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On the structure of rationalizability for arbitrary
spaces of uncertainty

Antonio Penta
Department of Economics, University of Wisconsin–Madison

Weinstein and Yildiz (2007) show that only very weak predictions are robust to
misspecifications of higher order beliefs. Whenever a type has multiple rational-
izable actions, any of these actions is uniquely rationalizable for some arbitrar-
ily close type. Hence, refinements of rationalizability are not robust. This nega-
tive result is obtained under a richness condition, which essentially means that all
common knowledge assumptions on payoffs are relaxed.

In many settings, this condition entails an unnecessarily demanding robust-
ness test. It is, therefore, natural to explore the structure of rationalizability when
arbitrary common knowledge assumptions are relaxed (i.e., without assuming
richness).

For arbitrary spaces of uncertainty and for every player i, I construct a set A∞
i

of actions that are uniquely rationalizable for some hierarchy of beliefs. The main
result shows that for any type ti and any action ai rationalizable for ti, if ai belongs
to A∞

i and is justified by conjectures concentrated on A∞
−i, then there exists a se-

quence of types converging to ti for which ai is uniquely rationalizable. This result
significantly generalizes Weinstein and Yildiz’s. Some of its implications are dis-
cussed in the context of auctions and equilibrium refinements, and in connection
with the literature on global games.

Keywords. Rationalizability, robustness, refinements, higher order beliefs, dom-
inance solvability, richness, global games, structure theorems.

JEL classification. C72.

1. Introduction

Economic modelling naturally involves making common knowledge assumptions. Re-

cently, Weinstein and Yildiz (2007) studied the robustness of game theoretic predictions

when all such assumptions are relaxed. Assuming that the underlying space of uncer-

tainty is sufficiently “rich,” Weinstein and Yildiz prove a structure theorem for interim

correlated rationalizability (ICR; Dekel et al. 2007) that has the following implications:
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Result 1 (Nonrobustness). Whenever a model has multiple ICR outcomes, any of these
outcomes is uniquely rationalizable in a model with beliefs arbitrarily close to the origi-
nal ones.

Result 2 (Generic uniqueness). In the space of hierarchies of beliefs, the set of types
with a unique ICR action is open and dense (i.e., models are generically dominance-
solvable).

An important implication of Result 1 is that any refinement of ICR is not robust:
any rationalizable outcome ruled out by some refinement of rationalizability would be
uniquely selected (hence, not ruled out) in some arbitrarily close model of beliefs (that
is, refinements of ICR are not upper hemicontinuous). Result 2 instead generalizes an
important insight from the global games literature, that multiplicity is often the conse-
quence of the common knowledge assumptions implicit in our models.

Weinstein and Yildiz’s richness condition requires that for every action of every
player, there exists a state under which that action is strictly dominant. This means that
essentially all common knowledge assumptions are relaxed, as under the richness con-
dition it is not common knowledge among the players that any action is not dominant.
In many situations, this condition entails an unnecessarily demanding robustness test.

For instance, suppose that we are interested in the robust predictions of an auction
model, M. Following Weinstein and Yildiz, we would embed the original model (with
common knowledge assumptions, M) in a model M∗ with a richer space of uncertainty,
so as to be able to study the robustness question by looking at sequences of players’
beliefs that converge to common belief in the original model M. If model M∗ satisfies
the richness condition, Result 1 implies that the only robust predictions for M are those
provided by ICR. But the richness condition requires the existence of dominance regions
for all bids, including, for instance, those bids that (depending on the specific rules of the
auction) are dominated for all types of bidders. But this essentially means that (in M∗)
it is no longer common knowledge that players are rational, that payoffs are decreasing
in the price paid, or that players know the rules of the auction, etc. How would Result 1
change if M∗, for instance, contained only dominance regions for bids consistent with
the assumption of common knowledge of the auction’s rules and of players’ rationality?

More generally, in specific contexts, one may wish to investigate the robustness
question when some common knowledge assumptions are relaxed, but not others. The
reliance on the richness condition therefore significantly limits the applicability of the
results above to specific applied models. It is, therefore, an important theoretical prob-
lem to investigate the robustness of solution concepts under arbitrary common knowl-
edge restrictions. This paper explores the structure of ICR on arbitrary spaces of uncer-
tainty, so as to analyze the robustness of game theoretic predictions to the relaxation of
arbitrary common knowledge assumptions.

Fix a space of uncertainty�, let A0
i be the set of actions of player i that are dominant

in some state in �, and let A0
−i = ×j �=iA0

j . Recursively, let Ak
i denote the set of actions of

player i that are unique best responses to conjectures concentrated on�× Ak−1
−i . Finally,

define A∞
i = ⋃

k≥0 Ak
i . Theorem 1 (Section 3) shows the following result.



Theoretical Economics 8 (2013) The structure of rationalizability 407

Result 1′ . For any type (or hierarchy of beliefs) ti and for every action ai that is
ICR for type ti, if ai belongs to A∞

i and is justified by conjectures concentrated on
×j �=iA∞

j , then there exists a sequence of types converging to ti along which ai is uniquely
rationalizable.

By requiring that every action ai is strictly dominant in some state θai ∈�, Weinstein
and Yildiz’s richness condition trivially implies that A∞

i = Ai for each i. In this case,
Result 1 follows immediately from Result 1′. For arbitrary spaces of uncertainty, A∞

i

generally is a subset of Ai, but in some cases, it may be that A∞
i =Ai even if richness

is not assumed. In fact, it is shown that very mild relaxation of common knowledge
assumptions suffice to guarantee that A∞ = A. Hence, the implications of Weinstein
and Yildiz’s results remain valid for significantly less demanding robustness tests, which
reinforces their message.

The dominance states in Weinstein and Yildiz (2007) are often interpreted as “artifi-
cial” states that are added to the underlying space of uncertainty to model the relaxation
of common knowledge assumptions. Under this interpretation, their exercise is similar
to the introduction of “behavioral types” common in the literature on reputation and
on strategic foundations of the rational expectations equilibrium.1 Similarly, the results
of this paper can be used to perform robustness exercises in which artificial dominance
states are added for only some (as opposed to all) of the actions.

However, and more importantly, Theorem 1 can be applied to perform robustness
exercises that do not involve the introduction of any artificial state. Clearly, in some
cases, this enables stronger robust predictions than allowed by Weinstein and Yildiz’s
original result. However, results as powerful as Result 1 are possible even without intro-
ducing any artificial state. Consider the following example, which is more extensively
discussed in Section 4.1 below.

Example (The “public good demand game”). A society must decide on the quantity of
a public good, x ∈X = [0�1]. The decision is made according to the following protocol:
every agent proposes a quantity and the average of the proposals is implemented.

Agents’ preferences depend on the realization of a state of nature, θ ∈�⊆ R, repre-
sented by utility functions Ui :X ×�→ R such that Ui(x�θ)= −(θ− x)2. For simplicity,
assume thatAi =�= {0� 1

4 �
1
2 �

3
4 �1} and that the society is made of two individuals.

It can be checked (see Example 1, Section 4.1) that actions ai = 0�1 are the only ones
that admit dominance states in�. We thus have A0

i = {0�1} and the richness condition is
not satisfied. Nonetheless, it can be verified that A∞

i =Ai. Hence, with no need to intro-
duce any artificial state, Theorem 1 delivers the same nonrobustness result as Result 1
in this context. ♦

In addition to extending the robustness analysis to contexts in which the richness
condition may not be compelling (see, e.g., Section 4.1), Theorem 1 provides a flexible

1In those literatures, such behavioral types are often referred to as commitment, crazy, noise traders, etc.
(See references in footnote 16.)
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tool that can be easily adapted to obtain further general results. Propositions 1, 2, and 3

in Section 4 represent some examples of such applications of Theorem 1.
Proposition 1 (Section 4.2) shows how an analogue of Result 1 can be obtained,

when ICR is replaced by arbitrary equilibrium concepts: the result, which follows triv-
ially from Theorem 1, holds under the assumption that the underlying space of uncer-

tainty contains regions of dominance for the equilibrium actions only, which means that
higher order beliefs do not rule out the possibility that the opponents may be “commit-

ted” to specific equilibrium actions (a very mild perturbation of common knowledge
assumptions).

Proposition 2 (Section 4.3) provides mild conditions on � that guarantee that
A∞ =A, so that the full results of Weinstein and Yildiz (including Result 2) are obtained.

In addition to providing a generic uniqueness result without richness, Proposition 2
can be further specialized (Lemma 5) to shed some light on the connection between

Weinstein and Yildiz (2007) and the literature on global games. A common message
of the two approaches is that multiplicity often arises from the common knowledge

assumptions of our models. Once such assumptions are relaxed (e.g., assuming rich-
ness), models are typically dominance-solvable.2 Both approaches exploit an infection

argument on players’ hierarchies of beliefs reminiscent of the logic of the e-mail game
(Rubinstein 1991). The formal settings though are quite different and not directly com-

parable. At a substantive level, two main differences can be identified.

(i) The global games literature assumes that players’ actions are ordered and payoff

functions are supermodular (i.e., it is common knowledge that the game exhibits
strategic complementarities). In contrast, Weinstein and Yildiz make no assump-

tions on agents’ payoffs or on the action spaces.

(ii) Weinstein and Yildiz require the existence of dominance states for each action of

each player. The global games literature instead requires only dominance regions
for the extreme actions.

Proposition 2 obtains a generic uniqueness result that combines the positive fea-
tures of both approaches (that is, without assuming richness or imposing common

knowledge of supermodularity). Loosely speaking, it is sufficient to assume that it is not
common knowledge that the game does not exhibit strategic complementarities plus re-

gions of dominance for only two actions of every player (and some other technicalities).
Proposition 3 (Section 4.4), also obtained from Theorem 1, shows that for any action

that is uniquely rationalizable for some hierarchy of beliefs and that is justified by op-
ponents’ actions that are uniquely rationalizable for some type, a “nearby uniqueness”

result analogous to Result 1′ holds. Hence, whenever that nearby uniqueness result fails
for one of these actions, then that action is not uniquely rationalizable anywhere in the

universal type space.

2See Morris and Shin (2003) for a thorough survey of the literature on global games.
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2. Game theoretic framework

I consider static games with payoff uncertainty, i.e., tuples G= 〈I��� (Ai�ui)i∈I〉, where
I = {1� � � � � n} is the set of players; for each i ∈ I,Ai is the set of actions and ui :A×�→ R

is i’s payoff function, where A := ×i∈IAi and � is a parameter space. Assume that the
sets I and A are finite, and that � is a compact metric space. Players’ hierarchies of
beliefs over � are defined as usual (see Mertens and Zamir 1985): for each i ∈ N , let
Z1
i = �(�) denote i’s first order beliefs, and for k≥ 1, define recursively

Zk−i = ×j �=iZkj

and

Zk+1
i = {(t1i � � � � � tk+1

i ) ∈Zki ×�(�×Zk−i) : marg
�×Zk−1

−i
tk+1
i = tki }�3

Agent i’s first order beliefs are elements of �(�); an element of �(�×Zk−1
−i ) is a�-based

k-order belief for every k > 1. The set of (collectively coherent) �-hierarchies is defined
by

T ∗
i = {(t1i � t2i � � � �) ∈ ×k≥1�(�×Zk−1

−i ) : (t1i � � � � � t
k
i ) ∈Zki ∀k≥ 1}�

Players’ �-hierarchies are represented by means of type spaces: a type space (or
Bayesian model) is a tuple T = 〈�′� (Ti� τi)i∈I〉 s.t. �′ ⊆ � and for each i ∈ I, Ti is the
(compact) set of types of player i, and the continuous function τi :Ti → �(�′ × T−i) as-
signs to each type of player i his beliefs about � and the opponents’ types. A type space
is finite if |�′ × T | <∞. The set �′ ⊆ � denotes the set of states that is common cer-
tainty among the types in T . This, in principle, can be a strict subset of the fundamental
space �.

Each type in a type space induces a �-hierarchy: For each ti ∈ Ti, the first order be-
liefs induced by ti ∈ Ti are obtained by the map π̂1

i :Ti → �(�) that is defined as follows:
for every measurable E ⊆�,

π̂1
i (ti)[E] = τi(ti)

[{(θ� t−i) ∈�× T−i :θ ∈E}]�
For k > 1, the induced k-order beliefs are obtained by mappings π̂ki :Ti → �(�×Zk−1

−i ),
which are defined recursively as follows: for every measurable E ⊆�×Zk−1

−i ,

π̂ki (ti)[E] = τi(ti)
[{
(θ� t−i) ∈�× T−i : (θ� π̂k−1

i (ti)) ∈ E}]
�

The map π̂∗
i :Ti → T ∗

i , which is defined by

ti → π̂∗
i (ti)= (π̂1

i (ti)� π̂
2
i (ti)� � � �)�

assigns to each type in a type space the corresponding �-hierarchy of beliefs. From
Mertens and Zamir (1985), we know that when T ∗ is endowed with the product topology,
there is a homeomorphism

φi :T
∗
i −→ �(�× T ∗

−i)

3For any setX , �(X) denotes the set of probability measures overX , endowed with the topology of weak
convergence.
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that preserves beliefs of all orders: for all t∗i = (t1i � t2i � � � �) ∈ T ∗
i ,

marg
�×Zk−1

i
φi(t

∗
i )= tki ∀k≥ 1�

Hence, the tuple T ∗ = 〈��(T ∗
i � τ

∗
i )i∈N〉 with τ∗

i = φi is a type space. It is referred to as the
(�-based) universal type space. Furthermore, any nonredundant type space (i.e., such
that ∀ti� t ′i ∈ Ti, ti �= t ′i implies π̂∗

i (ti) �= π̂∗
i (t

′
i)) is a belief-closed subset of T ∗, in the sense

that for every π̂∗
i (ti) ∈ π̂∗

i (Ti), we have φi(π̂
∗
i (ti))[�× π̂∗

−i(T−i)] = 1.4 A finite type is any
element ti ∈ T ∗

i that belongs to a finite belief-closed subset of T ∗ (or, equivalently, any
hierarchy that can be represented by means of a type in a finite type space). The set of
finite types is denoted by T̂i ⊆ T ∗

i .
Attaching a type space T = 〈�′� (Ti� τi)i∈I〉 to the game with payoff uncertainty G,

we obtain the Bayesian game GT = 〈I��′� (Ai�Ti� ûi)i∈I〉, with payoff functions ûi :A×
�′ × T → R s.t. ûi(a�θ� t)= ui(a�θ) for all (a�θ� t) ∈A×�′ × T . Since players’ types are
payoff-irrelevant, with a slight abuse of notation, we write ui and drop the dependence
on T .5

Given a Bayesian game GT , player i’s conjectures are denoted by ψi ∈
�(�×A−i × T−i).6 For each type ti, his consistent conjectures are


i(ti)= {ψi ∈ �(�×A−i × T−i) : marg�×T−iψ
i = τi(ti)}�

Let BRi(ψi) denote the set of best responses to conjecture ψi:

BRi(ψ
i)= arg max

ai∈Ai

∑
(θ�a−i�t−i)

ui(θ�ai� a−i) ·ψi(θ�a−i� t−i)�

If ai ∈ BRi(ψi), we say that ψi justifies ai. Appealing again to the payoff-irrelevance
of the epistemic types, with another abuse of notation, we write BRi(ψi) for conjectures
ψi ∈ �(�×A−i) (i.e., disregarding the payoff-irrelevant component).

I present next the solution concept interim correlated rationalizability (ICR), intro-
duced by Dekel et al. (2007).

Definition 1. Fix a Bayesian gameGT . For each i ∈ I, let ICRT �0
i = Ti×Ai. Recursively,

for k= 1�2� � � � and ti ∈ Ti, let ICRT �k−1
−i = ×j∈I\{i}ICRT �k−1

j ,

ICRT �k
i (ti)= {ai ∈Ai :∃ψai ∈
i(ti) s.t.: ai ∈ BRi(ψ

ai) and

supp(margA−i×T−iψ
ai)⊆ ICRT �k−1

−i }�

and ICRT �k
i = {(ti� ai) ∈ Ti × Ai :ai ∈ ICRT �k

i (ti)}. Finally, ICRT
i := ⋂

k≥0 ICRT �k
i and

ICRT = ×i∈IICRT
i .

4Given a function f :X → Y , the set f (X) is defined as f (X) := ⋃
x∈Xf(x).

5In Weinstein and Yildiz (2007) and in the present setting, types are payoff-irrelevant or purely epistemic.
This amounts to assuming that players have no information on payoffs (and this is common knowledge).
See Penta (2012a) for the case with payoff types (i.e., with arbitrary information structures).

6Throughout the paper I maintain the convention that “beliefs” are about � and the opponents’ beliefs
about�; that is, beliefs are about exogenous variables only. The term “conjectures” instead refers to beliefs
that also encompass the opponents’ strategies.
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Interim correlated rationalizability is a version of rationalizability (Pearce 1984 and
Bernheim 1984) applied to the interim normal form, with the difference that the oppo-
nents’ actions may be correlated (with one another and with the payoff state) in the eyes
of a player.7 Dekel et al. (2007) prove that whenever two types ti ∈ Ti and t ′i ∈ T ′

i are such

thatπ∗
i (ti)= π∗

i (t
′
i), then ICRT ′

i (t
′
i)= ICRT

i (ti); that is, ICR is completely determined by a
type’s hierarchies of beliefs, irrespective of the type space representation. Hence, we can
drop the reference to the specific type space T and, without loss of generality, envision
types as elements of the universal type space T ∗.

3. Structure of rationalizability without richness

Let A0
i ⊆ Ai be the set of actions of player i for which there exists a dominance state

θai ∈�; that is, θai is such that ai is strictly dominant.8 Recursively, for each k= 1�2� � � � ,
define

Ak
i = {ai ∈Ai :∃βi ∈ �(�× Ak−1

−i ) s.t. {ai} = BRi(β
i)}� (1)

where Ak
−i = ×j �=iAk

j and Ak = ×i∈IAk
i , for each k= 0�1� � � � . Then let A∞

i = ⋃
k≥0 Ak

i .

In words, for each k = 1�2� � � � , the set Ak
i consists of player i’s actions that are a

unique best responses to conjectures concentrated on Ak−1
−i . Actions in A0

i are those for
which there exist dominance states. Then for each k, every action in Ak

i can be traced
back to such dominance regions through a finite sequence of strict best responses.

Remark 1. It is easy to verify that for each k= 1�2� � � � , Ak−1
i ⊆ Ak

i . Also, since each Ai
is finite, there existsK ∈ N such that for each i ∈ I, AK

i = AK+1
i = A∞

i .

The main result is that for each ti and for each action ai ∈ ICRi(ti) ∩ A∞
i that is jus-

tified by conjectures concentrated on A∞
−i, we can construct a sequence of (finite) types

converging to ti for which ai is uniquely rationalizable.
Formally, let

ICRi(ti; A∞)= {ai ∈ ICRi(ti)∩ A∞
i :∃ψai ∈
i(ti) s.t. ai ∈ BRi(ψ

ai) and

supp(margA−iψ
ai)⊆ A∞

−i}�
(2)

Then the main result can be stated.

Theorem 1. For each ti ∈ T̂i and for each ai ∈ ICRi(ti; A∞), there exists a sequence
{tνi } ⊆ T̂i s.t. tνi → ti and for each ν ∈ N, {ai} = ICRi(tνi ).

9

7Ely and Pęski (2006) study interim (independent) rationalizability, that is Pearce’s solution concept ap-
plied to the interim normal form. Battigalli et al. (2011) study the relationships between these and other
versions of rationalizability for incomplete information games.

8A slightly more general result can be obtained by letting A0
i denote the set of player i’s actions that are

uniquely rationalizable for some state (see, e.g., Frankel et al. 2003). This point is discussed in Section 3.2.
I maintain the dominance region terminology simply for expositional convenience.

9Since the universal type space is endowed with the product topology, this convergence as well as those
in the following results are all with respect to that topology.
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The proof of Theorem 1 is contained in Section 3.1. The uninterested reader may
proceed directly to Sections 3.2 and 4, which contain examples and applications of the
result.

3.1 Proof of Theorem 1

The next lemma shows that for each k and for each action ai ∈ Ak
i , there exists a finite

type for which ai is the only action that survives after (k+ 1) rounds of iterated deletion
of dominated actions.

Lemma 1. For each k= 0�1� � � � , for each ai ∈ Ak
i there exists a finite type t ′i ∈ T̂i such that

ICRk+1
i (t ′i)= {ai}.

Proof. The proof is by induction.
Initial Step. This is immediate, as for ai ∈ A0

i , there exists θai ∈ � that makes ai
strictly dominant, and letting t ′i denote the type corresponding to common belief of θai ,
ICR1

i (t
′
i)= {ai}.

Inductive Step. Let ai ∈ Ak
i . Then there exists βi ∈ �(� × Ak−1

−i ) such that

{ai} = BRi(βi). From the inductive hypothesis, there exists a function κk−1
−i : Ak−1

−i → T̂−i
such that for each a−i ∈ Ak−1

−i , {a−i} = ICRk−i(κ
k−1
−i (a−i)). We want to show that there

exists t ′i ∈ T̂i such that ICRk+1
i (t ′i)= {ai}. Let μi ∈ �(�× Ak−1

−i × T̂−i) be defined by

μi(θ�a−i� κk−1
−i (a−i))= βi(θ�a−i)

and let t ′i be defined as τ∗
i (t

′
i)= marg�×T̂−iμ

i. Then, by construction,

{μi} = {ψi ∈
i(t ′i) : supp(margA−i×T̂−iψ
i)⊆ ICRk−i}

and

{ai} = BRi(μ
i)�

Hence, ICRk+1
i (t ′i)= {ai}. �

Based on Lemma 1, the next definition introduces a set of types T̄i ⊆ T̂i chosen so
that each element of A∞

i is uniquely rationalizable for one type.

Definition 2. Let κki : Ak
i → T̂i be defined as a mapping such that for each ai ∈ Ak

i ,
{ai} = ICRk+1

i (κki (ai)) and let κi : A∞
i → T̂i be defined as a mapping such that for each

ai ∈ A∞
i , {ai} = ICRi(κi(ai)). Given κi : A∞

i → T̂i, define the set of types T̄i ⊆ T̂i as

T̄i := {ti ∈ T̂i : ti = κi(ai) for some ai ∈ A∞
i }�

(Notice that Definition 2 is well posed because of Lemma 1.)

Remark 2. Since A∞
i is finite, the set T̄i is finite.
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As already mentioned, Weinstein and Yildiz assume richness, that is, A0
i = Ai for

each i. In that case, it is immediate to construct types with a unique rationalizable ac-
tion. Given such dominance types, they prove their main result through an infection ar-
gument on players’ hierarchies of beliefs. Their proof has two main steps: first, a type’s
beliefs are perturbed to show that any rationalizable action for that type is also strictly
rationalizable for a nearby type (Lemma 6 in Weinstein and Yildiz 2007). Then, with a
further perturbation, each strictly rationalizable action is made uniquely rationalizable
for an arbitrarily close type, perturbing higher order beliefs only (Lemma 7 in Weinstein
and Yildiz 2007).

With arbitrary spaces of uncertainty (i.e., without richness), the argument above re-
quires two main modifications. First, the set of types T̄i used to start the infection ar-
gument has to be constructed (Definition 2). Then a result analogous to Weinstein and
Yildiz’s Lemma 6 is proved (Lemma 3 below), but with a different solution concept than
strict rationalizability, which is presented shortly (Definition 3).

The difference between Definition 3 and strict rationalizability parallels that be-
tween Weinstein and Yildiz’s dominance types and the types in the set T̄i constructed
above. Given these preliminary steps, the further perturbations of higher order beliefs
needed to obtain the result are completely analogous to Weinstein and Yildiz’s: Lemma 4
below entails minor modifications of Weinstein and Yildiz’s analogue (Lemma 7).

The proof of the main result is based on the following solution concept.

Definition 3. Given a type space 〈��(Ti� τi)i∈I〉, for each i ∈ I and ti ∈ Ti, let W 0
i =

Ti × A0
i . Recursively, for k= 1�2� � � � , let Wk−1

−i = ×j∈I\{i}Wk−1
j , and for each ti ∈ Ti,

Wk
i (ti)= {ai ∈ Ak

i :∃ψi ∈ �(�× Wk−1
−i ) s.t. marg�×T−iψ

i = τi(ti) and {ai} = BRi(ψ
i)}

and Wk
i = {(ti� ai) ∈ Ti ×Ai :ai ∈ Wk

i (ti)}.
LetK ∈ N be such that for each k≥K, Wk+1

i (ti)⊆ Wk
i (ti) for all ti and i (suchK exists

because of Remark 1 above). Finally, define Wi(ti) := ⋂
k≥K Wk

i (ti).

This solution concept is essentially an iterated deletion of never strict best responses
for every type, except that for rounds k<K, the action sets are restricted to Ak

i . Because
the sets Ak

i are increasing for k < K, it is important to notice that Wk
i (ti) may be non-

monotonic in k. Hence, up to K, Wk
i (ti)may increase. When k≥K though, Ak

i = A∞
i is

constant and the condition ∃ψi ∈ �(�× Wk−1
−i ) becomes (weakly) more and more strin-

gent, making the sequence {Wk
i (ti)}k>K monotonically (weakly) decreasing. Being al-

ways nonempty, W ∞
i (ti) := ⋂

k>K Wk
i (ti) is also nonempty and well defined (as long as

A0
i �= ∅).

The following lemma states a standard fixed point property for W ; it is an immediate
implication of Lemma 5 in Weinstein and Yildiz (2007).10

Lemma 2. Given any type space 〈��(Ti� τi)i∈I〉, let {Vi(ti)}ti∈Ti�i∈I be a family of sets
such that Vi(ti) ⊆ A∞

i for all i ∈ I and ti ∈ Ti. If for each ai ∈ Vi(ti), there exists

10This is because W coincides with Weinstein and Yildiz’s W∞ applied to the game with actions A∞.



414 Antonio Penta Theoretical Economics 8 (2013)

ψi ∈ �(� × A−i × T ∗
−i) such that {ai} = BRi(ψi), marg�×T−iψ

i = τi(ti), and

ψi(θ�a−i� t−i) > 0 ⇒ a−i ∈ V−i(t−i), then Vi(ti)⊆ Wi(ti) for each ti.

We turn next to the analysis of higher order beliefs. The next lemma shows how,
for each ti and each action ai ∈ ICRi(ti; A∞), we can construct a sequence of (finite)
types converging to ti for which ai survives the iterated deletion procedure introduced
in Definition 3.

Lemma 3. For each ai ∈ ICRi(ti; A∞), there exists ti(ε)→ ti as ε→ 0 such that for each
ε > 0, ai ∈ Wi(ti(ε)) and ti(ε) ∈ T̂i (hence ai ∈ Wk

i (ti(ε)) for all k≥K).

Proof. For each i, define the set ICRA
i = {(ti� ai) :ai ∈ ICRi(ti; A∞)}. For each (ti� ai) ∈

ICRA
i , (2) implies that there exists ψai ∈ �(� × ICR−i) such that ai ∈ BRi(ψi),

marg�×T−iψ
i = τi(ti), and supp(margA−iψ

ai) ⊆ A∞
−i. Furthermore, since ai ∈ A∞

i , there

exists βi ∈ �(� × A∞
−i) such that {ai} = BRi(βi). Let κ−i be as in Definition 2 and

let v(ti�ai)i ∈ �(� × T̄−i) be such that for each (θ�a−i) ∈ � × A∞
−i, v

(ti�ai)
i (θ�κ−i(a−i)) =

βi(θ�a−i). For each ε ∈ [0�1], consider the type space (Tεi � τ
ε
i )i∈I such that the set

of types Tεi is given by Tεi = T̄i ∪ Tιi , where T̄i is as in Definition 2 and Tιi is a finite
set of types such that Tιi := {ῑεi (ti� ai) : (ti� ai) ∈ ICRA

i }; the beliefs τεi (t̄
ai
i ) ∈ �(� × T̄−i)

of types t̄aii ∈ T̄i are as in Definition 2 (i.e., such that ICRi(t̄
ai
i ) = {ai}), while the beliefs

τεi (ῑ
ε
i (ti� ai)) ∈ �(�× Tε−i) of types ῑεi (ti� ai) ∈ Tιi are defined as

τεi (ῑ
ε
i (ti� ai))= ε · v(ti�ai)i + (1 − ε)[ψai ◦ ι̂−1

−i�ε]� (3)

where ι̂−i�ε :� × ICRA
−i → � × Tε−i is the mapping given by ι̂−i�ε(θ�a−i� t−i) =

(θ� ῑε−i(t−i� a−i)) and ψai ◦ ι̂−1
−i�ε denotes the measure on � × Tε−i such that, for every

measurable E ⊆�× Tε−i,

(ψai ◦ ι̂−1
−i�ε)(E)=ψai({(θ�a−i� t−i) : ι̂−i�ε(θ�a−i� t−i) ∈E})�

Define γ :�× Tε−i →�× A∞
−i × Tε−i such that

γ(θ� t−i)=
{
(θ�a−i� ῑε−i(t−i� a−i)) if t−i = ῑε−i(t−i� a−i) ∈ Tι−i
(θ�a−i� t̄

a−i
−i ) if t̄a−i

−i ∈ T̄−i.

Consider the conjecturesψi ∈ �(�× A∞
−i×Tε−i) defined byψi = (τεi (ῑεi (ti� ai)) ◦γ−1).

By construction, they are consistent with type ῑεi (ti� ai). Furthermore, since ψi is a mix-
ture ofψai (which makes ai a best reply) and ofβi (which makes ai a strict best reply), we
have that {ai} = BRi(ψi). Hence, setting Vi(ῑεi (ti� ai))= {ai} and Vi(t̄

ai
i )= {ai} in Lemma 2,

we obtain ai ∈ Wi(ti) for ti = ῑεi (ti� ai)� t̄
ai
i . Finally, from (3) it is immediate to verify that

ῑεi (ti� ai)→ ti as ε→ 0. �

The next lemma shows that for any type ti and for any ai ∈ Wk
i (ti), k= 0�1� � � � , there

exists a type that differs from ti only for beliefs of order higher than k, for which ai is the
unique action that survives (k+ 1) rounds of the ICR procedure.
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For any type ti ∈ T ∗
i , let tmi denote the mth order beliefs of type ti. (By definition of

T ∗
i , any ti ∈ T ∗

i can be written as ti = (tmi )∞m=1.)

Lemma 4. For each k = 0�1� � � � and for each ai ∈ Wk
i (ti), there exists t̃i = (t̃mi )m∈N such

that t̃mi = tmi for allm≤ k and such that {ai} = ICRk+1
i (t̃i).

Proof. The proof is by induction. For k= 0, ai ∈ W 0
i (ti)= A0

i , so there exists, for action
ai, a dominance state θai . Let t̃i denote common belief of θai , so that {ai} = ICR1

i (t̃i)

(condition t̃0i = t0i holds vacuously). For the inductive step, write each t−i as t−i = (l�h),
where

l= (t1−i� � � � � tk−i) and h= (tk+1
−i � t

k+2
−i � � � �)�

Let

L= {l :∃h s.t. (l�h) ∈ T ∗
−i}�

Let ai ∈ Wk
i (ti) and let ψai ∈ �(� × Wk−1

−i ) be the corresponding conjecture s.t.
marg�×T−iψ

ai = τi(ti) and {ai} = BRi(ψai). Under the inductive hypothesis, for each

(a−i� t−i) ∈ supp(margA−i×T−iψ
ai), ∃t̃−i(a−i) = (l� h̃(a−i)) s.t. ICRk−i(t̃−i(a−i)) = {a−i}.

Define the mapping

ϕ : supp(marg�×A−i×Lψ
ai)→�× T ∗

−i
by ϕ(θ�a−i� l)= (θ� t̃−i(a−i)). Define t̃i by

τ∗
i (t̃i)= (marg�×A−i×Lψ

ai) ◦ϕ−1�

By construction,

marg�×A−i×Lτ
∗
i (t̃i) = ψai ◦ proj−1

�×A−i×L ◦ϕ−1 ◦ proj−1
�×L

= ψai ◦ proj−1
�×L

= ψai ◦ proj−1
�×A−i×T ∗

−i
◦ proj−1

�×L
= marg�×A−i×Lτi(ti)�

where the first equality exploits the definition of lower order beliefs and the construction
of type t̃i, and the second equality follows from the definition of ϕ, for which

proj−1
�×L×A−i ◦ϕ−1 ◦ proj−1

�×L = proj−1
�×L�

The third equality is simply notational and the last equality is by definition. Hence, by
construction, we have ICRk+1

i (t̃i)= {ai}, which completes the inductive step. �

We are now in the position to complete the proof of Theorem 1, which we restate
here.

Theorem 1. For each ti ∈ T̂i and for each ai ∈ ICRi(ti; A), there exists a sequence {tνi } ⊆ T̂i
s.t. tνi → ti and for each ν ∈ N, {ai} = ICRi(tνi ).
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Proof. Take any ti ∈ T̂ and any ai ∈ ICRi(ti�A∞). From Lemma 3, there exists a se-
quence of finite types ti(ε)→ ti (as ε→ 0) such that ai ∈ Wi(ti(ε)) for each ε > 0, hence,
there exists a sequence {ti(n)}n∈N converging to ti such that ai ∈ Wk

i (ti(n)) for all k≥K.
Then we can apply Lemma 4 to the types t(n): for each n, for each k ≥K, and for each
ai ∈ Wk(ti(n)), there exists t̃i(k�n) such that t̃ki (k�n)= tki (n) and {ai} = ICRk+1

i (t̃i(k�n)).
Hence, for each n, the sequence {t̃i(k�n)}k∈N converges to ti(n) as k→ ∞. Because the
universal type space T ∗ is metrizable, there exists a sequence ti(n�kn) → ti such that
ICRi(ti(n�kn)) = {ai}. Set tνi = ti(n�kn): tνi → ti as ν → ∞ and set ICRi(tνi ) = {ai} for
each ν. �

3.2 Some comments on the main result

For ease of reference, I list here some comments on Theorem 1. I further discuss these
comments in the next section, which explores some of their implications.

1. Weinstein and Yildiz’s richness condition amounts to assuming that � is such
that A0

i = Ai for each i. In this case, Theorem 1 coincides with Proposition 1 in
Weinstein and Yildiz (2007).

2. All results in Weinstein and Yildiz (2007) (including the generic uniqueness result)
hold true, without richness, whenever A∞ =A. (One such possibility is explored
in Section 4.3.)

3. Consider a Bayesian game GT . For every i, let Ri = ⋃
ti∈Ti

ICR(ti) denote the set of

rationalizable actions for player i. It follows immediately from Theorem 1 that if
A0
i = Ri for every i, then ∀i, ∀ti, ∀ai ∈ ICRi(ti), there exists a sequence {tνi } ⊆ T̂i s.t.

tνi → ti and for each ν ∈ N, {ai} = ICRi(tνi ).

4. Following Frankel et al. (2003), it is easy to see that Theorem 1 remains true (hence,
so do all the subsequent comments) if A0

i is defined as the set of actions for which
there exist payoff states that make these actions uniquely rationalizable.11

4. Some extensions and applications

A Bayesian game is a commonly known tuple GT = 〈N��′� (Ai�T ′
i � τ

′
i� ui)i∈N 〉. If the set

�′ satisfies the richness condition and if T = (T ′
i � τ

′
i)i∈N coincides with the �′-based

universal type space, then maintaining common knowledge of GT entails essentially
no loss of generality. However, game theoretic modelling typically involves smaller (i.e.,
nonuniversal) type spaces, thereby imposing common knowledge assumptions on play-
ers’ beliefs. Furthermore, specific applications often deliver common knowledge as-
sumptions in the sense that the natural space of uncertainty �′ does not satisfy the
richness condition. A natural example is provided by situations in which players’ pay-
offs ui :A→ R are derived from players’ preferences over some underlying space of out-
comes,X , plus some rules of the game that specify agents’ possible moves and the map-
ping that assigns outcomes to such moves (see Section 4.1).

11I am grateful to Stephen Morris for this remark.
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Whenever the natural�′ entails common knowledge assumptions, the richness con-
dition can be seen as a shortcut to relax all such assumptions via the introduction of
artificial dominance regions for every action of every player. Formally, this is obtained
by embedding the model (�′ × T ′) in the universal model (� × T ∗

�), where T ∗
� is the

�-based universal type space, and � is a space that satisfies �′ ⊆ � and the richness
condition.12 Then hierarchies of beliefs in (�′ × T ′) are perturbed by considering se-
quences in (�× T ∗

�) that converge to the hierarchies of the types in the original model,
(�′ × T ′). This is the spirit of Weinstein and Yildiz’s structure theorem.

As discussed in the Introduction, relaxing all common knowledge assumptions of-
ten entails an unnecessarily demanding robustness test. The structure theorem without
richness (Theorem 1) can thus be thought of as a robustness exercise when some (as op-
posed to all) common knowledge assumptions are relaxed. It allows us to accommodate
both cases in which we may wish to maintain common knowledge of a natural parame-
ter space �′ that does not satisfy richness (e.g., Section 4.1), and cases in which we may
want to relax some, but not all common knowledge assumptions, by introducing artifi-
cial dominance regions for only some of the actions (e.g., Section 4.2). (In the end, the
difference is only one of interpretation.)

In this section, I discuss some applications that illustrate the versatility of Theorem 1
in addressing applied and theoretical questions. As I show, Theorem 1 implies that in
several contexts, minimal perturbations of common knowledge assumptions may pro-
duce results as strong as Weinstein and Yildiz’s, both in terms of (non-) robustness (Sec-
tions 4.1 and 4.2) and in terms of generic uniqueness (Section 4.3). Section 4.4 presents
a characterization result, also obtained from minor modifications of the proof of The-
orem 1: Proposition 3 shows that the set of actions that are uniquely rationalizable for
some hierarchy of beliefs coincides with the set of actions for which a nearby uniqueness
result analogous to Theorem 1 holds. Proposition 3 thus characterizes the structure of
ICR on arbitrary spaces of uncertainty.

4.1 Robustness under common knowledge of the rules of the game

In many settings, players’ payoff functions are derived from agents’ preferences over
an underlying space of outcomes X , and some rules of the game that define agents’
actions and an outcome function relating actions to outcomes. Such rules of the game
may be given by a properly designed mechanism or by the details of the institutions in
which agents’ interact (an auction, a bargaining protocol, a market, etc.). Preferences
over outcomes are represented by (possibly state-dependent) utility functions Ui :X ×
�→ R, while the rules of the game are represented by a tuple G = 〈N�(Ai)i∈N�g〉, where
g :A → X is the outcome function. The resulting game G is obtained by setting ui =
Ui ◦ g. The richness condition is expressed in terms of the payoff functions in G, which
combine common knowledge assumptions about agents’ preferences with ones about
the rules of the game.

12The universal model terminology is from Penta (2012a). I refer to that paper for a more thorough
discussion of the approach.
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In some settings (e.g., in a model of complex market interactions), assuming com-
mon knowledge of G may be as hard to justify as assuming common knowledge of
agents’ preferences. It may thus be interesting to perturb common knowledge both of
preferences and of the rules of the game, and work directly with the derived modelG.

In other settings, perturbing common knowledge of the rules of the game may be
unreasonable, while it may still be sensible to relax common knowledge of agents’ pref-
erences. When this is the case, the richness condition is typically not satisfied and it
may be useful to apply Theorem 1 instead. Consider the example presented in the
Introduction.

Example 1 (The public good demand game). A society must decide on the quantity of
a public good, x ∈X = [0�1]. The realization of the public good is delegated to a public
authority, which operates according to the following protocol: every agent proposes a
quantity and the average of the proposals is implemented.

Agents have single-peaked preferences that depend on the realization of a state of
nature, θ ∈�⊆ R. For simplicity, assume that the society is made of two individuals and
that preferences are represented by utility functions Ui :X ×�→ R such that Ui(x�θ)=
−(θ− x)2. (This is a pure common value problem, where states θ ∈ � ⊆ R correspond
to the (commonly) optimal quantities of x.) The rules of the game in this case are G =
〈A1�A2� g〉, where A1�A2 ⊆ [0�1] are the sets of possible proposals and the outcome
function g is given by g(a1� a2)= (a1 + a2)/2. The payoff functions of the resulting game
are thus ui :A×�→ R:

ui(a1� a2� θ)= −
(
θ− 1

2a1 + a2

)2
�

For instance, let us assume that Ai =�= {0� 1
4 �

1
2 �

3
4 �1}. It is easy to see that actions

ai = 0�1 are the only ones that admit dominance states in � (these are, respectively,
θ= 0�1). We thus have A0

i = {0�1} and the richness condition is not satisfied. Nonethe-
less, it can be verified that A1

i = A∞
i =Ai. Despite the failure of the richness condition,

Theorem 1 delivers the following conclusion.

Conclusion 1. For each ti ∈ T ∗
i�� and for each ai ∈ ICRi(ti), there exists a sequence

{tνi }ν∈N ⊆ T ∗
i�� such that limν→∞ tνi = ti and, for each ν ∈ N, ICRi(tνi )= {ai}.

For instance, consider the game GT , where the type space T = 〈(Ti� τi)i=1�2〉 is de-
fined as Ti = {tθi :θ ∈�} and

τi(t
θ
i )(t

θ′
j � θ

′′)=
{

1 if θ′ = θ′′ = θ
0 otherwise.

(Hence, for each θ ∈�, type tθi represents common certainty of θ.) Clearly, GT has one
focal equilibrium in which every type tθi demands quantity x = θ. Nonetheless, even
without richness, this prediction is not robust to perturbations of higher order beliefs.
To see this, it is easy to verify that ICRi(t0i ) = {0}, ICRi(t

1/4
i ) = {0� 1

4 �
1
2 }, ICRi(t

1/2
i ) =Ai,

ICRi(t
3/4
i ) = { 1

2 �
3
4 �1}, and ICRi(t1i ) = {1}. Then Conclusion 1 implies that, for θ �= 0�1,
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there are types arbitrarily close to tθi for whom the unique ICR (hence equilibrium) ac-
tion is different from that played by type tθi in the focal equilibrium. ♦

Example 1 involves an extremely mild robustness test, in that only agents’ higher
order beliefs about θ are perturbed. In particular, by maintaining common knowledge
of 〈G��� (Ui)i=1�2〉, we maintained common knowledge of both the rules of the game
and the agents’ preferences over outcomes.

Clearly, more demanding tests would deliver equally negative results. But as long
as common knowledge of the rules of the game is maintained, the richness condition
still is not satisfied. For instance, let �∗ = (R × R)X and U∗

i :X ×�∗ → R be such that
U∗
i (x�θ) = θi(x). Assuming common knowledge of 〈�∗� (U∗

1 �U
∗
2 )〉 imposes no restric-

tions on agents’ preferences over X . Yet as long as common knowledge of G is main-
tained, the richness condition is not satisfied by the payoff functions ui =U∗

i ◦ g.
Thus, in the context of Example 1, the richness condition inherently involves either

relaxing common knowledge of the rules of the game or that players ultimately care
about the final outcome, x ∈X . A natural objection is that for most applied settings, this
kind of robustness test may be unnecessarily demanding. This objection diminishes the
practical relevance of Weinstein and Yildiz’s results, but is overcome by Theorem 1: in
Example 1, Results 1 and 2 hold, despite the failure of the richness condition, even when
a very mild robustness test is considered.

4.2 A structure theorem for equilibrium refinements

As already discussed, Weinstein and Yildiz’s richness condition can be seen as a way
to relax common knowledge assumptions via the introduction of artificial dominance
regions for every action of every player.

Theorem 1 may be interpreted the same way. Here, the richness of A0
i (hence of

�) captures the extent to which common knowledge assumptions are relaxed, hence
the strength of the robustness test: the richer are the A0

i ’s, the more demanding is the
robustness test. For instance, if A0

i =Ai for every i (the richness condition), then we are
relaxing essentially all common knowledge assumptions. If, instead, we intend to relax
only common knowledge that some actions Âi ⊆Ai are not dominant, then we can set
A0
i = Âi.

In many situations, setting A0
i =Ai entails an unreasonably demanding robustness

test. Consider auction settings for instance. Depending on the rules of the auction and
on the assumptions on bidders’ valuations, there may be bids that are dominated for all
types of players. Assuming A0

i =Ai for all i introduces dominance regions for bids that
are inconsistent with common knowledge of the rules of the auction, or that players are
rational, or that payoffs are decreasing in the price paid, and so forth. A much weaker
robustness test would be, for instance, to assume that A0

i only contains player i’s ratio-
nalizable bids, i.e., those bids that are consistent with common knowledge of the rules
of the game, of players’ rationality, etc. Despite the significantly weaker robustness test,
point 3 in Section 3.2 implies that Weinstein and Yildiz’s nonrobustness results still hold
in their full strength.
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Example 2. Consider two agents competing in a second-price auction for the alloca-
tion of one unit of an indivisible good. Assume that agents’ possible bids and types are
from a finite grid. For m ∈ N, let d ≡ 1

m . Agents’ types are denoted by ti and belong to
the set Ti = {d�2d� � � � �1 − d�1}; the set of possible bids is Ai = {0� dn � 2d

n � � � � �M − d
n �M},

where n and M are “large” natural numbers.13 Let θ ∈ � denote the value of the good
and assume that agents are risk neutral. Type ti’s beliefs on � × T−i are such that for
every t̂−i ∈ T−i and θ̂= ti+ t̂−i, τi(ti)(θ̂� t̂−i)= 1

m . In other words, conditional on knowing
the opponent’s type t̂−i, type ti believes that the value of the object is ti + t̂−i.14 In the
unique symmetric equilibrium, each player bids twice his type, but it is easy to see that
this game has many asymmetric equilibria. For instance, for any k ∈ N, bidding strate-
gies s∗i (ti) = (1 + kn)ti and s∗j (tj) = (1 + 1

kn)tj form a Bayesian equilibrium.15 In fact, it
can be shown that all bids greater than or equal to ti + d are rationalizable for type ti.

One implication of Weinstein and Yildiz’s results in this example is that each such tu-
ple of equilibrium strategies is uniquely rationalizable for some arbitrarily close model
of beliefs. In the present framework, this is obtained by setting A0

i =Ai, which allows
bids that are weakly dominated for all types (e.g., bidding less than d) to be strictly dom-
inant in some state of the world.

A considerably weaker robustness test is to allow dominance regions only for the
equilibrium bids; that is, let Ei(ti) ⊆ Ai denote the set of equilibrium bids for type
ti and set A0

i = ⋃
ti∈Ti Ei(ti). Then any such equilibrium bid is rationalizable (clearly,

Ei(ti) ⊆ ICRi(ti) for all ti) and (by definition of equilibrium) it is justified by conjec-
tures concentrated on the opponents’ equilibrium bids, Ej(tj) ⊆ ICRj(tj). But since
Ej(tj)⊆ A0

j ⊆ A∞
j , the conditions of Theorem 1 are satisfied (that is, Ei(ti)⊆ ICRi(ti; A)).

Hence we conclude that for every equilibrium bid a∗
i ∈ Ei(ti), there exists a sequence

{tνi }ν∈N converging to ti such that for each ν ∈ N, {a∗
i } = ICRi(tνi ) (hence also {a∗

i } =Ei(tνi )).
We thus obtain the following result: any equilibrium bid is uniquely rationalizable for an
arbitrarily close model of beliefs. ♦

The next general result follows immediately from the logic of Example 2 and from
Theorem 1.

Proposition 1. Fix a Bayesian gameGT . For each i ∈ I and ti ∈ Ti, letEi(ti)⊆Ai denote
the set of equilibrium actions for type ti. If, for every i, A0

i = ⋃
ti∈Ti Ei(ti), then for every

i, for every ti, and for every ai ∈ Ei(ti), there exists a sequence {tνi } ⊆ T̂i s.t. tνi → ti, and for
each ν ∈ N, {ai} = ICRi(tνi )=Ei(tνi ).

13For illustrating purposes, it is convenient to use a finer grid for the bids than for the types, hence n.
Similarly, the upper bound M is needed simply to maintain finiteness of the actions space, but can be set
arbitrarily large. Alternatively,M can be thought of as a maximum liability constraint for the agent.

14This example is simply a discrete version of a wallet game with independently and uniformly dis-
tributed types (e.g., Klemperer 1998). These games are usually modelled with no reference to θ, with the
values equal to t1 + t2. The presence of θ here plays no role other than to facilitate the comparison with the
setup of the previous section.

15The finer grid for the bids is assumed to guarantee that these strategies take values inAi. In the absence
of such a finer grid, it could be that (e.g.) for some tj , (1 + 1/(kn))tj falls in between two points in the grid.
In that case, one of the adjacent bids is the best reply. The calculations are more involved, without changing
the main insight.
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Remark 3. Notice that the result in Proposition 1 remains true if for every player and
type ti, Ei(ti) represents the set of actions of type ti that are consistent with an arbi-
trary equilibrium refinement E; for instance, the set of actions played in non-weakly-
dominated equilibria, or in trembling hand perfect equilibria, or the set of actions
played in monotone strategy equilibria, and so on. The key for the result of Proposi-
tion 1 is that actions in Ei(ti)must be justified by conjectures concentrated on E−i(t−i),
so that the condition Ei(ti)⊆ ICRi(ti; A) is satisfied if A0

j = ⋃
tj∈Tj Ej(tj) for all j ∈ I.

Behavioral types and equilibrium strategies In this subsection, I discuss an alternative
interpretation of Weinstein and Yildiz’s result (and of the results above).

By introducing artificial dominance regions for every action, the richness condition
implies the existence, in the universal type space, of types that play a specific action
independently of their beliefs about the opponents’ behavior. The analogous objects in
Theorem 1 are the types ti ∈ T̄i introduced in Definition 2.

These dominance types play a role similar to that of the commitment types in the
reputation literature, or of the noise traders sometimes used in auctions or in the litera-
ture on strategic foundations of the rational expectations equilibrium (REE).16 From this
viewpoint, Weinstein and Yildiz’s result (Result 1) can be rephrased as follows: if behav-
ioral types for all actions are introduced, then no refinement of ICR delivers predictions
that are robust to perturbations of higher order beliefs. Theorem 1 can be rephrased in
a similar way, once the sets A0

i are interpreted as the sets of actions for which behav-
ioral types are introduced. Once again, the richness of A0

i captures the strength of the
robustness exercise: the richer is the set of behavioral types, the more demanding is the
robustness test.

In applied models that adopt behavioral types, it is often the case that such types
play irrationally (these types are also called crazy types). There is a sense in which the
introduction of irrational behavioral types constitutes a stronger perturbation of the
benchmark than the introduction of types committed to rational or equilibrium behav-
ior. When interpreted in terms of behavioral types, Proposition 1 delivers a nonrobust-
ness result for arbitrary equilibrium concepts E, under the minimal perturbation that
higher order beliefs simply do not rule out that the opponents may be committed to
some specific behavior consistent with E itself.17

16For the literature on reputation, see Chapters 15–18 in Mailath and Samuelson (2006). In the REE
literature, the seminal paper on noise traders is Kyle (1985). (For more on noise traders, see, e.g., Dow and
Gorton 2008 and the references therein.) In the context of auctions, Cho and Lee (2011) consider noise
bidders in a first-price auction, adopting ICR as the solution concept.

17When the benchmark model is a nondegenerate Bayesian game (i.e., such that the sets of types are
nonsingletons), equilibrium strategies are functions σi :Ti → Ai, not actions ai ∈ Ai. When behavioral
types are introduced in these models, they are typically modelled as types that play some specific strategy
σ∗
i :Ti →Ai. This can be mapped to the model above as enriching the sets Ti by adding, for each ti ∈ Ti, a

“behavioral replica” tci committed to playing ai = σ∗
i (ti). A model in which imay be committed to the strat-

egy σ∗
i can thus be thought of as setting A0

i = ⋃
ti∈Tiσ

∗
i (ti); that is, a robustness exercise in which higher

order beliefs do not rule out the replica types {tci : ti ∈ Ti} who play σ∗
i (ti).
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4.3 Generic uniqueness without richness

Multiplicity is pervasive in applied models. Weinstein and Yildiz’s (2007) generic
uniqueness result (Result 2) can be interpreted as saying that the typical indeterminacy
of standard game theoretic models is often the consequence of the common knowl-
edge assumptions implicit in game theoretic models. If such assumptions are relaxed,
hierarchies of beliefs “typically” have a unique rationalizable outcome.

Result 2 thus generalizes the main insight from the literature on global games. At
a formal level, though, the two approaches are quite different and difficult to compare.
Subsequently, I consider an application of Theorem 1 that shows how very weak relax-
ations of common knowledge assumptions may suffice to guarantee the full version of
Weinstein and Yildiz’s results. This result is used to shed some light on the connection
between Weinstein and Yildiz’s and the global games approach.

Proposition 2. Suppose that � is such that the following statements hold.

(i) For each i, there exist dominance states θa
′
i � θa

′′
i ∈� for some distinct a′

i� a
′′
i ∈Ai.

(ii) There exists θ̂ ∈� such that for every i and for every âi ∈Ai, ∃pâi ∈ [0�1],

{âi} = arg max
ai∈Ai

pâiui(ai� a
′
−i; θ̂)+ (1 −pâi)ui(ai� a′′

−i; θ̂)� (4)

Then A∞
i =Ai for every i.

Proof. Condition (i) implies that A0
i ⊇ {a′

i� a
′′
i }. By definition,

A1
i := {ai ∈Ai :∃βi ∈ �(�× A0

−i) s.t. {ai} = BRi(β
i)}�

That A1
i = Ai (hence A∞

i = Ai) follows from condition (ii) simply by letting βi ∈
�(�× A0

−i) be such that βi({θ̂} × {a′
−j})= pai from every ai. �

Corollary 1. If� satisfies conditions (i) and (ii) in Proposition 2, Weinstein and Yildiz’s
(2007) results (Results 1 and 2) obtain.

Notice that Example 1 provides one instance in which the conditions of Proposi-
tion 2 are satisfied: actions ai = 0�1 admits dominance regions, respectively, at states
θ= 0�1 (condition (i)), while condition (ii) is satisfied at θ̂= 1/2.

In general, Proposition 2 requires only the existence of dominance regions for two
actions of every player, a′

i and a′′
i , plus that of a payoff state θ̂ in which every action of

every player is a strict best response to conjectures concentrated on a′
−i and a′′

−i. Hence,
if � satisfies the conditions of Proposition 2, then it is not common knowledge that a′

i

and a′′
i are not dominant, and it is not common knowledge that payoffs do not satisfy

condition (ii).
Several restrictions on ui(·� θ̂) may be provided so that condition (ii) is satisfied.

I next consider one in particular that shows how Proposition 2 can be used to connect
the approaches used by Weinstein and Yildiz and in the global games literature.
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Similar to the global games literature, condition (i) in Proposition 2 requires only the
existence of dominance regions for two actions of each player. (In the global games liter-
ature, these two actions are typically taken to be the highest and lowest actions accord-
ing to some ordering of the action space.) In addition to this, the global games literature
assumes that players’ actions are strategic complements at all states (plus other techni-
cal assumptions); that is, common knowledge of strategic complementarity is assumed.

Lemma 5 below shows that condition (ii) is satisfied if payoff functions at state θ̂ ex-
hibit strategic complementarities, plus some conditions interpretable as strict concavity
in own action. This way, Proposition 2 can be used to obtain a generic uniqueness re-
sult based on the existence of dominance regions for only two actions of each player, but
without assuming common knowledge of strategic complementarity: all that is required
is that it is not common knowledge that actions are not strategic complements.

Noncommon knowledge of noncomplementarity Let (�i�Xi)i∈I be a collection of com-
pletely asymmetrically ordered sets (�i is a complete, transitive, irreflexive, and anti-
symmetric relation on Xi). I denote by �−i the natural partial order on X−i = ×j �=iXj
induced by the orders �j , and I refer to its symmetric and asymmetric parts, respec-
tively, as =−i and �−i. (Clearly, (�−i�X−i) and (��X) are complete lattices.) If Xi is fi-
nite, it is convenient to represent order �i by properly labelling elements xi ∈Xi, so that
x0
i �i x1

i �i · · · �i x|Xi|−1
i . Real function g :X → R is strictly �−i-increasing in x−i ∈X−i if

for every xi, g(xi�x−i) > g(xi�x′
−i) whenever x′

−i �−i x−i.
Next, I introduce assumptions on θ̂ that guarantee that (4) in condition (ii) of Propo-

sition 2 is satisfied.

Assumptions. Let θ̂ ∈� be such that for every i, the following statements hold.

A.1 No dominated actions. For all ai ∈Ai, ∃ψi ∈ �({θ̂} ×A−i) :ai ∈ BRi(ψi).

A.2 Strategic complementaries. There exist complete orders on each Ai, a0 �i a1
i �i

· · · �i aNii (where Ni = |Ai| − 1) such that for every i, for each m ∈ {1� � � � �Ni} and
n ∈ {0� � � � �m− 1}, ui(ami �a−i; θ̂)− ui(ani � a−i; θ̂) is �−i-strictly increasing in a−i.

A.3 “Diminishing increments.”

(a) For each a−i ∈A−i and n ∈ {1� � � � �Ni},

�ui(n�a−i)≡ ui(ani � a−i; θ̂)− ui(an−1
i � a−i; θ̂)

is strictly decreasing in n.

(b) For eachm ∈ {1� � � � �Ni} and n ∈ {0� � � � �m− 1},

�ui(n�a
N
−i)

ui(a
m
i �a

N−i
−i )− ui(ani � aN−i

−i )
>

�ui(n�a
0
−i)

ui(a
m
i �a

0
−i)− ui(ani � a0

−i)

(where a0
−i = (a0

j )j �=i and aN−i
−i = (aNjj )j �=i).
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Assumption A.1 requires that no action is strictly dominated at θ̂. Assumption A.2
says that for some order on player’ actions, each player’s incentive to raise her action at
θ̂ is strictly increasing in her opponents’ actions. Assumption A.3(a) is a discrete version
of a strict concavity in own action assumption. It requires that payoff increments from
increasing own action are strictly decreasing for any action profile of the opponents.
Assumption A.3(b) restricts the relative payoff increment from own action at the oppo-
nents’ highest and lowest action profiles. It requires that the ratio between the marginal
increment �ui(n�aN−i) and the increment moving from action ani to a higher action ami is
larger when the opponents play the highest action profile than when they play the low-
est action profile. This assumption guarantees that each player’s preferences over own
actions are single-peaked with respect to the probability weight assigned to the oppo-
nents’ highest action profile, aN−i

−i (when complementary probability is assigned to the
lowest action profile, a0

−i).

Lemma 5. If θ̂ satisfies Assumptions A.1–A.3, then condition (ii) in Proposition 2 is
satisfied.

For the proof, see the Appendix.

4.4 Nonrobustness on arbitrary spaces of uncertainty

In this section, I present a result similar to Theorem 1 that reveals something more on the
structure of rationalizability on arbitrary spaces of uncertainty. Fix � and consider the
solution concept correspondence ICRi :T ∗

i ⇒Ai that assigns to each hierarchy of beliefs
the corresponding set of rationalizable actions for player i. Define Ui ⊆ Ai as the set
of player i’s actions that are uniquely rationalizable for some type in the universal type
space, and let A∗ = ×i∈NA∗

i s.t. A∗
i ⊆ Ui for each i denote the largest subset of U = ×i∈NUi

that satisfies the property

A∗
i = {ai ∈ Ui :∃ϕ ∈ �(�× A∗

−i) s.t. BRi(ϕ)= {ai}}�
Before moving to the result of this section, consider the following observations.

Remark 4. Consider the following observations.

(i) If A0
i is set equal to A∗

i for every i and the recursion (1) is applied, then we obtain
A0
i = A∗

i = Ak
i for every k; hence, A0

i = A∗
i = A∞

i . This implies that Wk
i ⊆ Wk+1

i for
all k ∈ N (Definition 3), not just for all k≥K.

(ii) For any ai ∈ Ui, there exists a finite type taii ∈ T̂i such that ICRi(t
ai
i ) = {ai}. This

follows from the definition of Ui, which implies that ∃ti ∈ T ∗
i s.t. ICRi(ti) = {ai},

and the fact that ICRi is upper hemicontinuous on T ∗
i (Dekel et al. 2006) and T̂i is

dense in T ∗
i (Mertens and Zamir 1985).

The next result shows that the set A∗ characterizes the set of actions for which a
structure theorem analogous to Theorem 1 holds: for each ti such that ai ∈ ICRi(ti)∩ A∗

i
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that is justified by conjectures concentrated on A∗
−i, we can construct a sequence of

(finite) types converging to ti for which ai is uniquely rationalizable.
Formally, let

ICRi(ti; A∗)= {ai ∈ ICRi(ti)∩ A∗
i :∃ψai ∈
i(ti) s.t. ai ∈ BRi(ψ

ai) and

supp(margA−iψ
ai)⊆ A∗

−i}�

Since, by definition, ICRi(ti; A∗)⊆ A∗
i ⊆ Ui, we already know from Remark 4(ii) that

any ai ∈ ICRi(ti; A∗) is uniquely rationalizable for some finite type taii ∈ T̂i. Such taii , how-
ever, may be very far from ti. The next proposition shows that, in fact, ai is also uniquely
rationalizable for some type arbitrarily close to ti.

Proposition 3. Fix an arbitrary space of uncertainty, �. For every t̂i ∈ T̂i and âi ∈
ICRi(t̂i�A∗), there exists a sequence {tνi } ⊆ T̂i such that tνi → t̂i and {âi} = ICRi(tνi ) for each
ν ∈ N.

Proof. The result follows from minor adaptations of the proof of Theorem 1. The only
changes are required to prove the following step.

Step 1. If ai ∈ ICRi(ti�A∗), then there exists ti(ε)→ ti as ε→ 0 such that for each ε > 0,
ai ∈ Wi(ti(ε)) and ti(ε) ∈ T̂i (hence, ai ∈ Wk

i (ti(ε)) for all k).

This step is analogous to Lemma 3 above. The statement does not require k ≥ K

because of Remark 4(i). Given Step 1, the rest of the proof follows as in Theorem 1.

Proof of Step 1. Using Remark 4(ii), and the fact that A∗
i ⊆ Ui, define the set T̃i =

{taii :ai ∈ A∗
i } ⊆ T̂i. Notice that because of the definition of A∗, such types tai ∈ T̃i can

be chosen so that T̃ = ×i∈NT̃i is a belief-closed subset of T̂ . Hence, there exists a type
space (T̃i� τ̃i)i∈N such that ICRi(t

ai
i ) = {ai} for each taii ∈ T̃i. For each i, define ICR∗

i =
{(ti� ai) :ai ∈ ICRi(ti; A∗

i )}. The rest of the proof is the same as in Lemma 3, once the sets
ICRA

i , A∞
i , and T̄i are replaced, respectively, by the sets ICR∗

i , A∗
i , and T̃i, and the beliefs

in (3) are replaced by

τεi (ῑ
ε
i (ti� ai))= ε · τ̃i(taii )+ (1 − ε)[ψai ◦ ι̂−1

−i�ε]�

(Notice that for each taii ∈ T̃i, beliefs τ̃i(t
ai
i ) are such that ai is uniquely rationalizable.

Hence {ai} = BRi(βi) for any conjecture βi that is rationalizable for type taii .) �

5. Discussion

Propositions 1, 2, and 3 are only some of the implications of Theorem 1. As these propo-
sitions show, Theorem 1 can be easily applied to a variety of theoretical and applied
problems. In the following subsections, I discuss the related literature and some possi-
ble directions for future research based on the results presented herein.
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Related literature

Weinstein and Yildiz (2007) prove the first structure theorem for ICR in static finite
games, assuming the richness condition on �. Their approach cannot accommodate
dynamic games because the richness condition is not satisfied in dynamic games. Struc-
ture theorems for dynamic games are provided by Chen (2012) and Penta (2012a).

Chen (2012) modifies the notion of richness so as to extend the structure theorem for
ICR to finite dynamic games in normal form. Penta (2012a) instead observes that an im-
plicit assumption of Weinstein and Yildiz is that players have no information about pay-
offs, and addresses the question of robustness to perturbations of higher order beliefs
under arbitrary information structures. Penta (2012a) characterizes the “robust predic-
tions” in static and dynamic (finite) games under arbitrary information structures. This
characterization is provided by an extensive form solution concept—interim sequential
rationalizability (ISR). In static games, ISR coincides with ICR and it does not depend on
the assumptions on agents’ information. This is not the case in dynamic games, where
ISR refines ICR and depends on the details of the information structure. The no infor-
mation assumption therefore entails no loss of generality in static settings, but does not
hold in dynamic settings.

Recently, Weinstein and Yildiz (2012) extend these results to infinite horizon games
with payoffs continuous at infinity. Weinstein and Yildiz (2011) instead address the ro-
bustness of equilibrium behavior in nice (static) games.

Unlike the present paper, Weinstein and Yildiz (2007), Chen (2012), and Penta
(2012a) analyze the extreme case in which all common knowledge assumptions are re-
laxed, in the sense that they prove structure theorems under various formalizations of
the richness condition.18 It should not be difficult to extend Theorem 1 to games with
a continuum of actions, adopting conditions similar to those considered by Weinstein
and Yildiz (2011).

Common knowledge of payoffs and mechanism design

In a standard mechanism design problem, the primitives of the environment are given
by a set of outcomes X , agents’ preferences ui :X × � → R, and agents’ information
ti ∈ Ti about the payoff state and the opponents’ information, (θ� t−i). Typically, payoff
functions and agents’ beliefs are assumed to be common knowledge. In these contexts,
one might be concerned with the robustness of implementation results when such com-
mon knowledge assumptions are relaxed.19 In such mechanism design problems, the
richness of � cannot be expressed in terms of dominance regions for players’ actions,

18Weinstein and Yildiz (2011) also pursue a relaxation of the richness assumption, but they do so by
adopting a stronger solution concept than rationalizability—Bayesian equilibrium. The stronger solution
concept allows them to obtain stronger results without requiring the existence of dominance regions. Sim-
ilarly, for infinitely repeated games, Weinstein and Yildiz (2012) also provide versions of the structure theo-
rem that maintain common knowledge of some of the structure of the game (namely, the fact that the game
being played is a repeated game).

19The exercise that I consider here differs from that considered by recent literature on robust mechanism
design (e.g., Bergemann and Morris 2005, 2009 or Penta 2012b for dynamic environments). Those papers
focus on situations in which nothing is known about agents’ beliefs, but payoff functions are maintained as
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because such actions and the mapping from action profiles to the space of outcomes is
chosen by the mechanism designer. Hence, the set of actions for which dominance re-
gions exist may vary with the mechanism chosen. In these cases, Theorem 1 may be used
instead: for given assumptions on� and for given mechanism M, one can compute the
set A0�M

i of actions that are uniquely rationalizable for some type given mechanism M
and then apply Theorem 1 to the rationalizable actions in any given mechanism.20

Extensive-form robustness

More generally, unlike results based on the richness condition, Theorem 1 allows study-
ing situations in which some assumptions are maintained as common knowledge, while
others are relaxed. In the mechanism design problems discussed above, the implicit
assumption is that while common knowledge assumptions on payoffs are relaxed, the
rules of the mechanism are maintained as common knowledge. One might imagine,
instead, situations in which, given certain common knowledge restrictions on payoffs,
there may be higher order uncertainty concerning the rules of the game. This is an im-
portant theoretical question, which is thoroughly neglected by the literature. Theorem 1
can be adapted to study these situations as well: given a tuple E = 〈I�X��� (Ti� τi�ui)i∈I〉
(assumed common knowledge) that represents agents’ preferences over outcome space
X and their beliefs, and lettingA denote the set of action profiles available to the agents,
uncertainty about the rules of the game can be represented by considering a set O of
possible outcome functions, O :A→ X . Given tuple E , for any set O representing the
assumptions on the rules of the game that are maintained as common knowledge, one
may compute the set A0�O

i of actions that are uniquely rationalizable for some beliefs
over O, and accordingly apply Theorem 1.

Appendix

Proof of Lemma 5. For any p ∈ [0�1], let BRi(p) = arg maxai∈Ai pui(ai� a
N−i
−i ; θ̂) +

(1 −p)ui(ai� a0
−i; θ̂). From Assumptions A.1 and A.2, it follows that a0

i ∈ BRi(0) and aNi ∈
BRi(1), i.e., �ui(1� a0

−i)≤ 0 and �ui(Ni�a
N−i
−i )≥ 0. Then A.3(a) implies that �ui(n�a0

−i) <
0 for every n > 1 and �ui(n�a

N−i
−i ) > 0 for every n <Ni.

Now let pi�Ni be the probability weight on aN−i
−i (the complementary weight being on

a0
−i) that makes i indifferent between action aNii and ani ; that is, pi�N(n) solves

pi�Ni(n)[ui(aNii � aN−i
−i ; θ̂)] + (1 −pi�Ni(n))[ui(aNii � a0

−i; θ̂)]
= pi�Ni(n)[ui(ani � aN−i

−i ; θ̂)] + (1 −pi�Ni(n))[ui(ani � a0
−i; θ̂)]�

common knowledge. Here, instead, I am considering a robustness exercise in which beliefs are maintained
close to some benchmark, but higher order beliefs may not rule out significantly different payoffs. Hence,
payoffs are not common knowledge.

20Oury and Tercieux (2012) recently applies Weinstein and Yildiz’s results to problems of mechanism de-
sign, introducing states in which the messages in a given mechanism are payoff-relevant. Dispensing with
the richness condition, Theorem 1 may be used to improve on those results by maintaining the assumption
that messages are payoff-irrelevant.
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hence,

pi�Ni(n)= −∑Ni
k=n+1�ui(k�a

0
−i)

(
∑Ni
k=n+1�ui(k�a

N−i
−i )−�ui(k�a0

−i))
�

(Notice that this is a well defined probability: since �ui(n�a0
−i) < 0 for every n > 1 and

�ui(1� a0
−i)≤ 0, the numerator is positive. Assumption A.2 guarantees that �ui(k�a−i) is

increasing in a−i for every k, hence
∑Ni
k=n+1�ui(k�a

N−i
−i ) >

∑Ni
k=n+1�ui(k�a

0
−i).)

Finally, A.3(b) guarantees that pi�Ni(n) is decreasing in n:

pi�Ni(n) > pi�Ni(n− 1)

if and only if

∑Ni
k=n+1�ui(k�a

0
−i)

(
∑Ni
k=n+1�ui(k�a

N−i
−i )−�ui(k�a0

−i))
<

∑Ni
k=n �ui(k�a

0
−i)

(
∑Ni
k=n �ui(k�a

N−i
−i )−�ui(k�a0

−i))

(
∑Ni
k=n �ui(k�a

N−i
−i )−�ui(k�a0

−i))

(
∑Ni
k=n+1�ui(k�a

N−i
−i )−�ui(k�a0

−i))
>

∑Ni
k=n �ui(k�a

0
−i)∑Ni

k=n+1�ui(k�a
0
−i)

�ui(n�a
N−i
−i )−�ui(n�a0

−i)

(
∑Ni
k=n+1�ui(k�a

N−i
−i )−�ui(k�a0

−i))
>

�ui(n�a
0
−i)∑Ni

k=n+1�ui(k�a
0
−i)

�ui(n�a
N−i
−i )−�ui(n�a0

−i)
�ui(n�a

0
−i)

<
(
∑Ni
k=n+1�ui(k�a

N−i
−i )−�ui(k�a0

−i))∑Ni
k=n+1�ui(k�a

0
−i)

�ui(n�a
N−i
−i )

�ui(n�a
0
−i)

<

∑Ni
k=n+1�ui(k�a

N−i
−i )∑Ni

k=n+1�ui(k�a
0
−i)

�ui(n�a
N−i
−i )

�ui(n�a
0
−i)

<
ui(a

Ni
i � a

N−i
−i )− ui(n�aN−i

−i )

ui(a
Ni
i � a

0
−i)− ui(n�a0

−i)
�

which is satisfied under condition A.3(b), setting m = Ni in A.3(b). Hence {aNi−1
i } =

BRi(pi�Ni(Ni − 1)) and for any p<pi�Ni(Ni − 1), action aNi−1
i is strictly preferred to aNii .

Now, recursively, for everym<Ni, and n <m, let pi�m(n) solve

pi�m(n)[ui(ami �aN−i
−i ; θ̂)] + (1 −pi�m(n))[ui(ami �a0

−i; θ̂)]
= pi�m(n)[ui(ani � aN−i

−i ; θ̂)] + (1 −pi�m(n))[ui(ani � a0
−i; θ̂)]�

hence,

pi�m(n)= −∑m
k=n+1�ui(k�a

0
−i)

(
∑m
k=n+1�ui(k�a

N−i
−i )−�ui(k�a0

−i))
�

Similar to above, it can be shown that A.3(b) guarantees that pi�m(n) is strictly de-
creasing in n. Additionally, {ami } = BRi(pi�m(m)). Now, for every m = 1� � � � �Ni − 1,
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let ψm = pi�m+1(m), ψ0 = 0 and ψNi = 1. Then for every n = 0�1� � � � �Ni, we have that
{ani } = BRi(ψn). �
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