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Concave-monotone treatment response and monotone
treatment selection: With an application

to the returns to schooling

Tsunao Okumura
Yokohama National University

Emiko Usui
Nagoya University and IZA

This paper identifies sharp bounds on the mean treatment response and average
treatment effect under the assumptions of both the concave-monotone treatment
response (concave-MTR) and the monotone treatment selection (MTS). We use
our bounds and the U.S. National Longitudinal Survey of Youth 1979 to estimate
mean returns to schooling. Our upper-bound estimates are substantially smaller
than (i) estimates using only the concave-MTR assumption of Manski (1997), and
(ii) estimates using only the MTR and MTS assumptions of Manski and Pepper
(2000). Our upper-bound estimates fall in the range of the point estimates given
in previous studies that assume linear wage functions.

Keywords. Nonparametric methods, partial identification, sharp bounds, treat-
ment response, returns to schooling.

JEL classification. C14, J24.

1. Introduction

This paper examines the identifying power of the mean treatment response and average
treatment effect when the concave-monotone treatment response (concave-MTR) as-
sumption of Manski (1997) is combined with the monotone treatment selection (MTS)
assumption of Manski and Pepper (2000). We are motivated by the fact that either as-
sumption, taken alone, produces bounds that are too wide to have sufficient identifying
power for many purposes. We then apply our bound analysis to estimate the returns to
schooling and thus assess the tightness of our bound estimates.
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Manski (1997) studied sharp bounds on the mean treatment response and average
treatment effect when the response functions are assumed to satisfy either the mono-
tone treatment response (MTR) or concave-MTR. To enhance the identifying power on
the bounds, Manski and Pepper (2000) combined the MTS assumption with the MTR as-
sumption. They applied their bounds to estimate the returns to schooling. Their bound
estimates are narrower than those of Manski (1997). However, they are still so large that
they contain almost all of the point estimates of the returns to schooling in the existing
empirical literature.

In this paper, we add the assumption of concavity to the assumptions of MTR and
MTS. Concavity is a natural assumption because diminishing marginal returns are com-
monly assumed in economic analyses. We explore how the inclusion of this assumption
tightens the sharp bounds on the mean treatment response and average treatment ef-
fect.

Using the 2000 wave of the U.S. National Longitudinal Survey of Youth 1979, we im-
plement our bounds to estimate returns to schooling. Since our bounds use the min and
max operations, the estimates of our bounds may have a finite-sample bias. To address
this bias, we employ the three methods of bias correction proposed by Kreider and Pep-
per (2007), Haile and Tamer (2003), and Chernozhukov, Lee, and Rosen (2013). Our sharp
upper-bound estimates of the returns to schooling are only between 14 and 28 percent
of the estimates produced using only the concave-MTR assumption of Manski (1997),
and are between 39 and 80 percent of the estimates produced using the MTR and MTS
assumptions of Manski and Pepper (2000). Thus, our upper-bound estimates are sub-
stantially smaller than either of the estimates using only the concave-MTR assumption
or the estimates using the MTR and MTS assumptions.

Our upper-bound estimates on college education fall in the range of the point esti-
mates on returns to schooling reported in previous studies. Therefore, the concave-MTR
and MTS assumptions have substantial identifying power. In previous studies, (i) the
log-wage regression function has almost always been assumed to be linear in relation
to years of schooling, and (ii) the point estimates would be biased unless the correla-
tion between years of schooling and unobserved abilities were accounted for (i.e., by
addressing the effect known as the ability bias). In contrast, the concave-MTR assump-
tion allows for flexible and weakly concave-increasing wage functions, and the MTS as-
sumption accommodates the ability bias in terms of the mean monotonicity of wages
and schooling.

The bounds obtained using the concave-MTR and MTS assumptions have many
applications in addition to the returns to schooling. A growing stream of literature
uses the bounds obtained using the MTR and MTS assumptions of Manski and Pep-
per (2000) to estimate causal relationships between variables of interest. Some of these
relationships can be estimated by using our bounds because they represent concave
functions (e.g., diminishing marginal returns). For example, our bounds are appli-
cable to the relationships studied in González (2005), Gerfin and Schellhorn (2006),
Blundell, Gosling, Ichimura, and Meghir (2007), Kreider and Pepper (2007, 2008),
Gundersen and Kreider (2009), Kreider and Hill (2009), de Haan (2011), Kang (2011),
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Gundersen, Kreider, and Pepper (2012), Kreider, Pepper, Gundersen, and Jolliffe (2012),
and Huang, Maassen van den Brink, and Groot (2012).

In Section 2, we present our study of the sharp bounds on the mean treatment re-
sponse and the average treatment effects under the concave-MTR and MTS assump-
tions. Section 3 applies the bounds to the estimation of returns to schooling. Section 4
presents our conclusions.

2. Concave-monotone treatment response

and monotone treatment selection

2.1 Background

This section sets up basic concepts and notation, and summarizes the bounds derived
by Manski (1997) and Manski and Pepper (2000). We employ the same setup as Manski
(1997) and Manski and Pepper (2000). There is a probability space (J�Ω�P) of indi-
viduals. Each member j of population J has an individual-specific response function
yj(·) :T → Y , mapping the mutually exclusive and exhaustive treatments t ∈ T into out-
comes yj(t) ∈ Y . Each individual j has a realized treatment zj ∈ T and a realized out-
come yj ≡ yj(zj), both of which are observable. The latent outcomes yj(t), t �= zj , are
not observable. By combining the distribution of a random sample (z� y) with prior in-
formation, we intend to identify the mean treatment response E[y(t)] and the average
treatment effect E[y(t2)] −E[y(t1)] for t1 < t2.1

Manski (1997) stated the MTR assumption as yj(t1) ≤ yj(t2) for each j ∈ J and all
(t1� t2) ∈ T 2, where T is an ordered set and t1 ≤ t2. Under the MTR assumption, he
showed the sharp bounds on E[y(t)] to be

∑
s≤t

E[y|z = s]P(z = s)+ y0P(z > t)

(1)
≤E

[
y(t)

] ≤
∑
s≥t

E[y|z = s]P(z = s)+ y1P(z < t)�

where [y0� y1] is the range of Y .
When yj(·) satisfies the assumptions of concavity and MTR (i.e., the concave-MTR

assumption), and when T = [0� δ] for some δ ∈ (0�∞] and Y = [0�∞], Manski (1997)
showed the sharp bounds on E[y(t)] to be2

∑
s≤t

E[y|z = s]P(z = s)+E

[
y

z
t
∣∣∣z > t

]
P(z > t)

(2)

≤E
[
y(t)

] ≤
∑
s≥t

E[y|z = s]P(z = s)+E

[
y

z
t
∣∣∣z < t

]
P(z < t)�

1When there are covariates x, all results regarding the identification and estimation of E[y(t)] and
E[y(t2)]−E[y(t1)] in this paper are applied to the identification and estimation of E[y(t)|x] and E[y(t2)|x]−
E[y(t1)|x].

2When yj(·) is concave-MTR but either T or Y does not have any known finite lower bounds, Manski
(1997) showed that the sharp bounds on E[y(t)] are represented by Equation (1).
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Manski and Pepper (2000) introduced the assumption of MTS as E[y(t)|z = t1] ≤
E[y(t)|z = t2] for each t ∈ T and all (t1� t2) ∈ T 2 such that t1 ≤ t2. When schooling is
a treatment, the MTS assumption asserts that people who select more schooling have
weakly higher mean wage functions than those who select less schooling. Under the as-
sumptions of both MTR and MTS, they showed the sharp bounds on E[y(t)] to be

∑
s≤t

E[y|z = s]P(z = s)+E[y|z = t]P(z > t)

(3)
≤E

[
y(t)

] ≤
∑
s≥t

E[y|z = s]P(z = s)+E[y|z = t]P(z < t)�

2.2 Sharp bounds on the mean treatment response

This section demonstrates the sharp bounds on the mean treatment response (E[y(t)])
under both the concave-MTR and the MTS assumptions. We first illustrate the basic idea
with an example, shown in Figure 1. We consider bounding the conditional mean of
latent outcome E[y(t)|z = s], which is point A when t < s. The MTS assumption implies
that, for u < s, E[y|z = u] (point F) ≤ E[y(u)|z = s] (point G). Furthermore, E[y(τ)|z = s]
is concave-MTR in τ ∈ T and is E[y|z = s] (point C) when τ = s. Thus, when u ≤ t < s, the
value (point E) of the function that describes the straight line traversing (u�E[y|z = u])
(point F) and (s�E[y|z = s]) (point C), evaluated at t, is a lower bound on E[y(t)|z = s]
(point A). Given (s�E[y|z = s]) (point C), these lines are drawn for all realized points of

Figure 1. Sharp bounds on the mean treatment response. Filled circles indicate the realized
treatments and the conditional means of realized outcomes. Open circles indicate the latent
treatments and the conditional means of latent outcomes. Open squares indicate the bounds
on the conditional-mean treatment responses.
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(u�E[y|z = u]) for u ≤ t and for the origin (point O) when Y = [0�∞]. The values of these
functions evaluated at t (points B, D, and E) are all lower bounds on E[y(t)|z = s] for
t < s (point A). These include the lower bound of Manski (1997) (i.e., point B on the line
joining points C and O) and that of Manski and Pepper (2000) (E[y|z = t], i.e., point D on
the line joining points C and D). Our lower bound on E[y(t)|z = s] for t < s is the greatest
among these lower bounds (i.e., point E is the greatest among points B, D, and E).

Similarly, when t ≥ s (denoted by t ′ in Figure 1), E[y(t ′)|z = s] is point A′. For any
u < s ≤ t ′, the value (point E′) of the function that describes the straight line traversing
(u�E[y|z = u]) (point F) and (s�E[y|z = s]) (point C), evaluated at t ′, is an upper bound
on E[y(t ′)|z = s] (point A′). Furthermore, the value (point B′) of the function that de-
scribes the straight line traversing the origin (point O) and point C, evaluated at t ′, is
an upper bound on E[y(t ′)|z = s] (point A′), as is the value E[y|z = t ′] (point D′)—the
latter because of the MTS assumption. Our upper bound (point E′) on E[y(t ′)|z = s] for
t ′ ≥ s is the smallest among these upper bounds (points B′, D′, and E′). Note that point
B′ corresponds to the upper bound in Manski (1997), and point D′ corresponds to the
upper bound in Manski and Pepper (2000). Using the law of iterated expectations, our
bounds on E[y(t)] are narrower than or equal to those in Manski (1997) and Manski and
Pepper (2000).

Proposition 1. Let T be ordered and let Y be a closed subset of the extended real line.
Assume that yj(·), j ∈ J, satisfies the concave-MTR and the MTS assumptions. We then
obtain the following three results.

(a) For (t� s�η1�η2) ∈ T 4,
∑
s≤t

E[y|z = s]P(z = s)+
∑
s>t

LB(s� t)P(z = s)

(4)
≤E

[
y(t)

] ≤
∑
s≥t

E[y|z = s]P(z = s)+
∑
s<t

UB(s� t)P(z = s)�

where

LB(s� t)= max{(η1�η2)|η1≤t<η2≤s}
η2 − t

η2 −η1
E[y|z = η1] + t −η1

η2 −η1
E[y|z = η2]� (5)

UB(s� t)= min{(η1�η2)|s≤η2≤t∧η1<η2}
η2 − t

η2 −η1
E[y|z = η1] + t −η1

η2 −η1
E[y|z = η2]� (6)

These bounds are sharp.

(b) Furthermore, (i) let T = [0� δ] for some δ ∈ (0�∞], (ii) let Y = [0�∞], and (iii) let
E[y|z = 0] = 0 whenever P(z = 0)= 0. Then Equations (4), (5), and (6) hold. These bounds
are sharp.

(c) In either case (a) or (b), the bounds represented by Equations (4), (5), and (6) are
narrower than or equal to those using only the concave-MTR assumption of Manski
(1997), as well as those using only the MTR and the MTS assumptions of Manski and
Pepper (2000).
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We prove Proposition 1 in Appendix A (all appendices are available in a supplemen-
tary file on the journal website, http://qeconomics.org/supp/268/supplement.pdf). The
bound LB(s� t), represented by Equation (5), divides the line segment joining E[y|z = η1]
and E[y|z = η2] internally, whereas UB(s� t), represented by Equation (6), divides this
line segment externally.

When the assumption of concavity is added to the MTR and MTS assumptions, the
width of the bounds on the mean treatment response is narrowed by the quantity

∑
s>t

{
LB(s� t)−E[y|z = t]}P(z = s)+

∑
s<t

{
E[y|z = t] − UB(s� t)

}
P(z = s)� (7)

The first term expresses the increase in the lower bound, whereas the second term ex-
presses the decrease in the upper bound.

2.3 Sharp bounds on the average treatment effects

This section demonstrates the sharp bounds on the average treatment effects (E[y(t2)]−
E[y(t1)] for t1 < t2). Figure 2 provides an example of the bounds given in Proposition 2.
When t2 = t ′ > s, let UB(s� t2) be the sharp upper bound on E[y(t2)|z = s] in Equation (6)
(point E′′) and let AT1(t1� s� t2) be the value of the function that describes the line join-
ing points O, F , E, C, I, and E′′, evaluated at t1. When t2 = t ≤ s, E[y|z = s] (point H) is

Figure 2. Sharp bounds on the average treatment effects. Filled circles indicate the realized
treatments and the conditional means of realized outcomes. Open circles indicate the latent
treatments and the conditional means of latent outcomes. Open squares indicate the bounds
on the average treatment effects.

http://qeconomics.org/supp/268/supplement.pdf
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the sharp upper bound on E[y(t2)|z = s] in Equation (4). Let AT2(t1� s� t2) be the value
of the function that describes the line joining points O, F , and H, evaluated at t1. Then
our sharp upper bound on E[y(t2)|z = s] − E[y(t1)|z = s] is UB(s� t2) − AT1(t1� s� t2) for
t2 = t ′ > s, and it is E[y|z = s]− AT2(t1� s� t2) for t2 = t ≤ s. Using the law of iterated expec-
tations, we obtain the sharp upper bound on the average treatment effect.

Proposition 2. Let T be ordered and let Y be a closed subset of the extended real line.
Assume that yj(·), j ∈ J, satisfies the concave-MTR and MTS assumptions. We then obtain
the following three results:

(a) For (t1, t2, s, η1, η2) ∈ T 5, where t1 < t2,

0 ≤ E
[
y(t2)

] −E
[
y(t1)

]
≤

∑
s<t2

[
UB(s� t2)− AT1(t1� s� t2)

]
P(z = s) (8)

+
∑
s≥t2

{
E[y|z = s] − AT2(t1� s� t2)

}
P(z = s)�

where, for s < t2,

AT1(t1� s� t2) =
⎧⎨
⎩

t1 − s

t2 − s
UB(s� t2)+ t2 − t1

t2 − s
E[y|z = s]� if s ≤ t1 < t2�

LB(s� t1)� if t1 < s < t2�

(9)

and, for t2 ≤ s,

AT2(t1� s� t2) = max{(η1�η2)|η1≤t1<η2≤t2}
η2 − t1
η2 −η1

E[y|z = η1] + t1 −η1

η2 −η1
μ(η2)� (10)

where μ(η2) =E[y|z = s] if η2 = t2 and E[y|z = η2] if η2 < t2. These bounds are sharp.

(b) Furthermore, (i) let T = [0� δ] for some δ ∈ (0�∞], (ii) let Y = [0�∞], and (iii) let
E[y|z = 0] = 0 whenever P(z = 0) = 0. Then Equations (8), (9), and (10) hold. These
bounds are sharp.

(c) In either case (a) or (b), the bounds represented by Equations (8), (9), and (10)
are narrower than or equal to those using only the concave-MTR assumption of Manski
(1997), as well as those using only the MTR and MTS assumptions of Manski and Pepper
(2000).

In Appendix B, we prove Proposition 2.
Proposition 2(a) and (b) show that our sharp upper bound on E[y(t2)] − E[y(t1)] is

attained when AT1(τ� s� t2) is the mean response function of individuals whose realized
treatment (s) is smaller than t2 (i.e., E[y(τ)|z = s] for s < t2) and when AT2(τ� s� t2) is the
mean response function of individuals whose realized treatment (s) is not smaller than
t2 (i.e., E[y(τ)|z = s] for s ≥ t2). The function AT1(τ� s� t2) is a function in τ that describes
the upper envelope of the points (u�E[y|z = u]) for all u ≤ s and the point (t2�UB(s� t2))
(i.e., a function in τ that describes the upper boundary of the convex hull for a set formed
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by these points). The function AT2(τ� s� t2) is a function in τ that describes the upper en-
velope of the points (u�E[y|z = u]) for all u ≤ t2 and the point (t2�E[y|z = s]). Therefore,
the curves of the functions AT1(τ� s� t2) and AT2(τ� s� t2) constitute the upper envelope (or
upper boundary of the convex hull) of the conditional means of the realized outcomes.

The fact that this convex hull is the smallest convex set that contains the condi-
tional means of realized outcomes provides intuitive explanations of why the functions
AT1(τ� s� t2) and AT2(τ� s� t2) satisfy the concave-MTR and MTS assumptions. First, be-
cause a convex set has a concave upper boundary, these functions are concave-MTR.
Second, because the convex hull for a set formed by (u�E[y|z = u]) for all u ≤ s is in-
cluded in the convex hull for a set formed by (u�E[y|z = u]) for all u ≤ s′ and s < s′, and
because UB(s� t2) and E[y|z = s] both weakly increase in s, it follows that ATk(τ� s� t2) ≤
ATk(τ� s

′� t2) for k = 1�2 and for s < s′. That is, the functions AT1(τ� s� t2) and AT2(τ� s� t2)

satisfy the MTS assumption. Figure 2 illustrates these intuitive explanations. Specifically,
when t2 = t ′, the function AT1(τ� s� t2) in Proposition 2(b) is a function that describes the
line joining points O, F , E, C, I, and E′′; that is, it is a function that describes the upper
boundary of the convex hull for the set of points O, F , D, C, I, and E′′. When t2 = t, the
function AT2(τ� s� t2) is a function that describes the line joining points O, F , and H; that
is, it is a function that describes the upper boundary of the convex hull for the set of
points O, F , H, and D. These functions are both concave-MTR and MTS.

Proposition 2(c) shows that our sharp upper bound on the average treatment effect
(E[y(t2)] −E[y(t1)]) is smaller than or equal to that of Manski (1997) and that of Manski
and Pepper (2000). Specifically, when the assumption of concavity is added to the MTR
and MTS assumptions of Manski and Pepper (2000), the upper bound on the average
treatment effect is reduced by the quantity

∑
s<t2

{
E[y|z = t2] − UB(s� t2)

}
P(z = s)+

∑
s≤t1

{
AT1(t1� s� t2)−E[y|z = s]}P(z = s)

+
∑

t1<s<t2

{
AT1(t1� s� t2)−E[y|z = t1]

}
P(z = s) (11)

+
∑
s≥t2

{
AT2(t1� s� t2)−E[y|z = t1]

}
P(z = s)�

However, when T = [0� δ] for some δ ∈ (0�∞] and Y = [0�∞], and when the MTS as-
sumption is added to the concave-MTR assumption of Manski (1997), the upper bound
on the average treatment effect is reduced by the quantity

∑
s<t2

{
E

[
y

s
t2

∣∣∣z = s

]
− UB(s� t2)

}
P(z = s)

+
∑
s<t2

{
AT1(t1� s� t2)−E

[
y

s
t1

∣∣∣z = s

]}
P(z = s) (12)

+
∑
s≥t2

{
AT2(t1� s� t2)−E

[
y

t2
t1

∣∣∣z = s

]}
P(z = s)�
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To graphically explain Proposition 2(c) and Equations (11) and (12), we use Figure 2,
which depicts the differences among the three sets of upper bounds on the average
treatment effect that are provided in Manski (1997), Manski and Pepper (2000), and this
paper. We define Xy as the y-coordinate of point X . The position relationships of t1, t2,
and s (= z) are classified into three cases. In the first case, in which t1 < s < t2 (repre-
sented by the case in which t2 = t ′ and t1 = t in Figure 2), our upper bound is E′′

y − Ey ,
Manski and Pepper’s upper bound is D′

y − Dy , and Manski’s upper bound is B′
y − By .

Therefore, the difference between our upper bound and that of Manski and Pepper is
the sum of D′

y −E′′
y (the first term of Equation (11)) and Ey −Dy (the third term of Equa-

tion (11)), whereas the difference between our upper bound and that of Manski is the
sum of B′

y − E′′
y (the first term of Equation (12)) and Ey − By (the second term of Equa-

tion (12)). In the second case, in which s ≤ t1 < t2 (represented by the case in which t2 = t ′
and t1 = v in Figure 2), our upper bound is E′′

y − Iy , Manski and Pepper’s upper bound
is D′

y −Cy , and Manski’s upper bound is B′
y − Jy . Therefore, the difference between our

upper bound and that of Manski and Pepper is the sum of D′
y − E′′

y (the first term of
Equation (11)) and Iy − Cy (the second term of Equation (11)), whereas the difference
between our upper bound and that of Manski is the sum of B′

y − E′′
y (the first term of

Equation (12)) and Iy − Jy (the second term of Equation (12)). In the third case, in which
t1 < t2 ≤ s (represented by the case in which t2 = t and t1 = u in Figure 2), our upper
bound is Hy − Fy , Manski and Pepper’s upper bound is Hy − Fy , and Manski’s upper
bound is Hy −Ky . Therefore, the difference between our upper bound and that of Man-
ski and Pepper is zero (the fourth term in Equation (11)), whereas the difference between
our upper bound and that of Manski is Fy −Ky (the third term of Equation (12)).3

Manski (1995) and Manski and Pepper (2009) studied the identifying power of the
homogeneous linear response (HLR) assumption and the exogenous treatment selec-
tion (ETS) assumption, which are imposed on ordinary least squares (OLS) regressions.
The HLR assumption asserts that yj(t) = βt+νj , where νj is an unobserved covariate and
β is a slope parameter that takes the same value for all j. The ETS assumption asserts
that for (t� t1� t2) ∈ T 3, E[y(t)|z = t1] = E[y(t)|z = t2]. Under the HLR and ETS assump-
tions, Manski (1995) and Manski and Pepper (2009) showed that E[y(t2)] − E[y(t1)] =
E[y|z = t2] − E[y|z = t1] = β(t2 − t1). This quantity is not smaller than our upper bound
for t1 ≤ s ≤ t2 (i.e., UB(s� t2) − AT1(t1� s� t2)), because UB(s� t2) ≤ E[y|z = t2] and E[y|
z = t1] ≤ AT1(t1� s� t2). Figure 2 shows that when t2 = t ′ and t1 = t, E[y|z = t2]−E[y|z = t1]
is equal to D′

y − Dy , whereas our upper bound is equal to E′′
y − Ey . As will be shown in

Section 3, our upper bound estimates on the returns to schooling are thus likely to be
smaller than the estimates obtained through OLS regression.4

3For the bounds of this paper and Manski (1997), in the first case (in which t1 < s < t2), the upper bound
on E[y(t2)|z = s] − E[y(t1)|z = s] is equal to the difference between the upper bound on E[y(t2)|z = s] and
the lower bound on E[y(t1)|z = s]. However, both in the second case (in which s ≤ t1 < t2) and in the third
case (in which t1 < t2 ≤ s), the upper bound on E[y(t2)|z = s] − E[y(t1)|z = s] is less than or equal to the
difference between the upper bound on E[y(t2)|z = s] and the lower bound on E[y(t1)|z = s] because the
concavity of yj(t) is assumed. For the bounds of Manski and Pepper (2000), in all cases, the upper bound
on E[y(t2)|z = s] − E[y(t1)|z = s] is equal to the difference between the upper bound on E[y(t2)|z = s] and
the lower bound on E[y(t1)|z = s].

4For t2 < s, it is indeterminate which is larger: our upper bound (i.e., E[y|z = s] − AT2(t1� s� t2)) or the
average treatment effect under the HLR and ETS assumptions (i.e., E[y|z = t2] − E[y|z = t1]) because
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When the ETS assumption does not appear to hold in empirical applications, the
instrumental variable (IV) assumption is often used to identify the mean treatment re-
sponse and average treatment effect. Manski and Pepper (2000, 2009) studied the iden-
tifying power of the IV assumption, which asserts the mean independence of outcomes
and instrumental variables. They also introduced the monotone instrumental variable
(MIV) assumption, which weakens the IV assumption to the mean monotonicity of out-
comes and instrumental variables, and they studied the identifying power of this as-
sumption. The MTS assumption is the MIV assumption when the instrumental variable
is the realized treatment. The bounds on the mean treatment response represented by
Equations (4), (5), and (6), and those on the average treatment effect represented by
Equations (8), (9), and (10) can be further narrowed when the concave-MTR and MTS
assumptions are combined with either the IV or the MIV assumption. In Appendix C, we
provide the bounds on the mean treatment response and average treatment effect by
combining either the IV or MIV assumption with the concave-MTR and MTS assump-
tions.

2.4 Sharp bounds on D-outcomes

In this section, using Proposition 1, we derive the sharp bounds on the parameter that
respects stochastic dominance.5 We impose two assumptions on the distribution of out-
comes Fy(t)(r) := P(y(t) ≤ r) for r ∈ Y .

First, we make the following assumption: for (t1� t2) ∈ T 2, where t1 ≤ t2, and r ∈ Y ,

Fy(t)(r|z = t1) ≥ Fy(t)(r|z = t2)� (13)

The assumption represented by Equation (13) is from Blundell et al. (2007). It asserts
that a higher value of the realized treatment z = t2 leads to a distribution of outcomes
that first-order stochastically dominates the distribution of outcomes with a lower value
of the realized treatment z = t1. Second, we make the assumption expressed by the fol-
lowing two equations: for (t1� t2� t) ∈ T 3, where t1 ≤ t2, r ∈ Y , and α ∈ [0�1],

Fy(t1)(r|z = t) ≥ Fy(t2)(r|z = t)� (14)

Fy(αt1+(1−α)t2)(r|z = t) ≤ αFy(t1)(r|z = t)+ (1 − α)Fy(t2)(r|z = t)� (15)

The assumption represented by Equations (14) and (15) is from Boes (2010); it asserts
that the conditional distribution of outcomes is convex and decreasing in relation to
treatments. For example, when schooling is a treatment, Equation (13) asserts that even

E[y|z = s] ≥E[y|z = t2] and AT2(t1� s� t2) ≥E[y|z = t1]. Figure 2 shows that when t2 = t and t1 = u, our upper
bound is Hy − Fy , whereas E[y|z = t2] −E[y|z = t1] is Dy − Fy ; thus, the former is larger than the latter.

5Manski (1997) defined the parameter D[Fv(r)] that respects stochastic dominance as the parameter that
satisfies D[Fv1(r)] ≥ D[Fv2(r)] whenever Fv1(r) ≤ Fv2(r), where Fv(r) := P(v ≤ r) for a real random variable
v and a real number r. This parameter includes not only means but also quantiles and upper-tail proba-
bilities. A growing strand of literature on quantile regression shows the advantages of quantiles over the
mean, such as their robustness to outliers and their capacity to measure the tendency and dispersion of the
treatment effects. Therefore, bounding the parameter that respects stochastic dominance makes possible
useful analysis for many purposes.
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if people who actually select a high level of schooling had selected a low level of school-
ing, these people would be more likely to earn high wages than people who actually do
select a low level of schooling. Equations (14) and (15) assert that the probability that
people are in a high-income group is concave-increasing in relation to their schooling
levels.

Equation (13) is equivalent to the condition that the indicator function 1(y(t) > r)

satisfies the MTS assumption. Equations (14) and (15), taken together, are equivalent
to the condition that E[1(y(t) > r)|z] satisfies the concave-MTR assumption. Therefore,
under the assumptions of Equations (13), (14), and (15), we obtain the sharp bounds on
the parameter D[Fy(t)(r)] that respects stochastic dominance.

Proposition 3. Let T be ordered. Assume that the conditional probability Fy(t)(r|z) sat-
isfies Equations (13), (14), and (15). We then obtain, for (t� s�η1�η2) ∈ T 4 and r ∈ Y ,

D

[∑
s≤t

Fy(r|z = s)P(z = s)+
∑
s>t

LBP(s� t)P(z = s)

]

(16)

≤D
[
Fy(t)(r)

] ≤D

[∑
s≥t

Fy(r|z = s)P(z = s)+
∑
s<t

UBP(s� t)P(z = s)

]
�

where

LBP(s� t)= min{(η1�η2)|η1≤t<η2≤s}
η2 − t

η2 −η1
Fy(r|z = η1)+ t −η1

η2 −η1
Fy(r|z = η2)� (17)

UBP(s� t)= max
{

0�

(18)

max
{(η1�η2)|s≤η2≤t∧η1<η2}

η2 − t

η2 −η1
Fy(r|z = η1)+ t −η1

η2 −η1
Fy(r|z = η2)

}
�

These bounds are sharp.

In Appendix D, we prove Proposition 3.

3. Estimation of returns to schooling

3.1 Data

We use the 2000 wave of the U.S. National Longitudinal Survey of Youth 1979 (NLSY79),
which is representative of the U.S. noninstitutionalized civilian population who were be-
tween the ages of 14 and 22 in 1979. Like Manski and Pepper (2000), who used the 1994
wave of the NLSY79, we use a random sample of white men who reported that they were
full-time, year-round workers and not self-employed. Their hourly rate of pay and real-
ized years of schooling were observed. Thus, the realized outcome yj is the logarithm of
the observed hourly wage.6 The sample size is 1280. The percentage of the respondents

6We excluded four individuals whose hourly wages are less than one dollar. Thus, the realized outcomes
yj are positive.
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Table 1. Mean log hourly wages and distribution of schooling.

z Years of Schooling E[y|z] P(z) Sample Size

1 <12 2�516 0�078 100
2 12 2�727 0�423 542
3 13–15 2�980 0�184 235
4 16 3�251 0�180 231
5 >16 3�336 0�134 172

Total 1 1280

Note: The function E[y|z] is estimated by local constant kernel regression using a quar-
tic kernel and a rule-of-thumb bandwidth presented in Fan and Gijbels (1996).

with 12 years of schooling is 42�3 and the percentage of those with 16 years of schooling
is 18�1, but the percentages of those with years of schooling other than 12 and 16 are
small.

In such finite samples, the estimates of the bounds on the mean treatment response
and the average treatment effect may be biased. To alleviate the finite-sample bias prob-
lem, we estimate these bounds for five broad schooling groups: (i) less than 12 years of
schooling (high-school dropouts, the realized treatment z = 1), (ii) 12 years of schooling
(high-school graduates, z = 2), (iii) 13–15 years of schooling (some college, z = 3), (iv) 16
years of schooling (college graduates, z = 4), and (v) 16–20 years of schooling (more than
4 years of college, z = 5). Table 1 shows the local constant kernel estimates of E[y|z], the
empirical probability P(z), and the sample size for schooling group z.7 The sample size
of each schooling group is not smaller than 100. Estimates of E[y|z] increase with z and
thus are consistent with the MTR and MTS assumptions.8

3.2 Estimation results

In this section, we estimate (i) the bounds on the mean treatment response E[y(t)] rep-
resented by Equations (4), (5), and (6), and (ii) the bounds on the average treatment
effect E[y(t2)] −E[y(t1)] represented by Equations (8), (9), and (10). Because yj(t) is the
logarithm of the hourly rate of pay that a person j would obtain if he were to have t

schooling level, the average treatment effect, E[y(t2)] − E[y(t1)] for t1 < t2, is the ex-
pected return to completing a t2 schooling level relative to a t1 schooling level.

As noted by Manski and Pepper (2000, 2009), Haile and Tamer (2003), Kreider and
Pepper (2007), and Chernozhukov, Lee, and Rosen (2013), because the minima and max-
ima of the functions of the estimates of E[y|z] in Equations (5), (6), (9), and (10) have a
finite-sample bias, estimates of the bounds on E[y(t)] represented by Equations (4), (5),
and (6) and those on E[y(t2)] − E[y(t1)] represented by Equations (8), (9), and (10) are
tighter than the population bounds. Therefore, we estimate the bounds using the fol-
lowing three methods of bias correction: (i) a method proposed by Kreider and Pepper

7The local constant kernel estimates of E[y|z] use the quartic kernel and the rule-of-thumb bandwidth
presented in Fan and Gijbels (1996).

8If E[y|z] is not weakly increasing in z, then the MTR and MTS assumptions are rejected.
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Table 2. Lower and upper bounds on E[y(t)]: concave-MTR and MTS assumptions.

Lower Bounds on E[y(t)]
KP HT HT CLR CLR

Estimate Estimate Estimate 0�05 CI Estimate 0�05 CI
t Schooling (1) (2) (3) (4) (5) (6)

1 <12 2�516 2�514 2�516 2�371 2�516 2�446
2 12 2�725 2�721 2�719 2�673 2�716 2�687
3 13–15 2�845 2�842 2�841 2�799 2�838 2�816
4 16 2�922 2�922 2�921 2�869 2�919 2�895
5 >16 2�933 2�934 2�933 2�884 2�933 2�911

Upper Bounds on E[y(t)]
KP HT HT CLR CLR

Estimate Estimate Estimate 0�95 CI Estimate 0�95 CI
t Schooling (1) (2) (3) (4) (5) (6)

1 <12 2�933 2�934 2�933 2�981 2�934 2�956
2 12 2�950 2�951 2�950 2�997 2�950 2�973
3 13–15 3�056 3�066 3�062 3�124 3�071 3�113
4 16 3�205 3�229 3�216 3�295 3�253 3�303
5 >16 3�336 3�375 3�338 3�429 3�384 3�440

Note: See text for a description of the estimator. KP estimate and HT estimate are abbreviations for the bias-corrected
estimates in Kreider and Pepper (2007) and Haile and Tamer (2003), respectively, while CLR estimate is an abbreviation for the
median unbiased estimate in Chernozhukov, Lee, and Rosen (2013). The CI denotes confidence interval.

(2007) and Manski and Pepper (2009) (abbreviated here as the KP method), (ii) a method
proposed by Haile and Tamer (2003) (the HT method), and (iii) a method proposed by
Chernozhukov, Lee, and Rosen (2013) (the CLR method). The KP and HT estimators are
computationally simpler but have less formal justification of their asymptotic proper-
ties than do the CLR estimators. In Appendix E, we provide an implementation guide for
applying these three methods to our bounds.

The upper and lower panels of Table 2 report the estimates of the lower and upper
bounds, respectively, on the mean treatment response E[y(t)]. Column 1 of Table 2 re-
ports the bound estimates that are not bias-corrected. Columns 2, 3, and 5 report the
bound estimates that are bias-corrected by the KP, HT, and CLR methods, respectively.
Columns 4 and 6 report the confidence intervals produced by the HT and CLR methods,
respectively.9 The bias-corrected bound estimates take similar values among the KP, HT,
and CLR estimates; the CLR bound estimates are the widest. The CLR confidence in-
tervals are narrower than the HT confidence intervals except for the 0�95 confidence
intervals for t = 4 and 5. For comparison, Table 3 reports the bound estimates on E[y(t)]
using only the concave-MTR assumption of Manski (1997), and the bound estimates us-
ing only the MTR and MTS assumptions of Manski and Pepper (2000). The estimates
of our bounds, which are bias-corrected by the KP, HT, and CLR methods, are narrower

9Table 2 reports the estimates and confidence intervals of the bounds obtained in Proposition 1(a). These
bounds provide the same estimation results as those obtained in Proposition 1(b), except for the HT esti-
mates of the upper bounds, which have negligibly small differences.
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Table 3. Lower and upper bounds on E[y(t)].

Manski and Pepper’s (2000)
Manski’s (1997) Bounds Bounds

Lower Bounds Upper Bounds Lower Bounds Upper Bounds
on E[y(t)] on E[y(t)] on E[y(t)] on E[y(t)]

Estimate 0�05 CI Estimate 0�95 CI Estimate 0�05 CI Estimate 0�95 CI
t Schooling (1) (2) (3) (4) (5) (6) (7) (8)

1 <12 1�193 1�146 2�933 2�981 2�516 2�371 2�933 2�981
2 12 2�189 2�129 3�130 3�201 2�711 2�647 2�950 2�997
3 13–15 2�607 2�561 3�904 4�022 2�837 2�778 3�077 3�150
4 16 2�844 2�798 4�860 5�040 2�922 2�872 3�263 3�354
5 >16 2�933 2�884 5�963 6�200 2�933 2�884 3�336 3�474

Table 4. Upper bounds on returns to schooling: concave-MTR and MTS assumptions.

Upper Bounds on E[y(t2)] −E[y(t1)]
KP HT HT CLR CLR

Estimate Estimate Estimate 0�95 CI Estimate 0�95 CI
t1 t2 (1) (2) (3) (4) (5) (6)

1 2 0�434 0�437 0�434 0�588 0�434 0�508
2 3 0�270 0�281 0�277 0�349 0�292 0�335
3 4 0�230 0�245 0�240 0�280 0�261 0�288
4 5 0�161 0�175 0�163 0�218 0�194 0�228

2 4 0�459 0�486 0�475 0�564 0�514 0�573
Average effect 0�115 0�122 0�119 0�141 0�129 0�143

Note: See the text for a description of the estimator. KP estimate and HT estimate are abbreviations for the bias-corrected
estimates in Kreider and Pepper (2007) and Haile and Tamer (2003), respectively, while CLR estimate is an abbreviation for the
median unbiased estimate in Chernozhukov, Lee, and Rosen (2013). The CI denotes confidence interval.

than those of Manski (1997); they are also narrower than or equal to those of Manski and
Pepper (2000), except for t = 5.

Table 4 reports the estimates of the upper bounds on the average treatment effect,
E[y(t2)] −E[y(t1)], namely, the estimates of the upper bounds on the returns to school-
ing.10 The layout of the table is the same as for Table 2. The bias-corrected upper-bound
estimates take similar values among the KP, HT, and CLR estimates; the CLR estimates
are the largest and the HT estimates are the smallest except for (t1� t2) = (1�2). The
CLR confidence intervals are smaller for (t1� t2) = (1�2) and (2�3), and are larger for
(t1� t2) = (3�4) and (4�5), compared to the HT confidence intervals. For comparison,
Table 5 reports (i) the estimates of the upper bounds on the returns to schooling using

10Table 4 reports the estimates and confidence intervals of the upper bounds obtained in Proposi-
tion 2(a). These bounds provide the same estimation results as those obtained in Proposition 2(b), except
for the HT estimates of the upper bounds, which have negligibly small differences. All sharp lower bounds
on the returns to schooling of this paper, Manski (1997), and Manski and Pepper (2000) are always zero (see
Proposition 2).
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Table 5. Upper bounds on returns to schooling.

Upper Bounds on E[y(t2)] −E[y(t1)]
Manski and Pepper’s (2000)

Manski’s (1997) Bounds Bounds

Estimate 0�95 CI Estimate 0�95 CI
t1 t2 (1) (2) (3) (4)

1 2 1�565 1�601 0�434 0�588
2 3 1�301 1�341 0�366 0�461
3 4 1�215 1�260 0�426 0�542
4 5 1�193 1�240 0�414 0�563

2 4 2�430 2�520 0�552 0�665
Average effect 0�608 0�630 0�138 0�166

the concave-MTR assumption of Manski (1997), and (ii) those using the MTR and MTS
assumptions of Manski and Pepper (2000). Our upper-bound estimates are substan-
tially smaller than those of Manski (1997) and Manski and Pepper (2000). Specifically,
our upper-bound estimates, which are bias-corrected by the KP, HT, and CLR methods,
are only between 14 and 28 percent as large as those of Manski (1997), and they are only
between 39 and 80 percent as large as those of Manski and Pepper (2000) except for the
returns for (t1� t2)= (1�2).11

The last row of Table 4 shows the estimates of our upper bounds on the average
yearly returns from completing 4 years of college relative to completing high school (i.e.,
{E[y(4)] − E[y(2)]}/4). The bias-uncorrected estimate is 0�115, the KP estimate is 0�122,
the HT estimate is 0�119, and the CLR estimate is 0�129. In Section 2.3, we demonstrated
that under the HLR and ETS assumptions, the average yearly returns from completing
4 years of college relative to completing high school is {E[y|z = 4] − E[y|z = 2]}/4. The
point estimate of this quantity is 0�131, which is obtained using Table 1. The OLS esti-
mate using our sample with 12 and 16 years of schooling is 0�131 (with a standard error
of 0�009). Card (1999, 2001) showed that point estimates on the returns to schooling in
previous studies that use linear regressions and U.S. data are between 0�052 and 0�132.
Therefore, our upper-bound estimates of the average yearly returns from completing
4 years of college relative to completing high school are informative in the sense that
they are lower than the point estimates that use our sample and also lower than some
of the point estimates reported in previous studies. In comparison, the last row of Ta-
ble 5 shows that the upper-bound estimate of the average yearly returns from complet-
ing 4 years of college relative to completing high school, computed using the concave-
MTR assumption of Manski (1997), is 0�608 and the estimate using the MTR and MTS
assumptions of Manski and Pepper (2000) is 0�138. These upper-bound estimates are,
therefore, larger than the point estimates that use our sample and all of the point esti-
mates reported in previous studies. We thus conclude that it is the combination of the
concave-MTR and the MTS assumptions that has substantial identifying power for the

11The bounds of Proposition 2(a) and Manski and Pepper (2000) are identical when (t1� t2) = (1�2) (see
Equation (11)).
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returns to college-level schooling. This empirical result supports the prediction made in
Section 2.3: our upper bound on the average treatment effect may be smaller than the
average treatment effect point-identified by the HLR and ETS assumptions.

In the remainder of this section, we discuss the economic interpretation and im-
plications of the assumptions that have been used to estimate the returns to school-
ing by the linear regressions, Manski and Pepper (2000), Manski (1997), and this paper.
Most of the previous empirical studies on returns to schooling are based on the HLR
assumption; the returns to schooling are, therefore, estimated by linearly regressing log
wages on years of schooling. The HLR assumption asserts that the individuals’ log-wage
functions are all linear in years of schooling and have the same slope parameter across
the population. Among these empirical studies, those that use the OLS technique are
also based on the ETS assumption. Schooling may, however, be correlated with the error
terms because of unobserved abilities (the ability bias) and because of measurement er-
ror in relation to schooling (the attenuation bias); for these reasons, the validity of the
ETS assumption is often questioned. To correct for these biases, institutional, personal,
and/or family attributes are used as the instrumental variables (IVs) for schooling.12

The MTR and MTS assumptions, which Manski and Pepper (2000) imposed to es-
timate the returns to schooling, are distinct from the HLR and ETS assumptions. The
MTR assumption simply asserts that log wage increases weakly in relation to schooling
and is, therefore, consistent with conventional theories of human capital accumulation.
The MTS assumption asserts the mean monotonicity of wages and schooling. Therefore,
the MTS assumption accommodates the ability bias in light of the large stream of liter-
ature on returns to schooling that assumes that people with higher ability select more
schooling and have higher mean wage functions than those with lower ability. However,
the MTS assumption is restrictive in light of the Willis and Rosen (1979) model and the
Roy model, which represent another large stream of literature on returns to schooling.
Specifically, these latter two models assume that individuals differ in their skill endow-
ment and select schooling levels at which their own skills are most rewarded (i.e., for
(t� s) ∈ T 2, E[y(t)|z = s] ≤ E[y|z = s]). Therefore, in the Willis–Rosen and Roy models,
it is possible that if individuals who select a high level of schooling had selected a low
level of schooling, they would be poorer than those who actually do select a low level of
schooling (i.e., for t1 < t2, E[y(t1)|z = t2] < E[y|z = t1]). The MTS assumption rules out
this possibility.13 Moreover, the MTS assumption cannot address the attenuation bias
caused by measurement errors in the years of schooling.

12In the case in which the HLR assumption does not hold, Lang (1993), Imbens and Angrist (1994), Card
(1995, 1999, 2001), and Carneiro, Heckman, and Vytlacil (2011) argued that the estimated returns to school-
ing using the IV technique identify a local average treatment effect (LATE) and thus do not express the
average treatment effect of the returns to schooling. Specifically, when costs of schooling are used as the
instrumental variables, these estimates could be higher than the population average return because they
identify the return for credit-constrained individuals, who are induced to go to college by changes in the
instrumental variables (the effect known as the discount rate bias).

13By using the local instrumental-variable technique, Carneiro, Heckman, and Vytlacil (2011) and
Heckman, Eisenhauer, and Vytlacil (2011) estimated the returns to schooling in the Willis–Rosen and Roy
models.
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In this paper, we add the assumption of concavity, which is used by Manski (1997),
to the MTR and MTS assumptions. The concave-MTR assumption asserts that the log-
wage function is weakly concave-increasing in relation to schooling. The conventional
theories of human capital accumulation assume that production functions for human
capital have diminishing marginal returns to schooling (e.g., Card (1999, 2001)). Thus,
the concave-MTR assumption is still consistent with conventional theories of human
capital accumulation. However, if there are wage premiums for obtaining higher creden-
tials such as a high-school diploma or college degree (known as the sheepskin effect),
this assumption may not be justified.

4. Conclusion

We identify sharp bounds on the mean treatment response and average treatment effect
under both the concave-MTR and the MTS assumptions. We then estimate the bounds
on the returns to schooling by utilizing our bounds and the NLSY79 data. Estimates ob-
tained using our bounds are substantially tighter than either estimates using only the
concave-MTR assumption of Manski (1997) or estimates using only the MTR and MTS
assumptions of Manski and Pepper (2000). Moreover, our upper-bound estimates fall in
the range of point estimates reported in the previous literature.

Further research could pursue several interesting directions. First, by using the grow-
ing literature on inference for partially identified models, one could provide tests for
the concave-MTR and MTS assumptions, such as a test for the null hypothesis that the
bounds obtained using these assumptions do not cross.14 Second, using Proposition 3,
one could derive the sharp bounds on the quantile treatment response and quantile
treatment effect under the concave-MTR and MTS assumptions. These bounds could
be used to tighten (i) the bounds obtained by Giustinelli (2011) on the quantile treat-
ment effect under the MTR and MTS assumptions, and (ii) the bounds, obtained using
the quantile treatment response in Okumura (2011), on shift variables within a nonpara-
metric simultaneous equations model. Third, using the bounds obtained in Appendix C,
one could estimate the upper bounds on returns to schooling under a combination of
the IV or MIV assumptions with the concave-MTR and MTS assumptions; one could
then compare these bound estimates with the point estimates obtained using linear IV
models.

Fourth, because conventional production theory is consistent with the concave-
MTR and MTS assumptions, our bounds could be applied not only to the literature intro-
duced in Section 1, but also to estimating the production functions of firms. Production
theory often asserts that the output of a product increases with input. This assertion
has dual interpretations. The first interpretation is that a production function weakly
increases and marginal product weakly decreases with input, which follows from the
concave-MTR assumption for this example. The second interpretation is that firms that

14The literature on inference for partially identified models includes Manski and Tamer (2002), Imbens
and Manski (2004), Blundell et al. (2007), Chernozhukov, Hong, and Tamer (2007), Beresteanu and Molinari
(2008), Rosen (2008), Stoye (2009), Andrews and Soares (2010), Bugni (2010), Canay (2010), Romano and
Shaikh (2010), and Andrews and Shi (2013).
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select greater levels of output have weakly greater average production functions than
those that select smaller levels of output, which follows from the MTS assumption for
this example. Therefore, under the concave-MTR and MTS assumptions about the pro-
duction process, the bound approach in this paper could be applied to reveal the aver-
age production function (i.e., E[y(t)]) and the average increase in a firm’s production as
input increases (i.e., E[y(t2)] −E[y(t1)]).
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