Finite Element Analysis of the Ramberg-Osgood Bar

Dongming Wei ${ }^{1}$, Mohamed B. M. Elgindi ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of New Orleans, New Orleans, USA
${ }^{2}$ Texas A \& M University-Qatar, Doha, Qatar
Email: Mohamed.elgindi@qatar.tamu.edu

Received May 29, 2013; revised June 29, 2013; accepted July 9, 2013
Copyright © 2013 Dongming Wei, Mohamed B. M. Elgindi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to the associated nonlinear two point boundary value problem is established and used as a foundation for the finite element analysis.

Keywords: Nonlinear Two Point Boundary Value Problem; Ramberg-Osgood Axial Bar; Existence and Uniqueness of Solutions; Finite Element Analysis; Convergence and a Priori Error Estimates

1. Introduction

The following Ramberg-Osgood stress strain equation

$$
\begin{equation*}
\varepsilon(x)=A \sigma(x)+B|\sigma(x)|^{q-2} \sigma(x) \tag{1.1}
\end{equation*}
$$

is accepted as the model for the material's constitutive equation in the stress analysis for a variety of industrial metals. Numerous data exist in literature that supports the use of (1.1) to represent the stress-strain relationship for aluminum and several other steel alloys exhibiting elas-tic-plastic behavior (see, for example, [1-4] and the references therein). In Equation (1.1), $\varepsilon(x)$ represents the axial strain, $\sigma(x)$ represents the axial stress, $0<x<L$, $q \geq 2$ represents the material hardening index (where $q=2$ describes the linear elastic material), the constants A, B and q are determined from the experimental values for the parameters $E, \sigma_{y}, \varepsilon_{y}, \varepsilon_{u}$, and ε_{u} by the formula

$$
\begin{equation*}
A=\frac{1}{E}, B=0.002\left(\frac{1}{\sigma_{y}}\right)^{q-2}, q=1+\frac{\ln 20}{\ln \left(\sigma_{u} / \sigma_{y}\right)} \tag{1.2}
\end{equation*}
$$

where E is the Young's modulus, $\sigma_{y}, \varepsilon_{y}$ are the material's yield stress and strain, $\sigma_{u}, \varepsilon_{u}$ are the ultimate stress and the ultimate strain, and $L>0$ stands for the length of the solid bar.

We observe that Equation (1.1) splits the strain into two parts: an elastic strain part with coefficient A and a nonlinear part with coefficient B. The linear part dominates for $\sigma<\sigma_{y}$, while the nonlinear part dominates for $\sigma>\sigma_{y}$. In many industrial applications, e.g., in lightweight ship deck titanium structures, welding-induced
plastic zones play important roles in determining the structures' integrity (see [5,6]).

Figure 1 compares the stress-strain curves for Hooke's law, the double modulus, and Ramberg-Osgood law using material measured data. Among these models, the Ramberg-Osgood model appears to represent the material's behavior the best.

Table 1 gives experimental values of the material constants for some commonly used metals in industries.

Although (1.1) is widely used in industries for finite element analysis, no solvability and uniqueness or error analysis has been given in literature even for the following one-dimensional boundary value problem:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} \sigma(x)}{\mathrm{d} x}-c(x) u(x)+f(x)=0,0<x<L \\
\frac{\mathrm{~d} u(x)}{\mathrm{d} x}=A \sigma(x)+B|\sigma(x)|^{q-2} \sigma(x), \tag{1.3}\\
u(0)=0, u^{\prime}(L)=\beta
\end{array}\right.
$$

where $c(x) \geq 0$ satisfies $c \in L^{\infty}(0, L)$ and $f(x) \in L^{q}(0, L)$. For simplicity, we consider only one boundary condition. Other Dirichlet type boundary conditions can be treated similarly.
W_{N} also consider the case when $c(x) u(x)$ is replaced by $\sum k_{i} u\left(x_{i}\right) \delta\left(x-x_{i}\right)$, where $\delta\left(x-x_{i}\right)$ is Dirac impulse ${ }^{-1}$ functions, and k_{i} stands for concentrated elastic support constant at $0 \leq x_{i} \leq L$, for $i=1, \cdots, N$.

In Section 2, we develop a week formulation of (1.3) subject to the given boundary condition and prove existence and uniqueness of the solution by using the theory

Four different Stress/Strain models, compared with measured data

Figure 1. Ramburg-Osgood curves.

Table 1. Constants for Ramburg-Osgood materials.

Material	A	B	$q-1$
Inconel 718	$3.33 \mathrm{e}-05$	$4.42 \mathrm{e}-71$	32.00
5083 Aluminum	$9.80 \mathrm{e}-05$	$2.50 \mathrm{e}-23$	13.11
6061T6 Aluminum	$1.00 \mathrm{e}-04$	$1.35 \mathrm{e}-58$	34.44
304 Stainless Steel	$3.57 \mathrm{e}-05$	$3.44 \mathrm{e}-13$	6.32
304 L StainlessSteel	$3.57 \mathrm{e}-05$	$2.24 \mathrm{e}-15$	7.36

of perturbed convex variational problems in Sobolev spaces (see [7] for details.) We also prove that the solution is bounded in certain Sobolev norms. In Section 3, we derive an error estimates for the semi-discrete error between the week solution and the Galerkin's finite element solution of (1.3) for the standard conformal finite elements. The results of this section are based on the results in Section 2. We believe that the results established in these sections are novel and preliminary.

2. Existence and Uniqueness of Solutions

Let $W^{1, p}(0, L)$ and $W_{0}^{1, p}(0, L)$ be the standard Sobo-
lev spaces, where $p=\frac{q}{q-1}$. Define $\phi(\sigma)=A \sigma+B|\sigma|^{q-2} \sigma$, where $A>0, B>0$, and $q>2$. Observe that the mapping $\phi(\sigma)$ is one-to-one; however, its inverse cannot be written explicitly.

Since $\varepsilon=u^{\prime}$, Equation (1.3) can be rewritten as:

$$
\left\{\begin{array}{l}
-\frac{\mathrm{d} \sigma(x)}{\mathrm{d} x}+c(x) u(x)=f(x), 0<x<L \tag{2.2}\\
\sigma=\phi^{-1}\left(u^{\prime}\right), \quad u(0)=0, u^{\prime}(L)=\beta
\end{array}\right.
$$

Define the following space of admissible functions as

$$
\begin{equation*}
V \equiv\left\{u \in W^{1, p}(0, L) \mid u(0)=0, u^{\prime}(L)=\beta\right\} . \tag{2.3}
\end{equation*}
$$

The weak formulation of (2.2) can then be written as Problem I: Find $u \in V$, such that
$\int_{0}^{L} \phi^{-1}\left(u^{\prime}\right) v^{\prime} \mathrm{d} x+\int_{0}^{L} c u v \mathrm{~d} x=\int_{0}^{l} f v \mathrm{~d} x \quad \forall v \in W_{0}^{1, p}(0, L)$.
Let us define the operator:

$$
\begin{equation*}
a(u, v) \equiv \int_{0}^{L} \phi^{-1}\left(u^{\prime}\right) v^{\prime} \mathrm{d} x+\int_{0}^{L} c u v \mathrm{~d} x \tag{2.5}
\end{equation*}
$$

for $u, v \in V$. Then, $a(u, v)$ satisfies the following property:

$$
\begin{align*}
a(u, u)= & \int_{0}^{L} \phi^{-1}\left(u^{\prime}\right) u^{\prime} \mathrm{d} x+\int_{0}^{L} c u^{2} \mathrm{~d} x \\
= & \int_{0}^{L} \phi^{-1}\left(u^{\prime}\right)\left[A \phi^{-1}\left(u^{\prime}\right)+B\left|\phi^{-1}\left(u^{\prime}\right)\right|^{q-2} \phi^{-1}\left(u^{\prime}\right)\right] \mathrm{d} x \\
& +\int_{0}^{L} c u^{2} \mathrm{~d} x \geq \int_{0}^{L}\left[A\left|\phi^{-1}\left(u^{\prime}\right)\right|^{2}+B\left|\phi^{-1}\left(u^{\prime}\right)\right|^{q}\right] \mathrm{d} x \\
= & A\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{2}}^{2}+B\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q}, \text { for } u \in V \tag{2.6}
\end{align*}
$$

Also, by the definition of ϕ, we have

$$
\begin{align*}
\left\|u^{\prime}\right\|_{L^{q}} & =\left\|A \phi^{-1}\left(u^{\prime}\right)+B\left|\phi^{-1}\left(u^{\prime}\right)\right|^{q-2} \phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}} \\
& \leq A\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}+B\left\|\left.\phi^{-1}\left(u^{\prime}\right)\right|^{q-1}\right\|_{L^{q}} \tag{2.7}\\
& \leq A\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}+\bar{B}\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q-1}
\end{align*}
$$

Lemma 2.1 For given positive constants A, B, q, L, there exists a constant C independent of the solutions $u(x) \in V$ of the BVP (1.3) such that $\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{2}}^{2}+\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q} \leq C$.

Proof: For a solution $u(x) \in V$, we can write:
$v=u-u_{b}$, where $u_{b} \in V$ is a fixed function, so that $v \in W_{0}^{1, p}(0, L)$, and since:

$$
\begin{align*}
\int_{0}^{L} \phi^{-1}\left(u^{\prime}\right) v^{\prime} \mathrm{d} x & +\int_{0}^{L} c u v \mathrm{~d} x=\int_{0}^{L} f v \mathrm{~d} x, \text { we get: } \\
a(u, u)= & \int_{0}^{L} \phi^{-1}\left(u^{\prime}\right) u^{\prime} \mathrm{d} x+\int_{0}^{L} c u^{2} \mathrm{~d} x \\
= & \int_{0}^{L} f u \mathrm{~d} x-\int_{0}^{L} f u_{b} \mathrm{~d} x+\int_{0}^{L} c u u_{b} \mathrm{~d} x \tag{2.8}\\
& +\int_{0}^{L} \phi^{-1}\left(u^{\prime}\right) u_{b}^{\prime} \mathrm{d} x
\end{align*}
$$

Also, by (2.6) and (2.8), we have:

$$
\begin{align*}
& A\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{2}}^{2}+B\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q} \\
& \leq\|f\|_{L^{q}}\left\|u_{b}\right\|_{L^{p}}+\|u\|_{L^{p}}\left(\|f\|_{L^{q}}+\left\|c u_{b}\right\|_{L^{q}}\right) \tag{2.9}\\
&+\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}\left\|u_{b}^{\prime}\right\|_{L^{p}} \\
& \leq C_{1}+C_{2}\|u\|_{L^{p}}+C_{3}\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}},
\end{align*}
$$

where $C_{1}=\|f\|_{L^{q}}\left\|u_{b}\right\|_{L^{p}}, C_{2}=\left(\|f\|_{L^{q}}+\left\|c u_{b}\right\|_{L^{q}}\right)$, and $C_{3}=\left\|u_{b}^{\prime}\right\|_{L^{p}}$.

By the Sobolev inequality, we have (see e.g. [8,9]): $\|u\|_{L^{p}} \leq C\left\|u^{\prime}\right\|_{L^{q}}$, and therefore:

$$
B\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q} \leq C_{1}+C_{2}\left\|u^{\prime}\right\|_{L^{q}}+C_{3}\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}
$$

Also, since by definition of ϕ,

$$
\begin{aligned}
\left\|u^{\prime}\right\|_{L^{q}} & =\left\|A \phi^{-1}\left(u^{\prime}\right)+B\left|\phi^{-1}\left(u^{\prime}\right)\right|^{q-2} \phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}} \\
& \leq A\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}+B\left\|\left.\phi^{-1}\left(u^{\prime}\right)\right|^{q-1}\right\|_{L^{q}} \\
& \leq A\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}+\bar{B}\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q-1}
\end{aligned}
$$

we have

$$
\begin{equation*}
\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q} \leq \bar{C}_{1}+\bar{C}_{2}\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}+\bar{C}_{3}\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{q}}^{q-1} \tag{2.10}
\end{equation*}
$$

where $\bar{C}_{i}, i=1,2,3$ are positive constants. From (2.10), we conclude that $\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{L^{9}}$ is bounded and that there exists a constant C such that $\left\|\phi^{-1}\left(u^{\prime}\right)\right\|_{I^{q}} \leq C$, as $u(x)$ varies over the solution set of (1.3) in $V^{l^{q}}$. Therefore, the result of the lemma is follows.

Theorem 2.1 For a given $f \in L^{q}(0, L), q \geq 2, A>0$ $\& B>0$, problem (I) has a unique solution $u \in U$.

Proof:

The uniqueness follows from the following argument. Let u_{1} and u_{2} be two solutions of (2.4). Then (since $c(x) \geq 0)$:

$$
0 \geq \int_{0}^{L}\left(\phi^{-1}\left(u_{1}^{\prime}\right)-\phi^{-1}\left(u_{2}^{\prime}\right)\right)\left(u_{1}^{\prime}-u_{2}^{\prime}\right) \mathrm{d} x
$$

which leads to:

$$
\begin{aligned}
& \begin{aligned}
0 \geq & \int_{0}^{L}\left(\sigma_{1}-\sigma_{2}\right)\left(\phi\left(\sigma_{1}\right)-\phi\left(\sigma_{2}\right)\right) \mathrm{d} x \\
= & A \int_{0}^{L}\left(\sigma_{1}-\sigma_{2}\right)^{2} \mathrm{~d} x \\
& +B \int_{0}^{L}\left(\left|\sigma_{1}\right|^{q-2} \sigma_{1}-\left|\sigma_{2}\right|^{q-2} \sigma_{2}\right)\left(\sigma_{1}-\sigma_{2}\right) \mathrm{d} x \\
\geq & A \int_{0}^{L}\left(\sigma_{1}-\sigma_{2}\right)^{2} \mathrm{~d} x
\end{aligned} \\
& \text { since } \sigma_{1}=\phi^{-1}\left(u_{1}^{\prime}\right), \sigma_{2}=\phi^{-1}\left(u_{2}^{\prime}\right) \text { and }
\end{aligned}
$$

$$
\left(\left|\sigma_{1}\right|^{q-2} \sigma_{1}-\left|\sigma_{2}\right|^{q-2} \sigma_{2}\right)\left(\sigma_{1}-\sigma_{2}\right) \geq 0
$$

which is well-known [10,11].
Therefore, $\sigma_{1}=\sigma_{2}$ and $u_{1}=u_{2}$, and this establishes the uniqueness of the solution of (2.4).

For existence, we consider the variational formulation of (2.4) and define the total potential energy by:

$$
\begin{aligned}
J(u) & =\frac{1}{2}\left[\int_{0}^{L} \sigma \varepsilon \mathrm{~d} x+\int_{0}^{L} c u^{2} \mathrm{~d} x\right]-\int_{0}^{L} f u \mathrm{~d} x \\
& =\frac{1}{2}\left[\int_{0}^{L} \phi^{-1}\left(u^{\prime}\right) u^{\prime} \mathrm{d} x+\int_{0}^{L} c u^{2} \mathrm{~d} x\right]-\int_{0}^{L} f u \mathrm{~d} x
\end{aligned}
$$

Let $\varphi(t)=\frac{1}{2} \phi^{-1}(t) t$, then $J(u)$ can be written as:

$$
J(u)=\frac{1}{2}\left[\int_{0}^{L} \varphi\left(u^{\prime}\right) \mathrm{d} x+\int_{0}^{L} c u^{2} \mathrm{~d} x\right]-\int_{0}^{L} f u \mathrm{~d} x .
$$

Also we have: $\varphi^{\prime}(t)=\frac{1}{2} \phi^{-1}(t)+\frac{1}{2}\left[\phi^{-1}(t)\right]^{\prime} t$.
Letting $t=\phi(y(t))=A y(t)+B|y(t)|^{q-2} y(t)$.
Then $y=\phi^{-1}(t)$ and
$1=A y^{\prime}(t)+(q-1) B|y|^{q-2} y^{\prime}(t)$.
Therefore, we get

$$
\begin{aligned}
& {\left[\phi^{-1}(t)\right]^{\prime}=y^{\prime}(t)=\frac{1}{A+(q-1) B|y|^{q-2}}, \text { and }} \\
& \begin{aligned}
\varphi^{\prime}(t) & =\frac{1}{2}\left[y(t)+\frac{t}{A+(q-1) B|y|^{q-2}}\right] \\
& =\frac{1}{2}\left[\phi^{-1}(t)+\phi^{-1}(t)\right]=\phi^{-1}(t) .
\end{aligned}
\end{aligned}
$$

Now the first variation of J can be expressed as:

$$
\begin{aligned}
\left.\frac{\mathrm{d}}{\mathrm{~d} \varepsilon} J(u+\varepsilon v)\right|_{\varepsilon=0} & =\int_{0}^{L}\left[\varphi^{\prime}\left(u^{\prime}\right) v^{\prime}+c u v\right] \mathrm{d} x-\int_{0}^{L} f v \mathrm{~d} x \\
& =\int_{0}^{L}\left[\phi^{-1}\left(u^{\prime}\right) v^{\prime}+c u v\right] \mathrm{d} x-\int_{0}^{L} f v \mathrm{~d} x .
\end{aligned}
$$

However:

$$
\begin{aligned}
& \varphi^{\prime \prime}(t) \\
= & \frac{1}{2}\left[\frac{2}{A+(q-1) B|y|^{q-2}}+t \frac{(q-1)(q-2) B|y|^{q-4} y y^{\prime}}{\left[A+(q-1) B|y|^{q-2}\right]^{2}}\right] \\
= & \frac{1}{2}\left\{\frac{2}{\left[A+(q-1) B|y|^{q-2}\right]}+\frac{(q-1)(q-2) B|y|^{q-2}}{\left[A+(q-1) B|y|^{q-2}\right]^{2}}\right\} \\
= & \frac{1}{2} \frac{\left[A+q(q-1) B|y|^{q-2}\right]}{\left[A+(q-1) B|y|^{q-2}\right]^{2}} \geq 0 .
\end{aligned}
$$

We rewrite the total energy function as $J(u)=F_{1}(u)+F_{2}(u)-F(u)$, where $F_{1}(u)=\frac{1}{2} \int_{0}^{L} \varphi\left(u^{\prime}\right) \mathrm{d} x, \quad F_{2}(u)=\frac{1}{2} \int_{0}^{L} c u^{2} \mathrm{~d} x$, and $F(u)=\int_{0}^{L} f(x) u(x) \mathrm{d} x$. Then weak formulation (2.4) is equivalent to $\operatorname{Min} J(u)$.
Since $\varphi^{\prime \prime}(t)^{u \leq V} 0, F_{1}: V \rightarrow R$ is convex, and since $c \in L^{\infty}(0, L), \quad F_{2}: V \rightarrow R$ is weekly sequentially continuous (since $\left\{u_{n}\right\}$ converges weekly in V implies that $\left\{u_{n}\right\}$ converges strongly in $L^{q}(0, L)$.) Also (2.6)
and (2.7) imply the coercivity of $J(u)$, see, e.g., [9-11]. Therefore, $J(u)$ satisfies the conditions of the theorem of 42.7, pp. 225-226, in [9], and the existence of a weak solution follows.

We now consider the second case when the term $c(x) u(x)$ is replaced by $\sum_{i=1}^{N} k_{i} u\left(x_{i}\right) \delta\left(x-x_{i}\right)$.

In this case, $F_{2}(u)=\frac{1}{2} \sum_{i=1}^{N} k_{i}\left[u\left(x_{i}\right)\right]^{2}$ and we only need show that it is weakly sequentially continuous. Suppose that $\left\{u_{n}\right\}$ converges weekly in V, then for a $v \in W^{-1, q^{\prime}}(0, L)$,

$$
\lim _{k \rightarrow \infty} \int_{0}^{L}\left(v^{\prime} u_{k}^{\prime}+v u_{k}\right) \mathrm{d} x=\int_{0}^{L}\left(v^{\prime} u^{\prime}+v u\right) \mathrm{d} x
$$

and $\lim _{k \rightarrow \infty} \int_{0}^{L} v u_{k} \mathrm{~d} x=\int_{0}^{L} v u \mathrm{~d} x$. Therefore, since

$$
u_{k}\left(x_{i}\right)=\int_{0}^{x_{i}} u_{k}^{\prime}(x) \mathrm{d} x=\int_{0}^{L} v^{\prime} u_{k}^{\prime}(x) \mathrm{d} x
$$

where

$$
v(x)=\left\{\begin{array}{l}
x, 0 \leq x \leq x_{i} \\
x_{i}, x_{i}<x \leq L
\end{array}\right.
$$

We have

$$
\begin{aligned}
\lim _{k \rightarrow \infty} u_{k}\left(x_{i}\right) & =\lim _{k \rightarrow \infty} \int_{0}^{L} v^{\prime} u_{k}^{\prime}(x) \mathrm{d} x=\int_{0}^{L} v^{\prime} u^{\prime}(x) \mathrm{d} x \\
& =\int_{0}^{x_{i}} u^{\prime}(x) \mathrm{d} x=u\left(x_{i}\right) \\
\lim _{k \rightarrow \infty} F_{2}\left(u_{k}\right) & =\lim _{k \rightarrow \infty} \sum_{i=1}^{N} k_{i}\left[u_{k}\left(x_{i}\right)\right]^{2} \\
& =\sum_{i=1}^{N} k_{i}\left[u\left(x_{i}\right)\right]^{2}=F_{2}(u)
\end{aligned}
$$

Therefore, Theorem 2.1 holds with the same conditions for the case when $c(x) u(x)$ is replaced by $\sum_{i=1}^{N} k_{i} u\left(x_{i}\right) \delta\left(x-x_{i}\right)$.

3. Finite Element Error Estimates

Let $V_{h} \equiv S_{h}^{k}(0, L) \subset W^{1, q}(0, L)$ be a standard conformal finite element space of order k (See [12-15]) satisfying the interpolation property:

$$
\begin{equation*}
\left\|v-\Pi_{h} v\right\|_{1, p} \leq C(v) h^{k}, \forall v \in W^{1, p}(0, L) \tag{3.1}
\end{equation*}
$$

where C is a positive constant depending only on v and $L, \Pi_{h} v$ is the finite element interpolation of v, k is the polynomial degree for the interpolation shape functions, and h the mesh size, $\left\|v-\Pi_{h} v\right\|_{1, p}$ the $W^{1, p}(0$, L) norm.

The corresponding finite element Galerkin's finite element approximation problem for (2.1) is:

Problem II:

Find $u_{h} \in V_{h} \equiv\left\{{ }_{h} \in S_{h}^{k}(0, L) \mid v_{h}(0)=A, v_{h}^{\prime}(L)=B\right\}$, such that

$$
\begin{gather*}
\int_{0}^{L} \phi^{-1}\left(u_{h}^{\prime}\right) v_{h}^{\prime} \mathrm{d} x+\int_{0}^{L} u_{h} v_{h} d x v_{h}^{\prime} \mathrm{d} x=\int_{0}^{L} f v_{h} \mathrm{~d} x, \tag{3.2}\\
\forall v_{h} \in V_{0} \equiv\left\{v_{h} \in S_{h}^{k}(0, L) \mid v_{h}(0)=0, v_{h}^{\prime}(L)=0\right\} .
\end{gather*}
$$

Theorem 3.1 Problem II has a unique solution.
Proof: The proof is similar to the proof of Theorem 2.1.

Lemma 3.1

For given positive constants A, B, q, L, there exists a constant C independent of the solutions $u_{h} \in V_{h}$ of Problem II such that $\left\|\phi^{-1}\left(u_{h}^{\prime}\right)\right\|_{L^{q}} \leq C$.

Proof:

The proof is similar to that of Lemma 2.1.
To derive finite element error estimates, let u denotes the exact solution of Problem I and u_{h} the finite element solution of Problem II.

Then

$$
\begin{align*}
& a\left(u, u-u_{h}\right)-a\left(u_{h}, u-u_{h}\right) \\
& =a\left(u, u-\Pi_{h} u\right)-a\left(u_{h}, u-\Pi_{h} u\right) \\
& =\int_{0}^{L}\left(\phi^{-1}\left(u^{\prime}\right)-\phi^{-1}\left(u_{h}^{\prime}\right)\right)\left(u^{\prime}-\Pi_{h} u^{\prime}\right) \mathrm{d} x \\
& \quad+\int_{0}^{L} c\left(u-u_{h}\right)\left(u-\Pi_{h} u\right) \mathrm{d} x \tag{3.3}\\
& \leq\left\|\phi^{-1}\left(u^{\prime}\right)-\phi^{-1}\left(u_{h}^{\prime}\right)\right\|_{L^{q}}\left\|u^{\prime}-\Pi_{h} u^{\prime}\right\|_{L^{p}} \\
& \quad+\left\|c\left(u-u_{h}\right)\right\|_{L^{q}}\left\|u-\Pi_{h} u\right\|_{L^{p}}
\end{align*}
$$

Let $\sigma \equiv \phi^{-1}\left(u^{\prime}\right)$, and $\sigma \equiv \phi^{-1}\left(u^{\prime}\right)$, Also

$$
a\left(u, u-u_{h}\right)-a\left(u_{h}, u-u_{h}\right)
$$

$$
=\int_{0}^{L}\left(\phi^{-1}\left(u^{\prime}\right)-\phi^{-1}\left(u_{h}^{\prime}\right)\right)\left(u^{\prime}-u_{h}^{\prime}\right) \mathrm{d} x+\int_{0}^{L} c\left(u-u_{h}\right)^{2} \mathrm{~d} x
$$

$$
=\int_{0}^{L}\left(\sigma-\sigma_{h}\right)\left(\phi(\sigma)-\phi\left(\sigma_{h}\right)\right) \mathrm{d} x+\int_{0}^{L} c\left(u-u_{h}\right)^{2} \mathrm{~d} x
$$

$$
=A \int_{0}^{L}\left(\sigma-\sigma_{h}\right)^{2} \mathrm{~d} x+B \int_{0}^{L}\left(|\sigma|^{q-2} \sigma-\left|\sigma_{h}\right|^{q-2} \sigma_{h}\right)\left(\sigma-\sigma_{h}\right) \mathrm{d} x
$$

$$
+\int_{0}^{L} c\left(u-u_{h}\right)^{2} \mathrm{~d} x
$$

$$
\begin{equation*}
\geq A \int_{0}^{L}\left|\sigma-\sigma_{h}\right|^{2} \mathrm{~d} x+\int_{0}^{L} c\left(u-u_{h}\right)^{2} \mathrm{~d} x \tag{3.4}
\end{equation*}
$$

As a result of (3.3) and (3.4), we get:

$$
\begin{align*}
& \left\|c\left(u-u_{h}\right)\right\|_{L^{2}}^{2}+\left\|\sigma-\sigma_{h}\right\|_{L^{2}}^{2} \\
& \leq \frac{1}{A}\left[\left\|\phi^{-1}\left(u^{\prime}\right)-\phi^{-1}\left(u_{h}^{\prime}\right)\right\|_{L^{q}}\left\|u^{\prime}-\left(\Pi_{h} u\right)^{\prime}\right\|_{L^{p}}\right. \tag{3.5}\\
& \left.\quad+\left\|c\left(u-u_{h}\right)\right\|_{L^{q}}\left\|u-\Pi_{h} u\right\|_{L^{p}}\right]
\end{align*}
$$

By Lemma 2.1, Lemma 3.1, and (3.4), we get the following error estimates:

$$
\begin{align*}
& \left\|c\left(u-u_{h}\right)\right\|_{L^{2}}^{2}+\left\|\sigma-\sigma_{h}\right\|_{L^{2}}^{2} \\
& \leq C\left(\left\|u^{\prime}-\Pi_{h} u^{\prime}\right\|_{L^{p}}+\left\|u-\Pi_{h} u\right\|_{L^{p}}\right) \tag{3.6}\\
& \leq C h^{k}
\end{align*}
$$

Therefore, by (3.6), we have established the following convergence and error estimate result.

Theorem 2.3 For $c(x)=\sum k_{i} \delta\left(x-x_{i}\right), \quad k_{i}>0$, or any $c(x) \geq 0$, let u and u_{h} ibe the unique solutions of Problems I and II, respectively, then

$$
\left\|\sigma-\sigma_{h}\right\|_{L^{2}} \leq C h^{k / 2}, \text { and } \lim _{h \rightarrow 0}\left\|u^{\prime}-u_{h}^{\prime}\right\|_{L^{p}}=0
$$

and if $c(x) \geq c_{0}$ for some $c_{0}>0$, or
$c(x)=\sum_{i=1}^{N} k_{i} \delta\left(x-x_{i}\right), k_{i}>0$, then
$\left\|u-u_{h}\right\|_{L^{2}}^{2}+\left\|\sigma-\sigma_{h}\right\|_{L^{2}} \leq C h^{k / 2}$, and $\lim _{h \rightarrow 0}\left\|u^{\prime}-u_{h}^{\prime}\right\|_{1, p}=0$, in which $\sigma \equiv \phi^{-1}\left(u^{\prime}\right)$ and $\sigma_{h} \equiv \phi^{-1}\left(u_{h}^{\prime}\right)$ stand for the stresses.

Note that σ stands for the stress corresponding to the strain $\varepsilon=u^{\prime}$.

4. Conclusion

In this work, we establish existence and uniqueness of the solution u of (2.4) in the Sobolev space U and its finite element solution u_{h} in a general finite element space $S_{0}^{h}(0, L)$ with elastic support for a class of load functions f. We derive convergence and error estimates for the semi-discrete error $e_{h}(x) \equiv u(x)-u_{h}(x)$.

5. Acknowledgements

The research in this paper is a part of a research project funded by the Research office, Texas A \& M University at Qatar.

REFERENCES

[1] W. R. Osgood and W. Ramberg, "Description of StressStrain Curves by Three Parameters," NACA Technical Note 902, National Bureau of Standards, Washington DC, 1943.
[2] L. A. James, "Ramberg-Osgood Strain-Harding Charac-
terization of an ASTM A302-B Steel," Journal of Pressure Vessel Technology, Vol. 117, No. 4, 1995, pp. 341345. doi:10.1115/1.2842133
[3] K. J. R. Rasmussen, "Full-Range Stress-Strain Curves for Stainless Steel Alloys," Research Report R811, University of Sydney, Department of Civil Engineering, 2001.
[4] V. N. Shlyannikov, "Elastic-Plastic Mixed-Mode Fracture Criteria and Parameters, Lecture Notes Applied Mechanics, Vol. 7," Springer, Berlin, 2002.
[5] P. Dong and L. DeCan, "Computational Assessment of Build Strategies for a Titanium Mid-Ship Section," 11th International Conference on Fast Sea Transportation, FAST, Honolulu, 26-29 September 2011, pp. 540-546.
[6] P. Dong, "Computational Weld Modeling: A Enabler for Solving Complex Problems with Simple Solutions, Keynote Lecture," Proceedings of the 5th IIW International Congress, Sydney, 7-9 March 2007, pp. 79-84.
[7] E. Zeidler, "Nonlinear Functional Analysis and Its Applications, Variational Methods and Optimization, Vol. III," Springer Verlag, New York, 1986. doi:10.1007/978-1-4612-4838-5
[8] R. A. Adams, "Sobolev Spaces, Pure and Applied Mathe-
matics, Vol. 65," Academic Press, Inc., New York, San Francisco, London, 1975.
[9] V. G. Maz'Ja, "Sobolev Spaces," Springer-Verlag, New York, 1985.
[10] F. E. Browder, "Variational Methods for Non-Linear Elliptic Eigenvalue Problems," Bulletin of the American Mathematical Society, Vol. 71, 1965, pp. 176-183. doi:10.1090/S0002-9904-1965-11275-7
[11] R. Temam, "Mathematical Problems in Plasticity," Gau-thier-Villars, Paris, 1985.
[12] G. Strang and G. J. Fix, "An Analysis of the Finite Element Method," Prentice-Hall, Inc., Englewood Cliffs, 1973.
[13] P. G. Ciarlet, "The Finite Element Method for Elliptic Problems," North- Holland, Amsterdam, 1978.
[14] J. T. Oden And G. F. Carey, "Finite Elements," Pren-tice-Hall, Englewood Cliffs, 1984.
[15] S. C. Brenner and L. R. Scott, "The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics, v. 15," 3rd Edition, Springer Verlag, New York, 2008. doi:10.1007/978-0-387-75934-0

