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Abstract In this paper the geometric dimensions of a compressive helical spring
made of power law materials are optimized to reduce the amount of material. The
mechanical constraints are derived to form the geometric programming problem.
Both the prime and the dual problem are examined and solved semi-analytically for
a range of spring index. A numerical example is provided to validate the solutions.

Keywords Helical Spring · Power Law Materials · Geometric Programming ·
Optimal Design

Nomenclature

C=spring index = D

d

d=spring wire diameter, m
D=mean coil diameter, m
N=number of turns in the spring
δ= tip deflection of the spring, m
K=bulk modulus, MPa
n=the power law index
ρ=the density of the material, kg/m3

1 Introduction

Helical springs are the basic structure elements used in many mechanical devices.
In many applications, it is important to optimize the geometric dimensions of the
springs to reduce the amount of material used while maintaining the ability to
support the required loads. Optimal design of helical springs based on geometric
programing is well-known for materials which obey Hooke’s law, see, e.g., [6],
[7], [8]. However, materials subject to nonlinear stress-strain constitutive laws in
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this context have not been well-studied. One of the simplest nonlinear material
constitutive law is the following power law

σ = K|ǫ|n−1ǫ (1)

where σ is the axial stress, ǫ the axial strain, K the material constant-called the
bulk modulus, and n the power law index. Materials which obey (1) are often called
Hollomon or Ludwick materials in literature, see, e.g. [1] and [2]. High strength
alloy metals such as heat treated metals, stainless steels, Titanium alloys, and the
super plastic-polyimide are the common examples of power law materials. See,
e.g., [3] and [4] for a list of common metals with numerical values of the bulk
modulus and the power law index.

Helical springs are mechanical devices made of a wire coiled in the form of a
helix and considered to be a major element of shock absorber, return mechanisms,
fuel flow controller used in engineering, automotive, medical and agricultural ma-
chinery. They are widely used for compressive loads. Because even for small strains
there is no obvious yield of the stress-strain curve for the power lawmaterials before
ultimate yield point, the linear theory or the traditional reduced modulus theory
is not applicable or cannot be accurately applied to calculate stress distributions.

In this work, we first derive the maximum mechanical stress or loads and the
corresponding tip-deflection under a compressive load, and then formulate the cor-
responding geometric programming problem minimizing the amount of material
needed for the given loads. The optimal solutions of the geometric programming
problem is studied by considering KKTC conditions. The corresponding dual prob-
lem for the primal problem is constructed and examined for the solution as well.
A numerical example is provided for both the prime and the dual problem.

2 The Mechanical Constraints for the Spring

Let x denote the distance along a circular shaft from the fixed end under a uniform
torque. We assume that the rotation at x, denoted by φ(x), is proportional to x,
i.e., φ(x) = αx, where α is the rate of twist. Further, we assume that ǫxx = ǫrr =
ǫxr = ǫrθ = 0, and ǫxθ = rα

2 , where ǫij , i, j = x, r, θ are the strains in polar
coordinates. For the power law materials, we have the shear strain due to torsion
τxθ = 2G|ǫxθ|n−1ǫxθ = 2G( rα2 )n, where G = K

1+ν is the shear modulus and ν the
Poison’s ratio. Let A denote the cross-section of the shaft, the total torque at x

is given by T =
∫

A τxθrdA = 2G(α2 )
nIn, where In =

∫

A rn+1drdθ = πdn+3

(n+3)2n+2

is the generalized area moment. Therefore, we have α = 2( T
2GIn

)1/n, τxθ = Trn

In
.

Assume that the angle between loading force at the tip of the spring and the plane
containing the cross-section A of the wire is negligible, then the torque acting on
the wire T = P D

2 and the average shear stress in the wire due to a vertical constant

load, denoted by P is τav = Force
Area = P

πd2/4
= 4P

πd2 . Therefore, the total stress at r

is approximately

τ =
Trn

In
+

4P

πd2
=

2n+1(n+ 3)PDrn

πd3+n
+

4P

πd2
(2)

We now derive the deflection of the tip by extending the standard textbook method
( see, e.g., [9] and [10] )for n = 1 to the case of any value of n. We first have
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Fig. 1 A Compressive Helical Spring Diagram

GIn
dφ

ds
= τds = P

(

D

2

)2
dβ

ds

which gives dφ
ds = PD2

4GIn
dβ
ds . Then, we have

dδ

ds
= l sin γ

dφ

ds
= l

D

2l

PD2

4GIn

dβ

ds

=
(n+ 3)2n+2

8

D3P

Gπdn+3

dβ

ds

Therefore, we have the tip deflection formula

δ =

∫ 2πN

0

(n+ 3)2n+2D3P

8Gπdn+3
dβ =

(n+ 3)2n+2D3PN

4Gdn+3
(3)

3 Formulation of the Geometric Programming Problem

The objective function of our optimization problem is the weight of a helical spring
under axial load P . As for the constraints, we consider only upper bounds on the
shear stress in the cross-sections of the wire as described in the previous section
and the tip deflection of the spring. First, define the design vector to be

X =

{

x1

x2

}

=

{

D

d

}

(4)

where D is the mean diameter of the coil and d is the diameter of the wire as
defined in the nomenclature. Then, the objective function (mass) of the helical
spring can be expressed as

f(X) =
πd2

4
(πD)ρN (5)
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where N is the number of turns in the spring and ρ is the density of the spring
material. From (2) with r = d/2, the maximum stress for the power law helical
spring is given by

τmax =
2(n+ 3)PD

πd3
+

4P

πd2

τmax =
2(n+ 3)PD

πd3
Ks (6)

where Ks = 1 + 2
(n+3)C , C = D

d is called Spring index. By (3), the expression for

the maximum tip deflection of the helical spring is now

δmax =
(n+ 3)2n+3

8

x3
1PN

Gxn+3
2

(7)

where

In =
2
√
πdn+3

n+ 3

Γ (1 + π/2)

Γ (3/2 + π/2)
=

πdn+3

(n+ 3)2n+2
(8)

We now have the following nonlinear geometric programming problem for the
parameters ρ, P , τmax, δmax, K, n, N :

Minimize f(x1, x2) =
π2

4 ρNx2
2x1

subject to
2(n+3)Px1

πx3
2

[1 + 2x2

(n+3)x1
] ≤ τmax

(n+3)2n+3

8
x3
1PN

Gxn+3

2

≤ δmax

x2 ≤ x1

(9)

An examination of the KKTC conditions of (9) results in no solution. This is
because the third constraint must be active i.e. x1 = x2, which is impossible in the
context of the problem. Therefore, a third constraint, which is kx2 ≤ x1, where
k > 1 is added to complete the nonlinear program model. This is motivated by
using the spring index equation C = x1

x2
in literature. With the new formulation

of the problem our goal is to find optimal values of k, x1, x2.We have

minimize f = cx1x
2
2

subject to g1 = c11x1x
−3
2 + c12x

−2
2 − 1 ≤ 0

g2 = c21x
3
1x

−n−3
2 − 1 ≤ 0

g3 = kx2 − x1 ≤ 0
x1, x2 ≥ 0

(10)

where c = π2ρN
4 , c11 = 2(n+3)P

πτmax
, c12 = 4P

πτmax
, c21 = (n+3)2nPN

Gδmax
. Notice that all

coefficients are positive.
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4 Computing Optimal Solution from KKTC Conditions

To find optimal values of k, x1, x2 for the prime problem (10), we examine the
KKTC conditions as listed below:

cx2
2 + c11λ1x

−3
2 + 3c21λ2x

2
1x

−n−3
2 − λ3 = 0

2cx1x2 − 3c11λ1x1x
−4
2 − 2λ1c12x

−3
2 −

−λ2(n+ 3)c21x
3
1x

−n−4
2 + kλ3 = 0

(c11x1x
−3
2 + c12x

−2
2 − 1)λ1 = 0

(c21x
3
1x

−n−3
2 − 1)λ2 = 0

(kx2 − x1)λ3 = 0
λi ≥ 0 for i = 1, 2, 3
gi ≤ 0 for i = 1, 2,3

If λ3 = 0, then from the first equation it follows that λ1 or/and λ2 are less than
0. Hence, λ3 must be positive.

Case 1: λ3 > 0, λ1 = 0 and λ2 = 0

KKTC conditions give
cx2

2 − λ3 = 0
2cx1x2 + kλ3 = 0
kx2 − x1 = 0

from which x2 = 0 is obtained. However, x2 cannot be zero; therefore, this case
results in no solution.

Case 2: λ3 > 0, λ1 > 0 and λ2 > 0

From KKTC conditions we have

c11x1x
−3
2 + c12x

−2
2 − 1 = 0

c21x
3
1x

−n−3
2 − 1 = 0

kx2 − x1 = 0

This system, in general, has no solution since there are three equations and two
unknowns. This case gives no solution, too.

Case 3: λ3 > 0, λ1 > 0 and λ2 = 0

We have the following system of equations

cx2
2 + c11λ1x

−3
2 − λ3 = 0

2cx1x2 − 3c11λ1x1x
−4
2 − 2λ1c12x

−3
2 + kλ3 = 0

c11x1x
−3
2 + c12x

−2
2 − 1 = 0

kx2 − x1 = 0

This gives

x1 = k
√

c11k + c12, x2 =
√

c11k + c12

λ1 =
3ckx5

2

2c11k + 2c12
, λ3 =

5c11k + 2c12
2c11k + 2c12

cx2
2
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λ’s and x’s are positive and satisfy non-negativity constraints. In this case, in-
equality g2 ≤ 0 must also hold. That is,

c21x
3
1x

−n−3
2 − 1 ≤ 0 ⇒ c

2/n
21 k6/n − c11k − c12 ≤ 0 (11)

We must choose such constant k that satisfies the above inequality and minimizes
the objective function which becomes

f1 = cx1x
2
2 = ck(c11k + c12)

3/2

Notice that minimization of the objective function is equivalent to minimization
of k. Thus, for this case we choose minimum k > 1 that satisfies (11).

Case 4: λ3 > 0, λ1 = 0 and λ2 > 0

In this case KKTC conditions result in the following system of equations

cx2
2 + 3c21λ2x

2
1x

−n−3
2 − λ3 = 0

2cx1x2 − λ2(n+ 3)c21x
3
1x

−n−4
2 + kλ3 = 0

c21x
3
1x

−n−3
2 − 1 = 0

kx2 − x1 = 0

from which we obtain

x1 = c
1/n
21 k1+3/n, x2 = c

1/n
21 k3/n

λ2 =
3cxn+3

2

c21k2n
, λ3 = c

(

1 +
9

n

)

x2
2

λ’s and x’s satisfy non-negativity constraints. Next, consider inequality g1 ≤ 0

c11x1x
−3
2 + c12x

−2
2 − 1 ≤ 0 ⇒ c

2/n
21 k6/n − c11k − c12 ≥ 0 (12)

Notice that LHS of (11) and (12) are the same.

In this case, the objective function is

f2 = cx1x
2
2 = cc

3/n
21 k1+9/n

Again, minimization of the objective function is equivalent to minimization it rel-
ative to k. Now, we prove that if the following equation

c
2/n
21 k6/n − c11k − c12 = 0 (13)

has a root k∗ > 1 then KKTC conditions provide a desired solution. Suppose that
k∗ is a minimal root of (13) that is greater than 1. Assume that interval (1, k∗]
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satisfies inequality (11), then there is no minimal value of k that satisfies the fol-
lowing system of equations

{

c
2/n
21 k6/n − c11k − c12 ≤ 0

k > 1

Therefore, case 3 does not give any solution. However, case 4 provides a solution
because there exists a minimal value of k of the following system of equations

{

c
2/n
21 k6/n − c11k − c12 ≤ 0

k > 1

and that minimal value of k is k∗. Similarly, if the interval (1, k∗] satisfies inequal-
ity (12), then case 3 provides a solution.

We now show that solutions in both cases are the same. In other words, x1 and x2

in case 3 are equal to x1 and x2 in case 4, respectively. It is enough to show that
x2’s are the same.

√

c11k∗ + c12 = c
1/n
21 (k∗)3/n ⇔ c11k

∗ + c12 = c
2/n
21 (k∗)6/n

⇔ c
2/n
21 (k∗)6/n − c11k

∗ − c12 = 0

Since x2’s are equal, x1’s and the values of objective functions in two cases are the
same. This means that any solution of x1 and x2 can be chosen from case 3 or 4.

We denote the function c
2/n
21 (k∗)6/n− c11k

∗− c12 by g(k). The algorithm of finding
optimal diameters and mass of helical spring can be stated as the following steps:
Step 1 :

Solve numerically the inequality

g(k) = c
2/n
21 k6/n − c11k − c12 ≤ 0

and choose a value of k in the solution interval of the inequality that is larger than
1 ( See Figure 2),
Step 2 :

Calculate x1, x2 and f

x1 = k
√

c11k + c12, x2 =
√

c11k + c12, f = cx1x
2
2

It can be shown ( see also Figure 2) that the equation g(k) = 0 has one negative
root and one positive root that is greater than 1. This gives optimal design variables
for and spring index C = k in the range (1, k∗], where k∗ denotes the positive root.
Notice that we can again optimize the objective function relative to the spring
index C by choosing the design variables corresponding to the minimal weight.



8 Dongming Wei et al.

5 Computing the Optimal Solution of the Dual Problem

The algorithm of solving geometric programming problem by constructing its dual
is well described in [5]. We will follow that algorithm and show that the solution
of the dual coincides with the solution of the primal problem.

First, rewrite the problem in the following way

Minimize f(x1, x2) = cx1x
2
2

subject to c11x1x
−3
2 + c12x

−2
2 ≤ 1

c21x
3
1x

−(n+3)
2 ≤ 1
kx−1

1 x2 ≤ 1

(14)

We now form the dual of the primal problem. Remember that the maximum of
the dual problem is equal to the minimum of the prime. Hence, we have

Maximize v =
(

c
λ01

λ01

)λ01
(

c11
λ11

(λ11 + λ12)
)λ11

×
(

c12
λ12

(λ11 + λ12)
)λ12

(

c21
λ21

λ21

)λ21

×
(

k
λ31

λ31

)λ31

subject to λ01 = 1
λ01 + λ11 + 3λ21 − λ31 = 0
2λ01 − 3λ11 − 2λ12 − (n+ 3)λ21 + λ31 = 0
λ11 + λ12 ≥ 0
λ21 ≥ 0
λ31 ≥ 0

(15)

From the equations

λ01 = 1
λ01 + λ11 + 3λ21 − λ31 = 0
2λ01 − 3λ11 − 2λ12 − (n+ 3)λ21 + λ31 = 0

we obtain

λ21 = 3−2λ11−2λ12

n
λ31 = 1+ 9

n + (1− 6
n )λ11 − 6

nλ12
(16)

Then, the objective function becomes

v = (c)λ01

(

c11
λ11

(λ11 + λ12)

)λ11
(

c12
λ12

(λ11 + λ12)

)λ12

×(c21)
3−2λ11−2λ12

n (k)1+
9

n
+(1− 6

n
)λ11−

6

n
λ12

(17)

In order to find maximum of v we differentiate ln v with repsect to λ11 and λ12

and solve the system of two equations.

∂ ln v

∂λ11
= ln(c11) + ln(λ11 + λ12)− lnλ11 − ln c

2/n
21 + ln k1−6/n
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∂ ln v

∂λ12
= ln(c12) + ln(λ11 + λ12)− lnλ12 − ln c

2/n
21 − ln k6/n

From

∂ ln v

∂λ11
= 0 and

∂ ln v

∂λ12
= 0

we obtain

λ11 + λ12

λ11
= c−1

11 c
2/n
21 k6/n−1

λ11 + λ12

λ12
= c−1

12 c
2/n
21 k6/n

(18)

This gives

c−1
11 c

2/n
21 k6/n−1 − 1 =

1

c−1
12 c

2/n
21 k6/n − 1

⇒

⇒ c
2/n
21 k6/n − c11k − c12 ≤ 0

Notice that the above equation and (13) are the same.

With (18) the objective function (17) becomes

v∗ = cc
3/n
21 k1+9/n (19)

Now, in order to find xi’s we need to solve the following system of equations

λ01 =
cx1x

2
2

v∗
λ11

λ11+λ12
= c11x1x

−3
2

λ12

λ11+λ12
= c12x

−2
2

λ21

λ21
= c21x

3
1x

−n−3
2

λ31

λ31
= kx−1

1 x2

(20)

With (18) and (19) the above system becomes

1 =
cx1x

2
2

cc
3/n
21 k1+9/n

c−1
11 c

2/n
21 k6/n−1 = c11x1x

−3
2

c−1
12 c

2/n
21 k6/n = c12x

−2
2

1 = c21x
3
1x

−n−3
2

1 = kx−1
1 x2

and as a solution we get

x1 = c
1/n
21 k1+3/nx2 = c

1/n
21 k3/n (21)
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We also need to check whether inequality constraints in (15) are satisfied. That is,

λ11 + λ12 ≥ 0
λ21 ≥ 0
λ31 ≥ 0

From the first equality in (16) it follows

λ21 =
3− 2λ11 − 2λ12

n
≥ 0 ⇔ λ11 + λ12 ≤ 3

2
(22)

Then, from (18) we obtain

λ11 + λ12 = c−1
11 c

2/n
21 k6/n−1λ11 ≤ 3

2

Therefore,

λ11 ≤ 3

2
c11c

−2/n
21 k1−6/n (23)

Combining the second equality in (16) and (22) we have

λ31 = 1 +
9

n
+ λ11 − 6

n
(λ11 + λ12) ≥ 1 + λ11 ≥ λ11 (24)

The values of λ’s cannot be obtained from (18) and they do not affect the solution.
Hence, we are free to set the values for λ’s as long as they satisfy the constraints.

For λ11 choose any positive number that satisifies (23). Then, (18) gives

λ12 = (c−1
11 c

2/n
21 k6/n−1 − 1)λ11

From (22) and (24) it follows that λ21 and λ31 are positive. The solution (21)
and the objective function (19) coincide with the solution in case 3 of the primal
problem. Remember that the solutions obtained from case 3 and 4 are the same.

The coefficient k is again found by solving the equation c
2/n
21 k6/n − c11k− c12 = 0.

From (19) one should not think that because we maximize v we need to maximize
k. In the dual and primal problems k is a coefficient and the value of which are free
to set. From the solution of the dual we know that k must satisfy (13). However,
in order to choose the right k one needs to look at the primal problem. In the
context of the primal problem k should be minimized i.e. must be the minimum
positive root of (13) which is greater than 1.
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6 Numerical Experiments

Problem: Formulate the problem of minimum weight design if a helical spring
under axial load that is made of stainless steel. Consider constraints on the shear
stress and the deflection of the spring. Number of active turns N = 10, the density
ρ = 7700kg/m3, n = 0.1 for ν = 0.275, K = 960MPa, for the axial load, take
P = 10.0N . The maximum deflection of the spring δmax = 0.03m and maximum
shear stress is τmax = 200MPa. First, we numerically solve for minimum root
of (13) and then obtain the optimal solution x1, x2 from the solution obtained
in the previous two sections. After computing on Mathematica, we have c =
189989.8847, c11 = 9.8676 · 10−8, c12 = 6.3662 · 10−8, c21 = 1.4709 · 10−5. The
solution of the inequality(13) is the interval (−0.645162,33.0756]. We now form

Out[27]=

5 10 15 20 25 30 35
k

-3.×10-6

-2.×10-6

-1.×10-6

1.×10-6

2.×10-6

3.×10-6

g(k)

Fig. 2 A Compressive Helical Spring Diagram

the prime problem with numerical coefficients for this example:

Minimize f(x1, x2) = 189989.8847x1x
2
2

Subject to
9.8676 · 10−8x1 + 6.3662 · 10−8x2

x3
2

≤ 1

1.4709 · 10−5x3
1

x3.1
2

≤ 1.

kx2 ≤ x1

x2, x1 ≥ 0

(25)

where the value of k can be chosen from the interval (1,33.0756]. By solving this
prime problem directly and by the semi-analytic solution provided in the steps in
section 5, the numerical solutions match with little error. For example, by taking
k = 10, we have the solution x1 = 0.010249m, x2 = 0.0010249m and the objective
function value is f = 0.00306809kg. This numerical experiment indicates that
the solution obtained using the formula in Section 5 agrees with the solutions
computed by the Mathematica.
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7 Conclusion

A nonlinear geometric programing problem is formulated for compression helical
springs made of power law materials. Both the prime and the dual problems are
shown to have the same solution by examining the KKTC conditions. A semi-
analytic solution is derived which provides solutions of the helical spring for a range
of spring index. A numerical example is also provided to illustrate and validate the
semi-analytic solution with the solution computed by solving the prime problem
numerically using Mathematica.
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