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ABSTRACT 

In this work, we present a priori error estimates of finite element approximations of the solution for the equilibrium 
equation of an axially loaded Ramberg-Osgood bar. The existence and uniqueness of the solution to the associated 
nonlinear two point boundary value problem is established and used as a foundation for the finite element analysis. 
 
Keywords: Nonlinear Two Point Boundary Value Problem; Ramberg-Osgood Axial Bar; Existence and Uniqueness of 

Solutions; Finite Element Analysis; Convergence and a Priori Error Estimates 

1. Introduction 

The following Ramberg-Osgood stress strain equation 

       2
,

q
x A x B x x   


        (1.1) 

is accepted as the model for the material’s constitutive 
equation in the stress analysis for a variety of industrial 
metals. Numerous data exist in literature that supports the 
use of (1.1) to represent the stress-strain relationship for 
aluminum and several other steel alloys exhibiting elas- 
tic-plastic behavior (see, for example, [1-4] and the ref- 
erences therein). In Equation (1.1),  x  represents the 
axial strain,  x  represents the axial stress, 0 < x < L, 
q ≥ 2 represents the material hardening index (where 

 describes the linear elastic material), the constants 
A, B and q are determined from the experimental values 
for the parameters E, σy, εy, εu, and εu by the formula 
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where  is the Young’s modulus, E , y y 
u

 are the ma- 
terial’s yield stress and strain, , u 

0L 
 are the ultimate 

stress and the ultimate strain, and  stands for the 
length of the solid bar. 

We observe that Equation (1.1) splits the strain into 
two parts: an elastic strain part with coefficient A and a 
nonlinear part with coefficient B. The linear part domi- 
nates for y  , while the nonlinear part dominates for 

y  . In many industrial applications, e.g., in light- 
weight ship deck titanium structures, welding-induced  

plastic zones play important roles in determining the 
structures’ integrity (see [5,6]). 

Figure 1 compares the stress-strain curves for Hooke’s 
law, the double modulus, and Ramberg-Osgood law us- 
ing material measured data. Among these models, the 
Ramberg-Osgood model appears to represent the mate- 
rial’s behavior the best. 

Table 1 gives experimental values of the material con- 
stants for some commonly used metals in industries. 

Although (1.1) is widely used in industries for finite 
element analysis, no solvability and uniqueness or error 
analysis has been given in literature even for the follow- 
ing one-dimensional boundary value problem: 
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  (1.3) 

where   0c x  satisfies  and  0,c L L 
   0,qL Lf x . For simplicity, we consider only one 

boundary condition. Other Dirichlet type boundary con-
ditions can be treated similarly. 

We also consider the case when  is replaced 
by 

1i

, where 
   c x u x

 i   
N

i i ik u x x x  x x   is Dirac im- 
pulse functions, and  stands for concentrated elastic 
support constant at 

ik
0 ,ix L   for  1, ,i N  .

In Section 2, we develop a week formulation of (1.3) 
subject to the given boundary condition and prove exis- 
tence and uniqueness of the solution by using the theory  
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Figure 1. Ramburg-Osgood curves. 
 

Table 1. Constants for Ramburg-Osgood materials. 

Material A B q − 1 

Inconel 718 3.33e−05 4.42e−71 32.00 

5083 Aluminum 9.80e−05 2.50e−23 13.11 

6061T6 Aluminum 1.00e−04 1.35e−58 34.44 

304 Stainless Steel 3.57e−05 3.44e−13 6.32 

304 L StainlessSteel 3.57e−05 2.24e−15 7.36 

 
of perturbed convex variational problems in Sobolev 
spaces (see [7] for details.) We also prove that the solu- 
tion is bounded in certain Sobolev norms. In Section 3, 
we derive an error estimates for the semi-discrete error 
between the week solution and the Galerkin’s finite ele- 
ment solution of (1.3) for the standard conformal finite 
elements. The results of this section are based on the re- 
sults in Section 2. We believe that the results established 
in these sections are novel and preliminary. 

2. Existence and Uniqueness of Solutions 

Let  and  be the standard Sobo- 1, 0,pW

lev spaces, where .
1

q
p

q



 Define 

  2q
A B       , where  0, 0,  and 2.A B q  

 Observe that the mapping   is one-to-one; how- 
ever, its inverse cannot be written explicitly. 

Since u  , Equation (1.3) can be rewritten as: 
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    (2.2) 

Define the following space of admissible functions as 

      1, 0, 0 0, .pV u W L u u L         (2.3) 

The weak formulation of (2.2) can then be written as 
Problem I: Find u V , such that 

   1 1
0

0 0 0

d d d 0,
L L l

pu v x cuv x fv x v W L         , .  (2.4) 

L L1,
0 0,pW Let us define the operator: 
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      (2.5) 

for . Then,  satisfies the following prop-

erty: 

,u v V
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(2.6) 

Also, by the definition of  , we have 
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Lemma 2.1 For given positive constants , , ,A B q L , 
there exists a constant  independent of the solutions 

 of the BVP (1.3) such that  
C

 u x V

   2

21 1
q

q

L L
u u C     . 

Proof: For a solution  u x V , we can write: 
, where b bv u u u 

 1,
0 0,pv W L

L L

V  is a fixed function, so that 
, and since: 
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Also, by (2.6) and (2.8), we have: 
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where  1 2, ,q qp qb bL LL L
C f u C f cu    and  

3 pb L
C u . 

By the Sobolev inequality, we have (see e.g. [8,9]): 
p qL L

u C u , and therefore: 

   1 1
1 2 3 .qq q

q

LL L
B u C C u C u        

Also, since by definition of  , 
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we have 

     
11 1

1 2 3q q

q q1
qL L L
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        (2.10) 

where , 1, 2,3iC i   are positive constants. From (2.10), 
we conclude that  1

qL
u   is bounded and that there 

exists a constant C such that  1
qL

u C   , as  u x  
varies over the solution set of (1.3) in  Therefore, the 
result of the lemma is follows. 

.V

Theorem 2.1 For a given , q ≥ 2, A > 0 
& B > 0, problem (I) has a unique solution . 

0,qf L L 
u U

Proof: 
The uniqueness follows from the following argument. 

Let  and  be two solutions of (2.4). Then (since 1u 2u
   0c x ): 
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since  1
1 1u   , and  1

2 2u  

  2 2q q 
1 1 2 2 1 2 0,         

which is well-known [10,11]. 
Therefore, 1 2   and 1 2u , and this establishes 

the uniqueness of the solution of (2.4). 
u

For existence, we consider the variational formulation 
of (2.4) and define the total potential energy by: 
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2
t t  t , then  J u  can be written as: 
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Now the first variation of J can be expressed as: 
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We rewrite the total energy function as  
       1 2J u F u F u F u   , where  
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equivalent to  Min  
u V

J u
  10,  :t F
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, 
 is convexV R  

 0, L 2 :c L F V R
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 is weekly sequentially con- 
tinuous (since   converges weekly in  implies 
that  converges strongly in .) Also (2.6) 

and (2.7) imply the coercivity of 

V
 nu L

 J u , see, e.g., [9-11 ]. 
Therefore,  J u  satisfies the conditions of the theorem 
of 42.7, pp. 225-226, in [9], and the existence of a weak 
solution follows. 

We now consider the second case when the term  
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Therefore, Theorem 2.1 holds with the same condi- 
tions for the case when  is replaced by  c x

  
1

N

i i i
i

k u x

 . 

3. Finite Element Error Estimates 

Let    1, 0,qV S L W L 
k

0,k
h h  be a standard conformal 

finite element space of order  (See [12-15]) satisfying 
the interpolation property:  

   1,
0, ,k p

h p
v v C v h L   1,, v W      (3.1) 

where  is a positive constant depending only on  
and , h

C v
L v  is the finite element interpolation of , 

is the polynomial degree for the interpolation shape 
functions, and h the mesh size,

v
k

 
1,h p

v v  the W1,p(0, 
L) norm. 

The corresponding finite element Galerkin’s finite 
element approximation problem for (2.1) is: 
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Problem II: 
Find       0, 0 , ,k

h h h h h hu V S L v A v L B       
such that 

 1
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h h h h hv V v S L v v L      . 

Theorem 3.1 Problem II has a unique solution. 
Proof: The proof is similar to the proof of Theorem 

2.1. 
Lemma 3.1 
For given positive constants , , ,A B q L , there exists a 

constant  independent of the solutions C hu Vh  of 
Problem II such that  1

qu Ch L
  . 

Proof: 
The proof is similar to that of Lemma 2.1. 
To derive finite element error estimates, let  de- 

notes the exact solution of Problem I and  the finite 
element solution of Problem II.  
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As a result of (3.3) and (3.4), we get: 
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By Lemma 2.1, Lemma 3.1, and (3.4), we get the 
following error estimates: 
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Therefore, by (3.6), we have established the following 
convergence and error estimate result. 

Theorem 2.3 For 
1i

 i  or 
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in which  1 u    and  stand for the 
stresses. 

 1
h u   h

Note that   stands for the stress corresponding to 
the strain u  . 

4. Conclusion 

In this work, we establish existence and uniqueness of 
the solution  of (2.4) in the Sobolev space  and its 
finite element solution h  in a general finite element 
space 

u U
u

 0  with elastic support for a class of load 
functions f. We derive convergence and error estimates 
for the semi-discrete error . 

0,hS L

   h he x u x u   x
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