DLDA 3 3 4 4 4 4 4 5

EDC 2 2 2 3 3 3 3 3

G13 9 10 10 10 9 9 10 10

RLDA 4 4 3 2 2 2 2 2

Serd 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 8 8 8 8

LSVM 5 5 5 5 6 6 6 6

KSVM 1 1 1 1 1 1 1 1

Zar 6 6 6 6 5 5 5 4

Table B.19: Classifier ranking for p = 5 and p = 20 on Vijver Database

Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 4 4 4 4 4 3 3 3 8 8 8 7 6 6 6 6

DLDA 7 7 7 7 7 7 7 7 3 3 4 4 4 4 4 4

EDC 3 3 3 3 3 4 5 5 2 2 2 2 2 2 2 3

G13 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10

RLDA 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9

Serd 6 6 6 6 6 6 6 6 5 6 6 6 7 7 7 7

Serdc 8 8 8 8 8 8 8 8 7 7 7 8 8 8 8 8

LSVM 2 2 2 2 2 2 1 1 4 4 3 3 3 3 3 2

KSVM 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1

Zar 5 5 5 5 5 5 4 4 6 5 5 5 5 5 5 5
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Table B.20: Classifier ranking for p = 50 and p = 100 on Vijver Database
Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 9 10 9 9 8 8 8 6 10 9 9 9 9 9 9 10

DLDA 4 4 3 3 3 3 2 2 4 4 3 2 2 2 2 2

EDC 3 2 2 2 2 2 3 4 3 3 2 3 3 3 3 3

G13 10 9 10 10 10 10 10 10 9 10 10 10 10 10 10 9

RLDA 8 8 8 8 9 9 9 9 8 8 8 8 8 8 8 8

Serd 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6

Serdc 7 7 7 7 7 7 7 8 7 7 7 7 7 7 7 7

LSVM 2 3 4 5 5 5 5 5 2 2 4 4 4 5 5 5

KSVM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Zar 5 5 5 4 4 4 4 3 5 5 5 5 5 4 4 4

Table B.21: Classifier ranking for p = 200 on Vijver Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 10 9 10 10 9 9 9 10

DLDA 4 4 4 4 4 4 4 4

EDC 3 3 3 3 3 3 3 3

G13 9 10 9 9 10 10 10 9

RLDA 8 8 8 8 8 8 8 8

Serd 6 6 6 6 6 6 6 6

Serdc 7 7 7 7 7 7 7 7

LSVM 1 2 2 2 2 2 2 2

KSVM 2 1 1 1 1 1 1 1

Zar 5 5 5 5 5 5 5 5
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Table B.22: Classifier ranking for p = 5 and p = 20 on Yeoh Database
Cl
as
sifi

er
s

p = 5 p = 20

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 9 7 7 5 5 5 5 5 7 7 7 5 5 4 3 3

DLDA 5 5 5 6 6 6 7 7 6 6 6 7 8 8 8 8

EDC 3 3 3 3 3 3 4 4 2 4 4 4 4 5 5 5

G13 10 10 10 10 10 10 10 10 8 8 8 8 6 6 6 6

RLDA 4 6 6 7 7 8 9 9 5 5 5 6 7 7 7 7

Serd 2 2 2 2 2 2 2 2 9 9 9 9 9 9 9 9

Serdc 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10

LSVM 7 8 9 9 8 7 6 6 3 3 3 3 3 3 4 4

KSVM 6 4 4 4 4 4 3 3 1 1 1 1 1 1 1 1

Zar 8 9 8 8 9 9 8 8 4 2 2 2 2 2 2 2

Table B.23: Classifier ranking for p = 50 and p = 100 on Yeoh Database

Cl
as
sifi

er
s

p = 50 p = 100

30 40 50 60 70 80 90 100 30 40 50 60 70 80 90 100

LDA 10 9 9 10 7 7 7 7 10 10 10 9 9 9 10 10

DLDA 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

EDC 3 4 5 5 5 5 5 5 3 5 5 5 5 5 5 5

G13 9 10 10 9 8 8 8 8 9 9 9 10 10 10 9 9

RLDA 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Serd 7 7 7 7 9 9 9 9 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 10 10 10 10 8 8 8 8 8 8 8 8

LSVM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2

KSVM 4 3 3 2 2 2 2 2 5 3 3 3 3 3 3 3

Zar 2 2 2 3 3 3 3 3 2 2 2 2 2 2 1 1
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Table B.24: Classifier ranking for p = 200 on Yeoh Database

Cl
as
sifi

er
s

p = 200

30 40 50 60 70 80 90 100

LDA 10 10 10 10 10 10 10 9

DLDA 6 6 6 6 6 6 6 6

EDC 4 4 4 5 5 5 5 5

G13 9 9 9 9 9 9 9 10

RLDA 3 3 3 3 3 3 3 3

Serd 7 7 7 7 7 7 7 7

Serdc 8 8 8 8 8 8 8 8

LSVM 1 1 1 1 1 1 1 1

KSVM 5 5 5 4 4 4 4 4

Zar 2 2 2 2 2 2 2 2
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Appendix C

This section describes how to calculate the inverse covariance matrix of
Zarutskij Classifier Σ−1Tree. Let Σ be a covariance matrix given in Table C.1

Table C.1: Covariance Matrix

0.746 0.175 0.498 0.275 -0.153
0.175 0.966 0.332 0.344 -0.229
0.498 0.332 0.646 0.232 -0.299
0.275 0.344 0.232 0.693 -0.234
-0.153 -0.229 -0.299 -0.234 0.577

The correlation matrix is calculated by ri j =
σi j√
σiiσj j

, where Σ = {σi, j}. The
computed correlation matrix is given in Table C.2: From Table C.2 we see that

Table C.2: Correlation Matrix

1.000 0.207 0.717 0.383 -0.233
0.207 1.000 0.420 0.421 -0.307
0.717 0.420 1.000 0.347 -0.490
0.383 0.421 0.347 1.000 -0.371
-0.233 -0.307 -0.490 -0.371 1.000

m = {1, 1, 1, 2, 3}, meaning that therewill be three branches going into r1 and one
branch going into r3 where ri are the branches. The total amount of branches is
the same as the number of features in the data, and correlation matrix values are
the weights between the branches. Select i = 2, then {2,mi} = {2,m1} = {2, 1}.
Calculate C = {ci, j} according to this:

ci j =



(
σ̂ii

(
1 − r2imi

))−1
2 if j = i

−rimi√
σmimi

(
1 − r2imi

) if j = mi

0 if otherwise,

(5.1)
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Table C.3: Lower Triangle Matrix

1.000 0.000 0.000 0.000 0.000
-0.245 1.040 0.000 0.000 0.000
-1.190 0.000 1.783 0.000 0.000
0.000 -0.472 0.000 1.324 0.000
0.000 0.000 0.699 0.000 1.511

C is given in Table C.3.
The inverse covariance matrix is computed by Σ−1Tree = CTC and result is shown
below:

Table C.4: Total Matrix

2.475 -0.254 -2.121 0.000 0.000
-0.254 1.305 0.000 -0.625 0.000
-2.121 0.000 3.668 0.000 1.056
0.000 -0.625 0.000 1.753 0.000
0.000 0.000 1.056 0.000 2.282
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Appendix D

This section provides the pseudo-codes of simulations and algorithms used
in Chapters 2 (all pseudo-codes) and Chapter 3 (γopt estimation procedure).
Algorithm 1: Estimation of Optimum Regularization Parameter

(
γopt

)
1 select a maximum testing γ as γmax;
2 select amount of γ to test as nγ;

3 compute γbase = (γmax)
1
nγ ;

4 let the array γ to test be
{
γ
−nγ+i
base

}
for i = 0, 1, 2, . . . , 2nγ;

5 for each γ in γ do
6 estimate expected true error using (2.8)-(2.11) and (2.12);
7 end
8 estimate γopt as the one that has the lowest expected true error;

Next pseudo-code describes the dataset sampling algorithm used for Chap-
ter 2
Algorithm 2: Dataset Sampling Algorithm
1 load dataset;
2 if all features are 0 || any NaN is detected then
3 remove a detected feature vectors;
4 end
5 compute necessary variables r , α0 and α1;
6 compute p-values using two-sample t-test, and sort them in ascending

order;
7 select the first p indexes;
8 generate indexes for training and testing samples for each repetition;
9 save new low-dimensional database, and generated sample indexes;

Pseudo-codes used to estimate the expected true error of RLDA and its
true error in Chapter 2 using real and synthetic databases (not coincidence is
given in brackets).
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Algorithm 3:Expected True Error and True Error ComputationAlgorithm
Used in Chapter 2
1 load sampled dataset (do nothing);
2 assign necessary values r , alpha0 alpha1, etc;
3 for each repetition do
4 retrieve training and testing samples (generate training and testing

samples);
5 calculate x0, x1, C;
6 save time stamp;
7 apply each estimator and save time stamp after each of them;
8 compute true error of RLDA using hold-out estimator (compute true

error of RLDA, for skewed-normal use hold-out estimator);
9 save time stamp;
10 calculate time differences;
11 end
12 save all the results;
13 generate figures;
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Appendix E

Pseudo-code of simulations used in Chapter 3.
Algorithm 4: Computation of True Error in Chapter 3
1 load dataset;
2 assign necessary values p, n, r , etc;
3 if data is not lognormal then
4 transform dataset to a lognormal space;
5 end
6 normalize data feature size;
7 apply two-sample ttest to compute the best features indexes;
8 for each repetition do
9 generate training and testing samples;
10 compute the true error of each classifier;
11 end
12 save all the results;
13 generate figures;
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Appendix F

Pseudo-code of simulations used in Chapter 4.
Algorithm 5: Computation of glment and SRC True Error in Chapter 4
1 load dataset;
2 assign necessary values p, n, r , etc;
3 for each repetition do
4 generate training and testing samples;
5 apply glmnet classifier;
6 generate randomgenes for each feature size of SRC;
7 for each feature size of SRC do
8 generate dimensionality reduced dataset;
9 apply CV10F-10R and compute the expected true error;
10 end
11 retrieve the feature size with the lowest expected true error;
12 compute the true error of SRC using a corresponding optimal

dimension and randomgenes;
13 end
14 save all the results;
15 generate figures;
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