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CHAPTER 1

Introduction

Our aim in the present dissertation is to continue the investigations begun by Seppo
Hassi, Zoltdn Sebestyén, and Henk de Snoo in their fundamental work [16]. Namely, we
study the decomposition theory of nonnegative sesquilinear forms.

The thesis is based mainly on the author’s papers [32], 33, (34, 35, 36}, 37, 54, 55,
56, 57, 58, 59]. For the sake of completeness, we include some important results of [16].

In this short introductory chapter we recall some basic facts about sesquilinear forms.
Furthermore, we present some important examples and decomposition theorems which
serve as motivation for this work.

In Chapter 2. we present the (<., L)-type decomposition of forms. The key notion
is the short of a form to a linear subspace. This is a generalization of the well-known
operator short defined by M. G. Krein [23]. A decomposition of a form into a shorted (or
absolutely continuous) part and a singular part is called short-type decomposition. As
applications, we present some analogous results for bounded positive operators acting on
a Hilbert space, for additive set functions on a ring of sets, and for representable positive
functionals on a *-algebra.

In Chapter 3. we prove that the (<, L)-type (or Lebesgue-type) decomposition of
forms exists. The basic tool in our treatment is the embedding operator between two
auxiliary Hilbert spaces associated to the forms in question. As an application of our
approach, we also provide a Lebesgue-type decomposition theorem for bounded finitely
additive set functions defined on set-rings.

Chapter 4. and Chapter 5. deal mainly with the existence and uniqueness of the
so-called (< ,q, L)-type decomposition. These results were proved by Seppo Hassi, Zoltan
Sebestyén, and Henk de Snoo in [16]. We also show that how this approach can be applied
for contents (i.e., for additive set functions defined on set-algebras).

In Chapter 6. we collect some theorems from [34), 36, [55]. For example, we identify
the parallel difference as the minimal solution of an appropriate equation. We also prove
that the almost dominated parts in the mutual Lebesgue decomposition are mutually

almost dominated.
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The classical Radon-Nikodym theorem can be phrased by means of Hilbert space
operators. Namely, by considering the Radon-Nikodym derivative as a (positive self-
adjoint) multiplication operator on L?(v). The main result of Chapter 7. is an analogous
theorem for forms. We will prove that the quadratic form of the to-regular part of t is
derived from a positive self-adjoint operator acting on the Hilbert space associated to the
form tv.

It turns out that the Lebesgue-type decomposition is strongly connected with some
problems regarding the order structure of forms. Chapter 8. deals with these problems,
namely with the characterization of the existence of the infimum of two forms, and the
description of the extreme points of form segments.

In the last chapter we make a short overview of our results. Moreover, we show also

that how this general theory can be used for applications.

1.1. Notions, notations

Let X be a complex linear space and let t be a nonnegative sesquilinear form (or
semi-inner product) on it. That is, t is a mapping from the Cartesian product X x X
to C, which is linear in the first entry, conjugate linear in the second entry, and the

corresponding quadratic form t[-] : X - R
VeeX: tz] =tz )

is nonnegative. In this thesis all sesquilinear forms are assumed to be nonnegative (unless
otherwise stated), hence we write shortly form.

The following theorem is the so-called Cauchy-Schwarz inequality for forms (cf. [61]).
Theorem 1.1. Let t be a form on X, then for every x,y € X we have
) < taltly].
Proof. Let x,y € X. For every a € R we have
0 < tlz + ay] = tlz] + *t[y] + 2aRe(t(z, y)).

This is a second degree polynomial in o which has either no root or double root. In any

case,

(PRe(t(z,9)))” < tl]tly].

If one chooses a z € C, |z| = 1 such that |[t(z,y)| = zt(x, y) then

(2, )2 = (Re(2t(z,9)))" = (Re(t(z2,1)))” < tzatly] = [2[2t[z]t]y] = tlz]t]y).
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U

Using the Cauchy-Schwarz inequality it is easy to show that the square root of the

quadratic form is a seminorm on X. Furthermore, it fulfills the parallelogram law
Ve,y € X0 tle + y] + tr — y] = 2(4z] + t[y])

and the polarization identity
13
Ve,y e X: t(z,y) = Z;zktqu@ y].

Denote by ker t the kernel of the quadratic form, i.e. kert = {z € X|t[z] = 0}. Since
the square root of the quadratic form is a seminorm, the set kert is a linear subspace of

X. The quotient space X/yer¢ with the inner product (- |-); defined by
(z+kert|y+kert) :=t(z,y) (z,y€X)

is an inner product space. The completion 77 of this inner product space is called the

Hilbert space associated to t.

If t and v are forms on X and ¢ > 0 is a constant, then the form t + ctv is defined by
(t + cto)[z] := t[x] + ct[z] for all x € X. The positive cone of forms (denoted by F (X))
is partially ordered with respect to the ordering

t<w < VereX: {tz]<w]

If v < t we say that o is majorized by t. The convex set of forms that are majorized

by t will be denoted by
o, = {w e F(X)]o<w <t}

where o denotes the identically zero form. The sequence (t,,),en is said to be nondecreasing
(resp., nonincreasing) if m < n implies that t,, < t, (resp., t, < t,,). If (,)nen is a
nondecreasing sequence of forms which is majorized by the form w (i.e., t, < o for all

n € N), then the pointwise supremum t[z] := supt,[z] for all z € X defines a form such
neN
that t < . Similarly, if (t,),ey is nonincreasing sequence of forms, then the pointwise

infimum t[z] := 711212 t,[z] for all z € X defines a form such that o < t < t;. To prove
these statements it is enough to observe that quadratic form of the limit object defines a
seminorm which satisfies the parallelogram identity.

If there exists a constant ¢ such that t < cto then we say that t is dominated by ro

(t <q to, in symbols). If there exists a nondecreasing sequence (t,)nen of to-dominated
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forms such that t = supt, then t is called w-almost dominated. We say that the form
neN

t is o-closable, or strongly vo-absolutely continuous (denoted by the symbols t < 1, or
t < o, respectively), if

V(zn)nen € XV 0 ((Hzn — 2] = 0) A (w[z,] = 0)) = t{z,] = 0.

We shall prove later that t is to-almost dominated precisely when tv-closable.

We say that t is w-absolutely continuous (t <, 1) if ker o C kert, that is to say,
VeeX: wfz]=0 = tjz]=0

in analogy with the well-known measure case. Remark that to-strong absolute continuity
implies tw-absolute continuity. To see this consider e.g. constant sequences (z,)nen,
x, = x € kert in the definition of tv-strong absolute continuity.

Finally, we say that t and to are singular (in symbols: t L w) if the only form which

is majorized by both t and to is the identically zero form, i.e.,
Vs e Fo(X): ((s<t) A (s<w)) = s=o.

The main aim of this dissertation is to prove decomposition theorems in the following
fashion: if t and w are forms, we say that t = t; + t; is a (<, L)-type decomposition if
t1 <, o and t; L 1. Here, of course, <, means < ., <K, or <aq.

1.2. Examples, decomposition theorems

In this section we present some important examples. We mention also some decom-

position theorems, which will be investigated later.

Example 1.2. Let X = J# be a complex Hilbert space with the inner product (-|-) and
denote by B () = {A: A € B(s), 0 < A} the cone of the bounded positive operators
on . The notion < always stands for the following relation: 0 < A if 0 < (Ah, h) for all
h € 7. We say that A is B-absolutely continuous if A = sup A,, for some nondecreasing
sequence of B-dominated operators. Singularity of A and Bn Erﬁeans that the greatest lower
bound of A and B equals to the identically zero operator.

If A e B, () then its induced form will be denoted by ta, that is
Va,y € X: ta(z,y) == (Az|y).

If 5 is finite dimensional, then B, (7¢) is the cone of positive semidefinite matrices.

This special case will play an important role in the next sections.
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The following theorem of Ando is the so-called Lebesgue-type decomposition of posi-
tive operators. For the details see |4, [49].

Theorem 1.3. Let A and B be bounded positive operators on 7. Then there is a

decomposition of A with respect to B into B-absolutely continuous and B-singular parts.

Example 1.4. Let X be a non-empty set, let 2 be a set-algebra on it, and let u be
content, i.e., a nonnegative real valued additive set function on 2. Remark that such a
function is always bounded because p(A) < pu(X) for all A € A, and p(X) € R. We say
that p < v if u(A) < v(A) holds for all A € 2. If A is a o-algebra and u is o additive,
we say that p is a measure. Of course, any measure is a content as well, and all results in
this thesis about contents hold also for measures. The key observation which is needed is
the following: if a content u is dominated by a measure, then u is o-additive.

The partially ordered set of contents is a lattice, i.e., for every pair of contents there
exist the greatest lower and the least upper bound. Moreover, we can formulate the

greatest lower bound of y and v (u A v, in symbols) with the following infimum
(L Av)(A) = Jélelgl {W(A\B)+v(AnB)} (Ae).

Using Konig’s characterization (see [21] and Chapter 3), we say that p is strongly abso-
lutely continuous with respect to v if u = sup u A nv and p is v-singular if p Av = 0. For
a different characterization of strong absoﬁletNe continuity we refer the reader to [6].

Let the complex linear space X be the set of 2-simple functions (denoted by &), i.e

the complex linear span of the characteristic functions of the sets in 2(
X :=E& =spanc{y, : A €A}

Recall that if p € X, i.e., ¢ is an A-simple function, it is expressible in the form

k
Y = Z )‘jXAja
j=1

where Aq,...,\; are non-zero complex numbers and Ay, ..., A, are pairwise disjoint
elements of 2A. Hereafter We always assume that Aq,..., A, are pairwise disjoint and
nonempty if we write p = Z AjX A

Let i be a content on the algebra 2, and define the form induced by u

t. (v, 1) rz/w@dﬂ (¢, € X).

X
The next theorem is the so-called Lebesgue-Darst decomposition theorem. For the details

see Chapter 3 or [9, [51].



8 1. INTRODUCTION

Theorem 1.5. Let o and v be bounded contents on the algebra A. Then p splits uniquely

nto v-strongly absolutely continuous and v-singular parts.

Example 1.6. We emphasize in advance that the set functions in this example are not
assumed to be bounded. In order to distinguish this case to the previous one, we use
different notations. Let T' be a non-empty set, and let #Z be a ring of some subsets of T
Let « be a finitely additive nonnegative set function (in this case we shall say that « is a
charge) on Z.

Similarly as in the previous example, the partially ordered set of charges is a lattice,

and the greatest lower bound of o and 5 can be written as
(a A B)(R) = inf {a(R\S)+B(RNS)} (ReR).

Let us define the form associated to « over the complex linear space X := (T, %) of
Z-simple functions by

ta(@,@b) = /(10 ’ E da.

T

Remark that the right-hand side is just a finite sum again.
Example 1.7. Let &/ be a complex *-algebra and let f : & — C be a positive linear
functional on it (that is, f(a*a) > 0 for all @ € /). The form induced by f will be
denoted by tf

tr(a,b) = f(b%a).

The following is the Lebesgue-type decomposition theorem for representable positive

functionals. For the details and other interesting results see [14), 22, 45, [46], 47, [52].

Theorem 1.8. Let &7 be a *-algebra, let f and g be representable positive functionals on

/. Then there exists a Lebesque-type decomposition of g with respect to f

9 =9a+ 9s-

That is to say, both g, and gs are representable functionals such that g, is a pointwise limit
of a nondecreasing sequence of f-dominated functionals, and that gs and f are mutually

singular in the order sense.

Example 1.9. Let S be a non-empty set, and let € be a complex Banach space (with
topological dual €*). The dual pairing of x € € and z* € €* is denoted by (z,xz*). Here
the mapping

(,):ExeE - C
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is linear in its first, conjugate linear in its second variable. The Banach space of bounded
linear operators from & to €* will be denoted by B(&, €*).
Let X be the complex linear space of functions on S with values in B(€, €*) with finite

support. We say that the function
K:S xS — B(€ ¢
is a positive definite operator function, or shortly a kernel on S if

WreX: Y (f(1).K(s.t)f(s) 2 0.
s,tesS
We associate a form with K by setting
VigeX:  wk(fig) =D (f(t),K(s t)g(s)).
s,teS

The set of kernels will be denoted by K, (X). If K and L are kernels, we write K < L if
ok < 1.

The following is the Lebesgue-type decomposition of positive definite operator func-

tions. For the definitions and other details see [7] or Chapter 9.

Theorem 1.10. Let K,L € K, (X) be kernels on S. Then K splits into strongly L-

absolutely continuous and L-singular parts.






CHAPTER 2

The (<., L)-type decomposition

The main purpose of this chapter is to present an (<,., L)-type decomposition for
forms. The key notion is the short of a form to a linear subspace. This is a generalization
of the well-known operator short defined by M. G. Krein [23]. A decomposition of a
form into a shorted part and a singular part (with respect to an other form) will be
called short-type decomposition. As applications, we present some analogous results for
bounded positive operators acting on a Hilbert space; for additive set functions on a ring
of sets; and for representable positive functionals on a *-algebra. This chapter is based

on paper [33].

2.1. Short-type decomposition of forms

Let t and tv be forms on the complex linear space X. The purpose of this section is to
show that t has a decomposition into a tw-absolutely continuous and a to-singular part.
This type decomposition will be called short-type decomposition. The concept of the short
of a form, which is introduced in the following lemma, will play an essential role in our

further considerations.

Lemma 2.1. Let 9 C X be a linear subspace, and let t € F(X). Then the following

formula defines a form on X

VeeX: t,[z]:= inf tzx —y].

B [ yeD

Furthermore, t, is the mazimum of the set
{seF(X)|(s<t) A (Y Ckers)}.
Proof. Let )¢ be the following subspace of J&
Dy = {y+kert } y € EZ)}

and consider the orthogonal projection P from % onto ), (the closure of );). Then for
all v € X

2 =\ 2 .
(1 - P)(w+kert)Ht = dist®(z + ker t, Q) = yngfJ |(z —y) —I—kerth = ;gﬁf) tlr — yl.

11
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Consequently, t,, is a form, indeed, and ) C ker t, . To show the maximality, assume that
the quadratic form of s vanishes on ) and s < t. According to the triangle inequality we

have
sz] < s[z —y] <tz —y]
for all y € ), and hence,

s[z] < ylél% tlr —y] = t, [z].

The form t,, is called the short of the form t to the subspace ).
It follows from the definition that if t and t are forms and 2) and 3 are linear subspaces,

then
(t<w) A PC3) = t3<1y.
Now, we are in position to state and prove the main result of this chapter.

Theorem 2.2. Let t,to € F, (X) be forms. Then there exists a (Kac, L)-type decompo-

sition of t with respect to vo. Namely,

t:t +(t_tkerm)7

ker 1o

where the first summand is w-absolutely continuous and the second one is to-singular.

Furthermore, t 1s the mazimum of the set

{seFL(X) | (s<t) A (5§ <ac0)}.

Proof. 1t follows from the previous lemma that t K 10, and that t_  is maximal.

ker 1o o

Let s be a form such that s < w and s < t—t_ . Since t < te,, +t5 < tand

o ker o —

the quadratic form of t,_ = + s vanishes on kertw, the maximality of t implies that

ker o

§=0. O

At the moment we can say the following about the uniqueness of short-type decom-

position: if t is dominated by tv, then the decomposition is unique. Indeed, let ¢ be

ker 1o

a constant such that t_ = < ctwo (we may assume that ¢ > 1) and let t = t; + t be an

ker 1o

(Kac, L)-type decomposition. Since t is maximal, we have

1 1
- tl Z _(tker i) - tl) Z O a‘nd m Z _{' Z
C

ker 1o

tz = t_ tl Z tkerru ker to (tkerm - tl) Z 0.

o
Q=

Since t; L to, one concludes that t —t; = 0. We shall see later that the condition

ker 1o

t..., <a t for the uniqueness is not just sufficient, but also necessary.
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Finally, observe that (ty)g = ty for each subspace 2), i.e., shortening to a subspace

is an idempotent operation. Furthermore, t <,. to precisely when t =t

ker 1o

2.2. Applications

In this subsection we apply the previous decomposition theorem for bounded positive

operators, for additive set functions, and for representable positive functionals.

2.2.1. Bounded positive operators. Let A € B () be a bounded positive op-
erator and consider its induced form t4. In view of the Riesz-representation theorem,
the correspondence A — t, defines a bijection between bounded positive operators and
bounded nonnegative forms. Consequently, we can define the domination, (strong) ab-
solute continuity, and singularity analogously to the ones defined for forms. We write
A <4 B if there exists a constant ¢ such that A < ¢B. If Bx = 0 implies that Az = 0 for
all x € J, we say that A is B-absolutely continuous (A <, B). The operators A and
B are singular (A L B) if 0 is the only positive operator which is dominated by both A
and B. Finally, A is B-closable, or A is strongly B-absolutely continuous (A <q B, in

symbols) if for any sequence (x,)nen € HN
(A(zn — z) |0 — ) = 0 A (Bzn|z,) = 0) = (Az,|z,) — 0.
Remark that
A<y B < kerBCkerA and AL B <= ranAY?>Nran BY? = {0},

see [4] or [49]. It was proved by Krein in [23] that if .Z is a closed linear subspace of J#
and A € B (), then the set

{SeB.(H)|(S<A) A (tanS C )}

possesses a greatest element. This follows immediately from our previous results, and
this is why we say that the form t, is the short of t to the subspace ). Indeed, let
t(r,y) = (Az|y) and consider the form t ,i. Since t 41 is a bounded form, there exists

a unique S € By (4) such that t 4,1 (z,y) = (Sz|y) and
reM =t ]r]=0= (Sz|2)=0= M Cker S = ranS C /.

The maximality of S follows from the maximality of t ,.. Now, since the map A — t, is
an order preserving positive homogeneous map from B, (J¢) into F (), the following

theorem is an immediate consequence of Theorem [2.2]
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Theorem 2.3. Let A and B be bounded positive operators on 7. Then there is a

decomposition of A with respect to B into B-absolutely continuous and B-singular parts.

Namely,

A=A_,+A ,.
Proof. Let A_ , and A, , be the operators corresponding to (t, Jxert; and t, — (t, Jkertg,
respectively. O

We remark that the short A, of A to the closed linear subspace .# of the (complex)

Hilbert space ¢ possesses a factorization of the form
_Al/2p 1/2
Ag=AT"P ;AT

where P - is defined to be the orthogonal projection onto the closed subspace M=
A7Y2( ), see Krein [23]. This factorization can hold, of course, only if the underlying
space is complex. Below we offer an alternative factorization of the operator short that
simultaneously treats the real and complex cases. In fact, we show that there exists a
complex Hilbert space 7%, associated with the positive operator A, such that A , admits
a factorization of the form J4(I — P).J} where Jy4 is the canonical continuous embedding
of 74 into 7 and P is the orthogonal projection onto an appropriately defined subspace
of ), associated with .#. The construction below is taken from [38].

Let us consider the range space ran A, equipped with the inner product (-|-),

Va,y € A (Az | Ay), = (Az|y).
Note that the operator Schwarz inequality
(Az | Az) < [|A[(Az | z)

implies that (-|-), defines an inner product, indeed. Let %, stand for the completion
of that inner product space. Consider the canonical embedding operator of ran A C %,
into 7, defined by

Vo € 7 Ja(Az) = Ax.

Then J4 is well defined and continuous due to the operator Schwarz inequality above
(namely, by norm bound 4/||Al|). This mapping has a unique norm preserving extension
from 7, to 2 which is denoted by J4 as well. An easy calculation shows that its adjoint

J}, acts as an operator from J# to ¢, possessing the canonical property

Vo € A Jyx = Ax.
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This yields the following useful factorization for A:
A= JaJy.

Theorem 2.4. Let J be a Hilbert space and let A € B, (J). For a given subspace
M C H denote by P the orthogonal projection of )y onto the closure of {Ax|x € A }.
Then the short of A to M equals Jo(I — P)J}.

Proof. Tt is enough to show that the quadratic forms of J4(I — P)J} and t 4. are equal.
To verify this let x € 7. Then

(Ja(I — P)Jhw|x) = (I — P)Azx | (I — P)Ax), = dist?(Az, ran P)

Inf (Av — Ay | Az — Ay), = inf (A(z —y) |2 —y)
=t [:C]v

as it is claimed. O

The above construction yields another formula for the quadratic form of the shorted

operator:

Corollary 2.5. Let 7 be a Hilbert space, A € B () and M C F any closed linear
subspace. Then for any x €

(Jall = P)Jaz | 2) = (Az | ) —sup{|(Az |y)|* |y € 4, (Ay|y) < 1}.
Proof. For x € A we have
(JalI = P)Jyz | x) = (Az | Az), — (P(Az) | P(Az)),
= (Az|x) —sup{|(Az | Ay), " |y € A, (Ay| Ay), < 1}
= (Az|x) —sup{|(Az [y)* |y € A, (Ay|y) <1},
indeed. O

Corollary 2.6. If A and B are bounded positive operators on the Hilbert space 7 then

the quadratic forms of A« p and A| g can be calculated by the following formulae:

(Acpr|z) = nf (Alx—y)|z—y),

yEker B

(ALpz|z) =sup{|(Az|y)]* |y € ker B, (Ay|y) < 1}.

Proof. Since A« p is nothing but the short of A to the closed subspace ker B+, Theorem
together with the above corollary implies the desired formulae. 0
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2.2.2. Additive set functions. In this section we apply our main theorem for
finitely additive nonnegative set functions. We recall first some definitions. Let T be
a non-empty set, and let #Z be a ring of some subsets of T'. Let o and 3 be charges on Z.
We say that the charge g is absolutely continuous with respect to o (in symbols [ <, @),
if a(R) = 0 implies B(R) = 0 for all R € #. Finally § and « are singular if the only
charge which is dominated by both e and 3 is the zero charge (or equivalently, a A 3 = 0).

Let Z(T, %) be the complex vector space of Z-step functions, and for a charge «

define the associated form t, as follows:

Vo ess tlev)= [oTda

T
Lemma 2.7. Let a and S be charges on %. Then « is B-absolutely continuous precisely
when t, is tz-absolutely continuous. Similarly, o and 8 are singular precisely when t, and

tg are singular.

Proof. First assume that o <, 5, and let p € .#(T, %) be a step-function such that

k

tslp] = tg [Z )‘jXAj] = INP8(4;) =0.

j=1
Since the \;’s are non-zero by assumption, it follows that §(A4;) = 0 for all 1 < 5 < k.
Consequently, o <, # implies that

k

0="> |N[a(4) =t [Z ijAj] = talp].

j=1
The converse implication is trivial, because if 3(R) = 0 then t3[x,] = 0 which implies by
t, <ac tg that a(R) = t,[x,] = 0. To prove the second statement assume that « and
are singular. Let t be any form on .(T, %) such that t < t, and t < tz. Then for any
E € # we have

0= (aAB)(E) = nf{ta[Xpnp] + talxp o] | F €2}
> nf{t{Xpp] + txp ] | F € R}
. 1
= inf {§(t[XEmF + XE\F] + Jc[XE\F - XEmF]) ’ Fe ‘%}
1 1
> 5 inf{t[XEﬂF + XE\F] | Fe ‘%} = 5 t[XE]?

according to the parallelogram law. Since the square root of the quadratic form of t is a
seminorm on . (T, %), it follows from the triangle inequality that t = 0. The converse

implication is obvious because the map « +— t, is order preserving. [l
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The following lemma plays an essential role in the proof of the short-type decomposi-
tion of charges. For every form t on .7 (7T, %) we can associate a nonnegative set function
V:Z— R, tothy

(2.1) Ewtl,), Ec%,

which fails to be additive in general. In other words, the natural one-to-one correspon-
dence between additive nonnegative set functions and forms is not surjective. The addi-

tivity of ¢ is characterized by the following lemma.

Lemma 2.8. Let T be a non-empty set, and let Z be a ring of subsets of T'. For a given
form t on L (T, #) the following statements are equivalent:

(i) The set function 9 defined by correspondence (2.1) is additive;
(i) tlo] = tll] for all ¢ € S (T, Z).

Proof. 1f ¥ is additive, then we have

t(, 1) Z/soﬂdﬁ

T
for all p,v € (T,%). Hence (i) obviously implies (ii). Conversely, if we assume (ii),
then for any pair of disjoint sets E, F' € % we have

1 1
HE) +0(F) = 5 (s + xe] + e = x0]) = 5 (Deur] + e — X, )
1
= 2 (tour] + thesr]) = 2B UP),
due to the parallelogram law. O

The main result of this subsection is the following short-type decomposition of charges.
Here we emphasize that, in contrast to the Lebesgue-Darst decomposition [9], this de-

composition holds for not necessarily bounded set functions as well.

Theorem 2.9. Let % be a ring of subsets of a non-empty set T, and let o and [ be

charges on %. Then there is a decomposition

O=0, 5T0

where a_,_, <ae B and o, L B. If 9 is a charge such that ¥ < a and ¥ <. B, then

19 S a<<ac,/3 :

Furthermore, we have the following formula for the absolutely continuous part

VReZ: ac,p(R)= Iinf /|1 — (t))? da(t).
R

pEker tg
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by

Proof. Let us define the set function o,

VReZ: « (R) := (ta)rert5[XR]-

<ac,B

It is clear that S(R) = 0 implies a___,(R) = 0. Our only claim is therefore to prove the

8
additivity of a___,. For this purpose, let ¢ € (T, Z). In accordance with the previous

lemma, it is enough to show that

(ta)ker ts [[ol] = (ta)xer ts [0].

Assume that

k
Y = ZAz * XR;»
i=1

where {\;}¥_, are non-zero complex numbers and {R;}¥_, are pairwise disjoint elements

of Z. Define the function v as follows
k

Ai

vi= 31

i=1 "

Since |¢(t)] = 1 for all ¢ € T, the multiplication with v is a bijection on # (T, Z).

T\UF_; R;

Furthermore, for every n € . (T, %) we have that n € ker tz precisely when ¢ -7 € ker tg.
(Note that ¢ ¢ (T, Z) in general.) As t,[(] = t,[|(]] for all ( € (T, %), we have that

(ta>ker tg [(p] = {Elkréftg toz[(zp - 5] = Eelkréftﬁ taH(p - g”

= nf 9] -|o—£]l = inf t[[e] -]

§Eker t/B Eeker t,B
— inf £l = .
§€1krért5 tallel =1 - ] (ta)ker’t[s“@‘]

Consequently, a«, s is a charge, which is absolutely continuous with respect to 3. Since
a and o, g are charges, oy g := o — a«,. p is a charge too, which is derived from

to — (ta)kerty- Hence, a g and 8 are singular. O

If # is a o-algebra, and « and 3 are nonnegative o-additive set functions, then the
above decomposition coincides with the well-known Lebesgue decomposition. We will

discuss this case in the following chapter.

2.2.3. Representable functionals. In this subsection we present a short-type de-
composition for representable positive functionals, which corresponds to the short type
decomposition of their induced forms.

Let o7 be a complex *-algebra and let f : .o/ — C be a positive linear functional on it

with associated form t;.
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For positive functionals f < g means that t; < t,. The positive functional f is called
representable, if there exists a Hilbert space J¢;, a *-representation 7, of < into ¢, and

a cyclic vector §, € J, such that

Va € & : f<a>:(7rf(a)§f | §f)f'

Such a triple (J,,7,,¢,) is provided by the classical GNS-construction (see [40] for the
details): namely, denote by N; the set of those elements a such that f(a*a) = 0, and let
¢ stand for the Hilbert space completion of the inner product space

(o /n; (1 )p); Yabed t (a+Np|b+Np)yi=ty(a,b) = f(b%a).
For a € o7 let m¢(a) be the left multiplication by a:
Ve e o mp(a)(x+ Ny):=azx+ Ny.

The cyclic vector & is defined as the Riesz-representing vector of the continuous linear

functional
H; 2 A [, — C; a+ Ny — f(a).
Note also that
mr(a)éy = a+ Ny.

We define the absolute continuity and singularity as for forms. Singularity means that
the zero functional is the only representable functional which is dominated by both f and
g. According to [45 Theorem 2], this is equivalent with the singularity of the forms t;
and t;. We say that f is g-absolutely continuous (f <, g), if

Vaec o/ : g(a*a)=0 = f(a"a) =0.

A decomposition of f into representable g-absolutely continuous and g-singular parts is
called short-type decomposition.
Now, the short-type decomposition for representable functionals can be stated as fol-

lows.

Theorem 2.10. Let f and g be representable positive functionals on the *-algebra < .

Then f admits a decomposition

f = f<<ac,g + fiyg
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to a sum of representable functionals, where f_ = 1is g-absolutely continuous, f, = and g

ac,g
are singular. Furthermore, f_ s the greatest among all of the representable functionals

h such that h < f and h <, g.

Proof. Let .# be the following closed subspace of J¢;

A = {a+ Ny | g(a*a) =0}

and let P be the orthogonal projection from 5} onto .#. Then .# and .4~ are 7-
invariant subspaces. Since 7y is a *-representation, it is enough to prove that .Z is 7y

invariant. Let a,x € & and assume that g(a*a) = 0. Then
nf(z)(a+ Nf) =xa+ Ny e M
because
g(a’z"za) = ||my(x)(a + Np)ll < |my(2)]7 - g(a*a) = 0.

Consequently,

mp(x)(A) C mp(x)({a+ Ny | gla*a) = 0}) C .4,
as it is stated. Now, let us define the functionals

feres(@) = (mp(a)(I = P)&p | (I = P)&s) -

fi,(a) = (mp(a) P&y | PEy)y.

Clearly, f

<o and f - are representable positive functionals. On the other hand, since

M+ is 7p-invariant we find that
mp(a)(I = P)§s = (I = P)mg(a)(I — P)&s,
and using 7y invariance of .# one has
(I = P)yrp(a) P&y = (I — P)Pry(a) P&y = 0,
and thus
(I = P)yrp(a)(I = P)§y = (I = P)mp(a)és.
This gives

Fees@a) = llms(a)(I = P)&s|l7 = (I = P)mp(a)ésll; = (1 = P)(a+ Np)lF = ts_,la]-
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Similarly,
£, (aa) = 1P+ NP2 =ty a]

Since tr is t,-absolutely continuous, and t; , is tg-singular, we infer that f_ = <ac g

and f, 1 g. The maximality of f_ follows from the maximality of tf<<ac,g' ]






CHAPTER 3

The (<, L)-type decomposition

In this chapter we prove that the (<, L)-type (or Lebesgue-type) decomposition of
forms exists. This decomposition theorem is a common generalization of several famous
decomposition theorems, such as the operator decomposition of T. Ando [4], the Lebesgue-
Darst decomposition of finitely additive set functions [9], and the canonical decomposition
of densely defined forms [43]. The basic tool in our treatment is the embedding operator
between two auxiliary Hilbert spaces associated to the forms in question. As applications
of our approach, we also provide the Lebesgue-type decomposition theorems for bounded
operators and for bounded finitely additive set functions. This chapter is based on paper
[32].

The Lebesgue-type decomposition theorem for forms states that for every pair t and
1o, defined on the complex linear space X, the form t can be decomposed by means of the

forms teg o (the so-called regular part) and tyne n (the singular part) as

(31) t= treg,l’o + tsirlg,l137

where teg v is t0-closable and tging w is singular with respect to to. Our treatment for giving
this decomposition is due to the following construction. For a given form tv consider the
auxiliary Hilbert space J#,. Let denote by 7y, the canonical surjection from X to X/ ker v,
ie.

Tw(T) := x + ker 1o, r € X.

The embedding operator J from X/ ker(t+to) C 7, into J7,, defined by
(3.2) Tt (T) = Tw(x), reX,

is then a densely defined contraction with respect to the corresponding norms, and J** is

the closure of J. The orthogonal projection of %, onto {ker J**}* is denoted by P.

3.1. Lebesgue-type decomposition

Let X be a complex linear space, and let t and w be two forms (i.e. semi-inner
products) on X. The purpose in this section is to give the Lebesgue decomposition ((3.1))

of t with respect to tv. We need first the following two lemmas:

23
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Lemma 3.1. Let J be the embedding operator from X/ker(t+ 1) C Hiin into Hy,
defined by the identification (3.2). By setting

(3.3) S(t,w) := {(zn)nen € X | tfz, — 2] — 0,10[2,] — 0},
the kernel of J** can be described by
(3.4) ker J** = {nlggo Tetnw(Tn) | (Tn)nen € 6(t, 1)}
Proof. Since J** is the closure of .J, we obtain step by step
ker J** = {f € Hijw | 3(Tn)nen € X, Ty (Tn) = f, Mo (25) — 0}
= {T}Lrgoﬂt+m(xn) ‘ (Tn)nen C X, Tt (T — Tp) = 0, T (2,) — O}
= {T}Lrgoﬂt+m(xn) ‘ (Tn)nen € X, (t+1)[x), — 7] — 0, 10[2,] — 0}
= {nli_)rroloerm(xn) ‘ (Tn)nen € X, tjx, — ) — 0, 10[x,] — O}
= {nh_{{.loﬂwm(f’?n) ‘ (Tn)nen € 6<t7m)}7
as it is claimed. U

Lemma 3.2. Let P stand for the orthogonal projection of 7w onto {ker J**}* and let

us define the mapping v : X — Ry wvia the following formula:

(3.5) t[z] == inf { lim tlz — 2, | (2n)nen € S(t, )}, r€eX.

n—o0

Then for any x € X we have
(36)  ||Priiw(@)|,, =tl]+wlz] and (I - P)rw(@)|,, = tl] - ).

In particular, both v and t — ¢ are (quadratic) forms on X.

Proof. Since P is the orthogonal projection of J#,, onto {ker J**}+, we have for any

x € X similarly as before

1Prew@);, = nf {lImes (@) = ylEs | v € ker S}
= inf { lim [|7esw(@ = 20) 24 | (@0)nen € S(t )}

= inf { lim (t+w)[z — 2] | (z,)nen € S(t, )}

n—oo

= inf { lim t[z — z,,] + w[z] | (2,)nen € S(t,10)}

n—oo

= t[z] + wlz].
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On the other hand,

tla] + wla] = [mew(@)l],, = [Pron @], + 1 = Precw @),

= wlz] + tfz] + (] = P)riiw(@)]]}, .

which yields the second identity of (3.6]). 0

We can now formulate the (<, L)-type decomposition theorem.

Theorem 3.3. Let t and to be nonnegative forms on the complex linear space X, and let
t be the form defined by (3.5)). Then

t=v+(t—rv)

15 a Lebesgue-type decomposition of t with respect to vo: t is closable with respect to o, and
t — v is singular with respect to vo. Furthermore, v is the maximum of all forms majorized

by t, which are closable with respect to to.

Proof. In order to show that t is closable with respect to 1, consider a sequence (z,)nen
from X with w[z,] — 0 and t[x,, — z,,] — 0. We should prove that t[z,] — 0. By using

formula (3.6) we obtain
2
tfz, —xn] = ||P7Tt+m(l‘n — xm)HHm —wlz, — T,

thus we can conclude that P(m¢ 1w (%,))nen converges in .y to a vector f. Then the

following line of identities

2

| f|12, = nli_>Irolo||J**P7rt+m(a:n)Hi = lim ||J**7Tt+m(xn)Hm

n—o0

= lim ||J7Tt+m(xn)||2

— i 2
Jim 2 = lim [mo ()l

= lim wlz,] =0

n—oo

implies on the one hand that f € ker J**. On the other hand,
f = lim Pry | (z,) €ran P = {ker J*}*,
n—oo
and therefore f = 0. Consequently,

T}Lrlgot[xn] = nh_glo ’|P7Tt+m(xn>”%+m =0,

indeed.
Our next claim is to show that t—t and to are singular forms with respect to each

other. So assume that ¢ is a nonnegative form such that q <t and q < t—rt. Then the
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second formula of gives the following inequalities:
ale] < T mn@IE and g2l < (7 = P)mcs (@),
for any = € X. Let q be unique continuous extension of the following (quadratic) form
X/ker(t+1w) 3 T4 w(z) — qlz], r € X,
to the Hilbert space J#{,,. Then for any f € 4, we obtain
AP <T@ PP+ - P
<N = P)Pfllesw + 1177 = P)f)llw = 0.

As a consequence, q = 0, indeed.
It remains only to show the maximality property of t. So consider a form q < t which
is closable with respect to w, and fix a vector z € X. For any sequence (z,)nen from X

with w[z,] — 0 and t[z,, — z,,,] — 0 one obtains
q'[a] < %[z — 2a] + 0" [wa] < P2 — 2] + 472,

On the other hand,

qlxn — xm] < tzy, — 2] — 0 and wlz,] — 0
imply q[x,] — 0. Consequently,

q'[z] < lim 'z — a,]

for any sequence (¢, )nen € S(t, ). This yields just

ale) <t { lim te 2] | (o) € S(t o)} = ol

for each x € X, as desired. O

From now on, we will refer sometimes to v (resp., to t —t) as the reqular part (resp.,

the singular part) of t with respect to to, and we will use the notation teg o (resp., tsingw)-

Corollary 3.4. Let t and w be forms on the complex linear space X. The following

statements are equivalent:

(1) t is ro-closable;
(i) tregmw =t
(iii) ker J** = {0}.
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Proof. 1f tis to-closable, then for any = € X and (x,,),en € G(t, 0) we have tlx—z,] — t[x].
Therefore,

tregw (@] := inf { lim t{z — z,] | (@n)nen € S(t, W)} = t[z],

n— oo
and thus (i) implies (ii). By assuming (ii), one obtains
2
0 = t[x] — tregw|2] = ||(I—P)7Tt+m($)Ht+m, xr € X,
thanks to the second formula of (3.6). This means that I = P, i.e. ker J** = {0}. Finally,

if we assume (iii), then clearly tiegw = t, Where g is tw-closable thanks to Theorem
3.3l O

The following statement is a direct consequence of the definition of the regular part.

Proposition 3.5. Let t;,t; and ro be forms on the complex linear space X, and let v;

(resp., ta) denote the regular part of t; (resp., of t2) with respect to to.
(a) If t; < to, then also vy < to;
(b) If t; < a.w with some nonnegative constant «, then t; is to-closable.

Proof. Both statements are obvious from the definition of the regular part in (3.5). O

Next we prove an extension of [42], Theorem 2], cf. also [20, Theorem VI. 1.16]. The

proof rests on the following lemma, which may be of interest on its own right.

Lemma 3.6. Let T be a densely defined closable operator between complex Hilbert spaces

H and . If P stands for the orthogonal projection of H onto {ker T**}* then for any
x € F we have

|Pz|| = inf { lim ||z — 2, | (z3)nen € dom T, (z, — @) = 0, T, — 0}
n—oo
= inf { liminf ||z — 2, | (24)nen € dom T, Tz, — 0}
n—o0
= inf {liminf ||z — 2, || | (@n)nen € dom T, (z, |y) — 0 for all y € ranT*},
n—oQ
where (- |-) denotes the inner-product of F .
Proof. Let A, B, and C denote the infima expressions above, respectively. For any = €

we have of course

|Pz|| = inf {||lz — y| | y € ker T**}.

Since for each y € ker T** there exists (¥, )nen from dom 7" such that y,, — y and T'y,, — 0,
we conclude that ||Pz|| = A. Inequalities C' < B < A are obvious, therefore we only have

to check || Pz|| < C. First of all we notice that if a sequence (z,)nen converges weakly to
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a vector £ € 7, then

(3.7) lim sup |2, | > [|€]]-

n—oo

Indeed, by using the argument of [29], we conclude that

0 < limsup ||€ — z,[|* = ||€]|* + limsup ||2,||* — 2 lim Re(¢|x,)
n—oo

n—o0 n—o0

= [[€][* + limsup [[z,]|* — 2Re(¢ | &) = limsup [lz.]* — [1€]]%,
n—00 n—00

which yields inequality (3.7). Consider now a sequence (x,)nen from dom T such that
(xn |y) — 0 for all y € domT*. We may assume boundedness on (x,),en, and therefore,

after twofold choice of appropriate subsequences, we may also suppose that
liminf ||z — z,| = lim ||z — z,],
n—oo n—oo
x, — & weakly for some vector £ € 7.

We check first that £ belongs to ker T** since
(€172) = lim (2| T"2) =0
holds for each z € dom T™* and therefore we have indeed that £ € {ranT*}+ = ker T**.
Finally, we see that x — x,, = x — & weakly in .77, therefore gives
tim [z~ > 2 — €] > inf {[lz —yl| | y € ker T} = [ Pa.
Consequently, ||Pz| < C. O

Theorem 3.7. Let t and v be forms on the complex linear space X. Let tiegn stand for

the reqular part of t with respect to vo. Then for each x € X

(3.8) tregw[®] = inf { liminf t{z — 2] | (24)nen C X, w0[z,,] = 0}.

n—oo

Proof. From (3.6) and Lemma we conclude that

10[2] + tiegm [7] = | P ()[4

= inf { ligioglf 170 (@ = 20)[[f 4w | (@n)nen C X, JTsw(2n) — 0}

= inf { liminf (t{z — z,,] + W[z — z,)) | (@n)nen C X, w[z,] = 0}

n—oo

= (2] + inf { liminf t{z — 2,,] ‘ (Z)nen € X, w0[x,] — 0},

n—oo

which gives formula ((3.8]). U

As an immediate consequence we obtain a generalized version of [42, Theorem 2]:
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Corollary 3.8. Ift and 1o are forms on the complex linear space X, then t is vo-closable
if and only if for any x € X and for any sequence (xy)nen from X volx — x,,] — 0 implies

t[z] < liminf ¢z,

n—oo

holds for any x € X and for any sequence (x,)nen from X such that vwo[x — x,] — 0.

Proof. According to Corollary , t is w-closable if and only if t = tieg . Since tregpw <t
holds by definition, the proof can be easily obtained via Theorem [3.7}

treg o [2] = Inf { liminf t{x — x,] ‘ (Tp)nen C X, w0[z,] — O}

n—oo

= inf { liminf t{z,)] | (2)nen € X, w[z — z,] = 0},

n—oo

for all x € X. O

3.2. Application to bounded charges

The purpose of this section, on the one hand, is to show that notions strong abso-
lute continuity and singularity of bounded charges correspond to the notions closability
and singularity of the associated forms, respectively. On the other hand, thanks to this
correspondence, we show that the Lebesgue-type decomposition of additive set functions
can be derived from that of their associated forms. This result generalizes the well-known
Lebesgue decomposition theorem of measures, and the Darst decomposition theorem of
contents as well (see [9], 51]).

Let T be a non-empty set, and let Z be a ring of subsets of T'. Let u and v be bounded
charges on Z, i.e., assume that

sup u(E) < oo and sup v(F) < oc.
Ee% Ec#

Recall the notions of strong absolute continuity and singularity: v is called strongly
absolutely continuous with respect to p (shortly, strongly p-absolutely continuous) if for
any € > 0 there exists § > 0 such that for all ¥ € Z p(F) < 6 implies v(FE) < €. Similarly
as in the previous section for arbitrary charges, v is called singular with respect to pu if

for £ € # we have
(3.9) (uAV)(E) :=inf{u(ENF)+v(E\F) | FeZ}=0.

Equivalently, u and v are singular precisely when inequalities ¥ < p and ¢ < v imply

¥ = 0 for any additive nonnegative set function 4.
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Lemma 3.9. Let p and v be bounded additive nonnegative set functions on %, such that
v 1is strongly absolutely continuous with respect to p. Then

v(E)=sup (v An.u)(E)= lim (v An.u)(E), EeX.

neN n—oo

If v is both strongly absolutely continuous and singular with respect to p, then v = 0.

Proof. Let E € # and € > 0 be fixed; then there is a sequence (F},),en from & such that

(3.10) nu(ENE,) +uv(E\ E) < (v An.p)(E) + g < sup (v Angi)(E) + g = a+ g

for all integer n. According to the strong p-absolute continuity of v, there exists § > 0
such that v(E') < £ for all E' € #Z with p(E') < 6. If k € N satisfies 1 (a + £) < £, then
p(E N Fy) < §, according to (3.10). Therefore,
€ €
v(E)=v(ENF,)+v(E\F) < 5 taty; =sup (v An.p)(E) +e.
neN
Since € > 0 was arbitrary, the desired inequality follows. If we assume in addition that v
is singular with respect to u, then obviously v A n.u = 0 for all integer n. Therefore, by

using the first part of the statement, v(F) = 0 for all £ € Z. O

Theorem 3.10. Let p and v be bounded additive nonnegative set functions on the ring

X, and consider their induced forms t,. Then

(a) v is strongly p-absolutely continuous if and only if t, is t,-closable;

(b) v and p are singular if and only if t, and t, are singular.

Proof. In order to prove the statement (a), assume first that v is strongly p-absolute
continuous; in view of Corollary [3.4] it suffices to show v = t, where v stands for the
t,-regular part of t,. For any integer k let t,, denote the form associated to v Ak.u. Then
we have t,, [p] <t [p] < (F+1)t,[¢] and

lim t,, [¢] = t.[¢], e S (T,%),

k—o00
via Lemmal[3.9] If vz denotes the t,-regular part of t,, then vy, = t,, thanks to Proposition
3.5l Consequently,

o] = wle] <tlp] <t le],  we ST, %)

By letting £ — oo, this gives t = {,.
Conversely, assume that t, is t,-closable. In order to prove the strong pu-absolute
continuity of v, consider a sequence (E,)nen from Z with u(E,) — 0; we should prove

that v(E,) — 0. Let J stand for the embedding operator from (T, %) C 7, ;, into
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S, Yor any fixed f € J, we have

| 2

PPl = [ Ox)

[ (744X, ) 1)< nENLIE o0,

where the sequence (7, 4,(X,, ) is uniformly bounded in J7, ¢, thanks to the

neN
boundedness of x4 and v. In view of Corollary 3.4 ran J* is dense in J#, | ,, therefore,

(3.11) (7T£V+tH(XEn)|h)tl,+tH — 0, for all h € 4, |, .

By setting F,, := U E}., we obtain that the sequence (qu+fu(XFn))neN is norm bounded
k=1

in J, ., and therefore, it has a weakly convergent subsequence. The corresponding

weak limit x € J7, ;, then clearly satisfies

(7Tt,,Jr’cu(XEn)‘X)ty+tM = w(Ey,) + v(En)

for each integer n. By using (3.11)), this yields

V(E,) < (ﬂ-fu'f'tu(XEn)’X)tu_i_tu — 0,

as it 1s claimed.

The proof of statement (b) is just the same as in [2.7] O

We are now in position to state the Lebesgue decomposition for bounded additive

nonnegative set functions.

Theorem 3.11. Let #Z be a ring of subsets of a set T, and let p and v be bounded
additive nonnegative set functions on Z. Then there is a uniquely determined pair (v,, V)
of additive nonnegative set functions on (T, %) with v = v, + v, such that v, is strongly

absolutely continuous with respect to p and that vs is singular with respect to .

Proof. Let v stand for the t,-regular part of t,, i.e.

tle] == inf { lim t,[0 —@u] | (gn)nen € St} ¢ € S(TR).

Then t, = v+(t, —t) is according to the Lebesgue decomposition of the form t, with

respect to t,, due to Theorem . Let us define the nonnegative set function v, on % by
%%R+, EH'C[XE]

If we assume for a moment that v, is additive, then v = v, + (v — v,) is a Lebesgue
decomposition of v with respect to u, thanks to Theorem |3.10, Therefore, our only
claim is to prove the additivity of v,. So let ¢ € (T, %) be fixed; we should check
tle] = t[|¢|] according to Lemma 2.8] Observe first that for (¢,)nen € S(ty,t,) we also
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have (|¢n|)nen € 6(t,,t,), and therefore
tlel] < lim 4 [|@] — [@n]] < lim £, [p — @n],

which implies t[¢] > t[|¢]]. In order to obtain the converse inequality, let us consider the
following function ¢ € .7 (T, %) defined by

2 if p(x) #0,

0, else.

One easily checks that (0-¢n)nen € S(t,,t,) whenever (¢,)nen € 6(t,,1t,), and that
t, (o] < t,[Y] for all ¥ € L (T, Z#), according to the additivity of v. Consequently,

tlp] < lim t,[p — 0-p,] = lim 4, [(Jo] — v,) 0] < lim t,[|¢] — @],
n—oo n—oo n—oo

which gives t[p] < t[|p|]. Therefore, v, is additive, as it is claimed.

It remains only to show the uniqueness of the Lebesgue decomposition: assume that
there are two additive nonnegative set functions v; and v, such that v is strongly u-
absolute continuous, vs is singular with respect to p, and v; + 15 = v. Let t,, and
t,, denote their associated forms, respectively. Then t,, + t,, = t, is a Lebesgue-type
decomposition of t, with respect to t,. Due to the maximality property of v, stated in
Theorem 3.3, we have t,, < t. Hence the nonnegative set function v, —1y = vy — (Vv —1,) is
obviously strongly p-absolutely continuous and simultaneously p-singular. Consequently,

v, — 11 = 0 according to Lemma 3.9 The proof is therefore complete. 0]

The Lebesgue decomposition theorem asserts not only that v splits into a strongly
absolutely continuous part v, and a singular part v, with respect to pu, but also that v,

can be represented in an appropriate fashion as follows:

Corollary 3.12. Let p and v be additive nonnegative set functions on a ring Z. The

strongly p-absolutely continuous part v, of v can be calculated by the following formula:

vo(B) =inf { im [ v, —@ul* dv | (pu)uen € S(p)},  Eez,

n—oo
T
where S(v, u) denotes the set of all sequences (n)nen from (T, %) satisfying
/‘gon—gomf dv — 0 and /‘apnf dp — 0.
T T

Proof. Obvious from the proof of Theorem [3.11 U
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Via Theorem another explicit formula for the strongly absolutely continuous part

can be given as follows:

Corollary 3.13. Let v, u, and v, just as in Corollary[3.13. Then for E € %

n—oo

vo(E) = inf{liminf/ |ou|” dv ) (“n)nen € Y(T,%’),/ X — u|” dp — 0},
T T

Proof. Obvious from the proof of Theorem [3.11] and from Theorem [3.7] O






CHAPTER 4

The (<.q, L)-type decomposition

In this chapter we prove the existence of the (<,q, L)-type decomposition of forms.
This decomposition theorem is a common generalization of those that were mentioned in

the introduction, as well. The crucial tool in this treatment is the parallel addition.

4.1. Parallel sum

Let A and B be positive semi-definite matrices (or shortly, positive operators) on the
finite-dimensional Hilbert space 7. The parallel sum A : B of A and B was introduced
by Anderson and Duffin [2] in study of electrical networks (see also [1i, B, 12]). The
parallel sum and difference of two nonnegative forms was defined and studied by Hassi,
Sebestyén, and de Snoo in [15] and [16]. In this section we present all their results which
are needed in the later chapters.

The properties of the parallel sum are given in the following lemma (cf. [16, Proposi-

tion 2.2. and Lemma 2.3.].

Lemma 4.1. Let t and w be forms on the complex linear space X. Then the parallel sum
t: 1 defined by

(t:w)[x] := égafe{m ly+az]+tlyl} (z€X)

1s a form. Furthermore, let t, t,, 10, w0, and s be forms on X and let A and p be positive

numbers. Then

(a
(b
(

)
)
)
d)
)
)
)

o =1to:t,

t:

(At) = (A) = A(t : w),
) (t:w):s=t:(w:s),
(d) t:w <t

(e) t<s impliest: 10 <s:tv,
(f) At:pt=" “’\ vt and

(9) t, 1t mn¢m implies t, : w0, | t: to.

Proof. We show first that the map x — m defines a seminorm on X and it satisfies
the parallelogram law. According to the Jordan-von Neumann theorem this implies that

t: 1 is a form.

35
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Observe that if A # 0 then

inf {wly + \a] + ty]} = inf {r[Ay +2)] + ]} = [\ inf {woly + 2] + t[y]}

which shows that \/(t: 1)[Az] = |A]y/(t: w)[z] holds for all A € C. Now let z,2" € X.

Then for all y,y" € X we have
(t:w)[z + 2] = inf{wly + o + 27+ tly]} < wly +y + 2 + 27 +ty + ],
Yy
and therefore (t: w)[z + 2'] is dominated by

wly + z]+2Re(w(y + 2,9 + ') + [y’ + '] + tly] + Re(t(y, y)) + t{y/]

<wly + 2] + 2/ Wy + 2] /1wy + 2] + wy + 2] + ty] + 2/t ty] + ty

<woly + z] + tfy] + 2/ Wy + z] + tfy]V/wly + 2] + {y'] + [y + 2] + t[y/]

=(v/wly + 2] + tly] + Vw[y + 2] + tly])?

for all y and 3/, hence by taking the infimum we have

Vit w)[z 4 2] < V/(:w)[z] + /(t: w)[2]

which shows that /(t:w)[-] is a seminorm on X. It remains to show that /(t: to)[]
satisfies the parallelogram identity.

Observe first that

2(ro[y + x] + tly] + wly + 2] + ty])
=y +y +2+2 ]ty +y]+wly -y + -2 +tly — ]

holds for all y and v/, and hence, taking the infimum on both sides we have the following

inequality
2((t:ro)[z] + (t:ro)[2']) > (t:w)[z + 2]+ (t: )z — 2]

Replacing y and ¢y’ by %y/ and y%y, respectively, we obtain the reverse inequality, and

hence,
2((t:w)[z] + (t: )[2]) = (t: ) [z + 2'] + (t: )|z — 2]

Now, we are going to verify the listed properties of the parallel sum. Since (a), (b), (d),

and (e) are immediate consequences of the definition we prove only (c), (f), and (g).
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(c) Observe on the one hand that
((t: w): s)a] = inf{sly + 2] + (t: w)fy]}

= ;g}feigjfe{s[y+:v] +wly + 2] + 2]}

holds for all x € X. On the other hand,
(t: (r:s))|z] = 123f€{(m 1 5)[z + ] + t[z]}

= inf inf
Zlgfylgx{s[ererx] + wly] + t[z]}

= Inf inf{sly — 2+ 2] + wly] + 2]}

— . f . f / /
inf inf {s[y’ + 2] + wly’ + 2] +4[2]}

holds for all € X, thus the comparison of the two expressions gives the required
results

(f) Completing squares leads to the following identities

My + 2] + pt[y] = [z] + 2ARe(t(y, ) + (A + p)t[y]

A } A2
\M+u$_A+u
M) + (/N Ty +

:A+u

=At[z] + t[\/ A+ py + t[z]

A
\/)\+uﬂ
A

Since every term is nonnegative, the infimum over all y is attained when y = L

(g) The inequality lim (t, : w,) > t : w is obvious. On the other hand, for every
n—oo
e > 0 there exists y. € X such that

(t:r)[z] > wly. + 2] + ty] — e
Moreover, for all n > n,_. one has
W, [ye + 2] + ta[ye] — & < wye + o] + tye].
These inequalities yield for all n > n,,_. that
;gafe{mn[y + ]+t fy +x]} < (t:w)[z] + 2.

This implies the reverse inequality, and hence t, : to,, | t : t0.

O

Remark that parallel addition with these nice properties can be defined also for rep-

resentable positive functionals [53] and for additive set functions [56].
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Using the concept of parallel sum we can define the almost dominated part of a form
with respect to another form. Consider the operator D which assigns to the pair of forms
(t, ) the w-almost dominated part of t by the formula

Dyt := sup(t : nw).
neN
The following lemma collects some important facts about the operator D. These are

elementary consequences of the definition of D and Lemma 4.1

Lemma 4.2. Let s, t, v, and w be forms on the complex linear space X. Then

(a) (t:nw) < Dpt <t foralln eN,
(b) D is monotone in both variables, i.e., t < s, v < 1w implies Dyt < Dyys,
(¢) Dyw(At) = ADywt for all A > 0,

4.2. Hassi - Sebestyén - de Snoo decomposition of forms

In the following theorem we characterize almost dominatedness and singularity in

terms of parallel addition.

Theorem 4.3. Let t and 1w be forms on X. Then

(a)t Lwet:o=0< Dyt=0,
(b) t <aa o & Dyt =t.

Proof. To prove (a) observe that Dyt = 0 implies t : to = 0 by definition. If t : v = 0, then
to and t are singular, because 0 =t: 10 > u:u = %u > 0 for every form u which satisfies
u < t,w. Finally, assume that t and tv are singular, but Dt # 0. In this case, there
exists n € N such that t : nto #£ 0, which is a contradiction, because 0 # (%)t cto < t, .
We are going to prove (b). If Dyt = t then t is t-almost dominated by definition. For
the converse implication observe first that if t is tv-dominated, i.e., there exists an a > 0

constant such that t < ato, then Dt = t. Indeed, for every n € N we have

n n
tZDmt:supt:ant:<—)t: t,
neN (0 a+n

which implies D\t = t by taking supremum in n. Now assume that t is to-almost domi-
nated, and recall that this guarantees that t is a limit of a monotone increasing sequence

(tn)nen of w-dominated forms. According to the previous observation, we have
t, = Dpty, < Dpt <t

which implies that Dyt = t, again by taking supremum. U
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Observe that this theorem states that D is idempotent, i.e., Dy, (Dyt) = Dyt for all t
and to (because Dy, t is w-almost dominated by definition). Observe also that if t is both
tv-almost dominated and tv-singular, then t is the identically zero form. Indeed, according
to the previous theorem, t = Dyt = o.

The following theorem states that the (<,q, L)-type decomposition of t with respect
to 1 exists for every t,1w € F,(X). This was proved first by Hassi, Sebestyén, and de
Snoo in [16].

Theorem 4.4. Let t,1o € F(X) be arbitrary forms on X and consider the decomposition
t=Dypt+ (t — Dyt).

This decomposition is an (Kaq, L)-type decomposition of t with respect to w, that is,
Dyt <aq 0 and (t — Dwt) L wo. Furthermore, this decomposition is extremal in the

following sense:
ueF (X)), u<tandu<,gtw = u< Dyt

Proof. First we prove the maximality of Dyt. Let u be a form such that u < t and
U Ko . According to Theorem [£.3(b) and Lemma [£.1j(e) we have

u = Dypu = sup(u: nto) < sup(t:nw) = Dyt.
neN neN
Using maximality and the fact that the sum of tw-almost dominated forms is to-almost
dominated, one can obtain Dy, (u+10) > Dyu+ Dy for every u, v € F(X). Since Dyt is
to-almost dominated by definition, it is enough to prove that tv and t — Dy, t are singular,

or equivalently, Dy, (t — Dpt) = 0. Combining Theorem [4.3] with the following line the
singularity of tv and t — Dyt is proved

l

Here we emphasize the following important consequence of maximality, which was

used in the proof:
Dyp(u+10) > Dpu+ Dyb.

Remark also that this type decomposition is not unique in general. We shall see later

that this decomposition is unique precisely when Dyt < cto for some ¢ > 0.
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4.3. Lebesgue decomposition of contents

In this section we present a new approach for the Lebesgue decomposition of finitely
additive measures (or contents, for short). Using the main result of this chapter we show
that the Lebesgue decomposition of contents exists, and corresponds to the Lebesgue
decomposition of their induced forms.

There are many authors who studied the decomposition of additive set functions de-
fined on set algebras, or on lattices of sets (see e.g. [6, 8, 9], 21, 28]. A Lebesgue
decomposition of additive set functions is constructed and characterized first by R. B.
Darst [9]. We shall prove that the content p is strongly absolutely continuous (resp.,
singular) with respect to the content v precisely when the induced form ¢, is almost
dominated (resp., singular) by the induced form +t,.

Let 2 be an algebra of subsets of a set X, and let u, u, (n € N), and v be contents
on it. We say that u is dominated by v (or u is v-dominated) if there exists a ¢ > 0 such
that p < cev. If p, < ppe1 < v for every n € N, then the set function defined by the
pointwise limit

p(A) :==sup pun(4) (A €A
neN

is a content, and p < v. If y is a pointwise limit of a nondecreasing sequence of v-
dominated sequence then p is called almost dominated by v (u <aq v in symbols). We
say that p is strongly absolutely continuous with respect to v (and write u < v), if for
every ¢ > 0 there exists § > 0 such that u(A) < e, whenever A € 2 and v(A) < §.
Note that if ¥ < p and p < v then ¥ <5 v. Remark that if 4 and v are measures on
the o-algebra 2 then p < v is equivalent with the usual notion of absolute continuity
(denoted by p <, v), that is ¥(A) = 0 implies u(A) = 0 for all A € . For contents we
have p < v = p <Lz V.

We say that p is singular with respect to v (or p and v are singular, p L v), if
i A v = 0. For measures this is equivalent with the existence of a measurable subset P
such that pu(A) = u(ANP) and v(A) =v(A\ P) for all A € 2.

The following two results was proved by Konig in [21].

Theorem 4.5. Let u and v be contents on the algebra 2A. Then the following statements

are equivalent.

(1) p <5 v.
(7)) lim (,u A nu) = sup (,u A nu) = U.

n—-+oo neN
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Proof. To prove (ii) = (i) assume that u €« v. Then there exists ¢ > 0 and (A, ),en € 2
such that v(A,) — 0 and p(A,) > € for every n € N. Now fix N € N such that
@An@uj>Mxy—g (n > N).
Since (A nv)(X) < p(X \ Ag) + nv(Ay) by definition, we have
HX\ A + nv(A) > p(X) == (n 2 N).
Hence, if k is big enough, we have

MAQ<nMAQ+§<e.

This is contradiction. For the converse implication see Lemma [3.9] 0
Corollary 4.6. Let u and v be contents on the algebra 2. Then the set function
i (A) = su;l\)I (nAnv)(4) (Aed)
ne

is a content, and p,, <s V.

Proof. Since the sequence (u A nv),en is monotonically nondecreasing and majorized by
i, then g, ,, is a content, and p,, < p. Let k € N be fixed. Clearly, i, A kv < p A kv
holds, and
1A kv < sup (,u A m/) = Ly
neN

Consequently, ., A kv = p A kv, and

sup (,ur,,, A nu) = sup (,u A nz/) = -

neN neN

By the previous theorem we obtain that p,, < v. O

Now, we are going to investigate the connection between the Lebesgue decomposition
of forms and the Lebesgue decomposition of contents. Let X be a set, let 2 be an algebra
on it, and let ;1 and v be contents on 2A. Let the complex linear space X be the complex

linear span of the characteristic functions of the sets in 2, i.e.,
X :=spanc{y, | A € A}.
Let 1 be a content on the algebra 2, and consider its induced form

t. (o, 1) :Z/w-@du (¢, € X).

X
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In the next lemma we collect some simple but useful property of the above defined

assignment g — t,,.

Lemma 4.7. Let p, p,, and v be contents on the algebra A. Then
(a) p=v if and only if t, = t,,
(b) n<wvifand onlyift, <t,,
(¢) teu =cty, for all c >0,

@ is dominated by v if and only if t, is dominated by t,,

v =t +t,, and

(f) if pn T, then t,, 1T,

e

)
)
(d)
(e) t
)

Proof. The proof is an easy computation based on the equalities t,[x,] = #(A) and

k k
. [Z ijAj] = 3 I Pul4)
i=1 i=1
[l

Recall that if ;1 and v are contents on the algebra 2, then i, denotes the content

sup (u A ny). In the following theorem we describe the almost dominated part of an
neN
induced form with respect to an other one.

Theorem 4.8. Let o and v be contents on the algebra A. Then the t,-almost dominated

part of t, is always induced by a content and belongs to pi,,, i.e., Dy, t, =1t, .

Proof. We prove first that Dy t, and t, , coincide on the characteristic functions. Let

T,V

A € U be fixed, and estimate (%, : t,2,)[x,] from above

(tu : tnzl,) X4 = glI€1£ {’t —g]+ tn%[g]}

< érelg[ {t.[xa\5] + taz, [xE]}

= Inf {§(A\ E) +n’v(E)}

= (LAn*v)(A)

= tunnz[X,4 -

The converse inequality follows from Lemma (b) and from Lemma
(o )] = (0 b))

> (turn = byno ) [X.4]
= 2 tunny (X

= 7 (pAnv)(A).
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Taking supremum in n, we obtain that
Detulxa] = sup(t, : ) [x,] = sup (0 A n*r) (A) = e (A) = b [
ne ne

In the second step we show that t, : nt, < t,\,,. Let € > 0 and ¢ € X be fixed, and

assume that ¢ = 21 )\]XA For any j € {1,...,k} there exist disjoint sets A’ and A7 in
j

2 such that A;- U A” A; and

(1w Anw)(A;) < p(A%) +nv(AY) < (uAnv)(4;) + VR

J

Then

k
(s nt,) [Z A X, ] = inf {t, [Z NiXa, — 9| +ntlgl}
j=1
k k
<t [Z >\jXA3- Z AjXA;/]
=1 =1

k k
- Z I\ 2 Af) + Z A [Prw(AY)

+ nt,

< Z|)\ | (u/\nu)( )+ |/\j5|2k>
< ZP\HQ(M/\W)(AJ)JFS

k
= Yunnv [Z)\jXAj
j=1

Using Lemma [£.7] (f) it follows that Dy t, < t, . Finally, since t,,, — Dy t, is a form,

the square root of its quadratic form is a seminorm. Consequently, using the triangle

inequality we have that

1/2
((tuw Dy t, [ZAJXA}) <Z( vy — Dt )[AjXAjD
—ZIAI( e =Dt )
— Z |\ (ty,r,u[XAj] — Dtutu[XAj]>1/2 0

1/2

k
holds for all ¢ = > \;x, € X. Hence, we proved that Dy t, = t,, .
j=1 !
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Remark 4.9. We can prove in the same way as in the second step that if © and v are

contents on the algebra %l then t, : t, < t ...

Using the above theorem we can characterize strong absolute continuity of contents

by means of their induced forms.

Lemma 4.10. Let p and v be contents on the algebra A. Then the following statements

are equivalent.

(1) p <5 v.
(i) t, <ad to-

Proof. If n < v then p = sup (u A m/) = [ty,. According to Theorem |4.8[ and Theorem
neN
A4 we have Dy, t, = t,,, = t,, i.e, t, < t,. The converse implication is similar. If

t, <aa t, then t,, = D¢ t, = t,. Consequently, u = p,,, ie., p < v. O

As a consequence, observe immediately that f,, is the maximum of all contents which
are majorized by p and strongly absolutely continuous with respect to v.

In the following lemma we describe singularity of contents via the induced forms.
Recall that p is singular with respect to v if p A v = 0, and t, is singular with respect to

t,if s <t, and s < t, imply that s = 0.

Lemma 4.11. Let p and v be contents on the algebra A. Then the following statements

are equivalent.

(1) p is singular with respect to v.

(1) t, is singular with respect to t,.

Proof. First assume that o A v = 0. In this case t,,, = 0. From Remark it follows
that t, : t, = 0, therefore, t, is singular with respect to t, by Theorem (a). On the
other hand, if t, is singular with respect to t,, then t, : t, = 0 according to Theorem

(a). Hence, we have 0 = t, : t, > t,5, : 0, = %tﬂm,, ie, uAv=0. O

Now, we prove the Lebesgue decomposition theorem for contents via their induced

forms.

Theorem 4.12. Let o and v be contents on the algebra 2A. Then p admits a Lebesgue

decomposition with respect to v, namely

= ey + (16— fry)

Furthermore, the Lebesgue decomposition is unique.
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Proof. By Theorem [4.4] it follows that the decomposition
t =Dyt + (tu - Dtutu)

is a Lebesgue decomposition, i.e., Dy, t, is almost dominated by t, and t,—Dy,t, is singular
with respect to t,. We know from Theorem [4.§that Dy, t, is an induced form and belongs
e = Yy, It

follows from Lemma and Lemma that (., <ac v and pg, = p — piy, is singular

with respect to v, i.e., the Lebesgue decomposition exists. Assume that the decomposition

to firy. Since iy, < i, SO f1 — fir, is a content and it is clear that t, —t

is not unique. Let @ = py + p2 be a decomposition, and consider the induced forms. We
show that t,, + t,, is not a Lebesgue decomposition for t,, unless p; = fi, .

Since t,,, , is the maximum of all forms majorized by t,, which are almost dominated
by t,, we obtain that t, , —t, is a form, which is induced by p., — p1. Recall that

[y, — [41 1s strongly absolutely continuous with respect to v, hence we have that

Dtut,U»Q - Dtu (tl-tr,u—lil + tﬂs,u) Z Dfu (tﬂr,u—ul) + Dtu (tlis,u) = Dtv (tur,u—ﬂl)’

which is equal to t,, Therefore, t,, is not t,-singular unless p,, = p;. ]

s ML






CHAPTER 5

The uniqueness of short- and Lebesgue-type decompositions

In this chapter we present (without any significant modification) some results of the
fundamental paper of Hassi, Sebestyén and de Snoo [16]. Namely, we give a necessary
and sufficient condition for the uniqueness of the decomposition theorems. First we show
that the (<, L)-type decomposition coincides with the (<,q, L)-type decomposition. In

fact, we are going to prove that
tregw = (t:10) =10 = Dyt

After that, we will investigate densely defined closable operators. These results will help
us to characterize the uniqueness of the different type of decompositions. This part is
included because of the sake of completeness. For the references and other remarks see
the original paper. As an application, we will close this chapter with the characterization

of closed range operators.

5.1. Almost domination and closability

Let t and v be forms on X, and recall that J is the embedding operator
X/ ker(t+w) C Hin — Hp,

defined by

Tt (T) = T (), reX.

Recall also that the kernel of J** can be described by
ker J** = { lim T4 (zn) | (@n)nen € S(t,w)}.
n—oo

where

S(t,w) := {(@n)nen € X | tzy — 2] = 0,10][z,,] — 0}.

According to (3.6) we know that
2
[(I = P)msw(@)]| , = tlz] = t[2] = ting[2].

The next theorem gives a characterization for the singular and regular part (see Theorem

3.4. and Theorem 3.5. in [16].
47
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Theorem 5.1. Let t and o be forms on X, and consider the (<K, L)-type decomposition

of t with respect to vo. Then the vo-singular part of t can be written as
1 ; = inf — inf _
(5.1) ing.o ] = tlz] + inf {wlz +y] — Inf{t[z] + w[z —y]} },

and the regqular part as
(5.2) treg,w|®] = sup { inf {t[z + y] + t[z]} — w[z + y]}.
yeEX z€X

Proof. Since J*(ran J) is dense in .7, © ker J**, it follows that

tng[2] = ((1 ~ P)(x + ker(t + 1) | (I — P)(z + ker(t + m))

t+1o

= inf {(;v + ker(t+w) + J*(y + kerw) |z + ker(t + o) + J*(y + kerm)) }
t+to

yedom J

— inf {t[x]+m[x]+m(w,y>+m(y,w)+(J*(y+kefm)U*<y+kem)>f+m}

yedom J

yedom J

= tlz] + inf {m[w+y] —tofy] + <J*(y+kerm) | J*(y —|—kerm)>t+m} :

On the other hand, since dom J is dense in J{,, we have

z€dom J

0= inf {<z+ker(t+m)+J*(y+kerm)|z+ker(t+m)+J*(y+kerm)> }
t+1o

(/@ +kerw) | g+ kerw) ) 4 inf {4z] 4 wlz] + w(y,2) + (= 9)}

=—tofy] + (J*(y +kerw) | J*(y + kertn))urm + inf {t[z] + w[z + y]},

zeX

and hence,

<J*(y + kerw) | J*(y + kerm)) = wly| — inf {t[z] + o[z + y]}

t-+10 zeX

Combining these two equations we have the desired equality
in =t inf — inf{t — .
tingo[2] = o] + Inf {wlz +y] — inf{t[z] + w[z —y]}}
Since tregn = t — teing,w, We have the following formula for the to-regular part of t

tesiolr] = sup { inf{mo: + 5] + €]} — ol +4])

Now, define the parallel difference of two forms. This notion was introduced and
studied first by Hassi, Sebestyén, and de Snoo in [15]. Let t and to be forms on the

complex linear space X, and define the parallel difference t — to of t and tv as a mapping
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from X to R U {oco} by

(5.3) (t+w)lz] = igg{f[z +yl—wlyl}  (reX).

We say that the parallel difference t <+ tv exists, if t and w are forms, and (5.3) is the
quadratic form of a form. It is clear that if tv; < toy then t -ty > t + tv,. Now observe

that t.gn can be written as
(5.4) tregw = (t:10) =10

according to (5.2)). The following Lemma (see Proposition 2.7. in [16]) plays an important
role in this thesis. The operator version of this result is due to Eriksson and Leutwiler,

see [11, Lemmas 2.6,2.7]

Lemma 5.2. Let t and to be forms on X Then we have the following line of identities
(5.5) Dp(t: ) = (Dpt) ;o =1t:10

Moreover, for any form s,

(5.6) t:o<s:to & Dt < D,s.

Proof. Observe first that t : to is dominated by tv, and hence Dy (t : w) = t : . Since

the parallel sum is commutative, associative, and monotone in both variables we have
t:1w=Dy(t:w)=sup((t: ) :nw)=sup((t: nw):1w) < (Dyt) : 10 < t: 1.
neN neN
Now we are going to prove the second statement. If Dyt < D5 then

t:w=Dpt:wv<Dys:to=s5:1

holds according to the first part. To prove the converse implication we use induction. The

case n = 1 is clear, assume it holds for n, and observe that
1 1 1
( t):m:(—t:m):tg(—s:m>:t
n+1 n n
1 1 1
<{—=s):(w: Yy <|{—s5]:(w:5)=< :fo
B (ns) (38 < (”5> (3 8) =< <”+ 15)

which completes the proof. 0

The following theorem states that the (<, L)-type decomposition of forms coincides

with the (<,q, L)-type decomposition.
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Theorem 5.3. Let t and to be forms on X. Then t is w-closable precisely when t is
w-almost dominated. In fact, tiegw = Dnt, and hence.

(5.7) Dyt = (t: 1) =+ to.

Proof. First assume that tis to-closable, i.e., t = tieg . According to Lemmal[5.2] Corollary
3.4] and Proposition we have

t=tegw = (t: W) =10 =(Dpt: 1) +10 = (Dyt)regnw < Dpt <t

According to Theorem D,,t = t means that t is tv-almost dominated.
For the converse inequality assume that t is to-almost dominated, i.e., there exists

a nondecreasing sequence of to-dominated forms (t,)nen such that supt, = t. Using
neN

Corollary and Proposition again we have the following line of inequalities

t, = (t)regw < tregw <t
Taking the supremum in n we obtain that t..;w = t, i.e., t is to-closable. O
Corollary 5.4. Let t and o be forms on X. Then

(t — Dpt) : (o + Dyt) =o.
Proof. According to and the previous theorem we have the following for every x € X

((t=Dut) s (0 + D) )] = inf {[[(Z = P)mesnn(x = llEsn + [ Preem(®)[ 0}

yeX

= Inf T = P)mesw(@ = 9t + 1PTw (0 [Fiw f

= inf {[I(7 — P)misw(e) = Tern(®) [P}

which is equals to zero because {m(1w(y) |y € X} is dense ;. O

5.2. A decomposition of densely defined closable operators

This section contains the results of Section 4.1 and Section 4.2 of [16]. For singular
operators and relations, and for a canonical decomposition of general linear relations see

[17]. The first two lemmas can be found in [16] as Lemma 4.1 and Lemma 4.2.

Lemma 5.5. Let T be a linear relation from a Hilbert space € to a Hilbert space J& .

Then the following statements are equivalent:

(i) T** is a bounded linear operator;
(ii)) ran 7™ C dom T;
(i) domT™* = % .
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Proof. First we prove (i) < (ii). It is known that 7** is a bounded operator precisely
when dom 7** is closed and mul 7** = {0}. On the one hand, dom 7** is closed if and only
if dom 7™ is closed (see e.g. [44]). On the other hand, mul 7** = {0} means that dom 7™
is dense, hence domT* = #". Now, recall that T* = JT*, where J{f, f'} = {f',—f}.
Hence identities

HxH =TeT+H=T"aJT",

lead to
(5.8) H =domT™ +ranT" H =ranT™ +domT™,
which implies (i) < (7). O

Similarly, the bounded invertibility of T* can be characterized as follows.
Lemma 5.6. Let T be a linear relation from a Hilbert space € to a Hilbert space JZ .
Then the following statements are equivalent

(i) T** has a bounded inverse;
(ii) domT** C ran T,
(iii) ranT* = .

A closable operator T' is bounded if and only if 7** is bounded. Consequently, Lemma
5.5|says that T is not bounded only if dom 7™ # J#". The following theorem is Proposition
4.3 in [16].

Theorem 5.7. Let T be a densely defined closable operator from € to # . Let v € &
and let P, be the orthogonal projection from & onto span{v}. Then T has the following

orthogonal decomposition

(5.9) T=A+DB

where the densely defined operators A and B are defined by
(5.10) A=(I-P)T, B=PFT.

Here A 1s closable and

(i) if v € domT*, then B* € B(J, *);
(ii) if v € S\ dom T, then B is a singular operator, i.e., ran B C mul B**.

In case (i) one has B*h = (h|T*v)»v and in case (ii) B* = 5 x span{v}.

Proof. The decomposition T' = A + B is clearly an orthogonal decomposition. Since T

is densely defined and closable, the adjoint T™ is a closed densely defined operator. Let
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ve X, |v||lx =1 Tt follows from the definition of A that
(5.11)

A =TI -P)={{fgy € xH|f—(f|lv)gvEdomT*, g=T"(f - (f|v)rv)}.
In particular,
(5.12) dom A* = span{v} & (dom T* N span{v}™).

Since span is one dimensional dom 7™ N span{v}* is dense in span{v}t (see [39]), and
hence dom A* is dense in #. Consequently, mul A** = (dom A*)* = {0}, which means
that A is a closable operator. On the other hand,

(5.13) B*=T"P,={{f,g} € # x X |{(f|v)xv, g} €T},

O

which shows that if v € dom 7™ then dom B* = J#. Lemma implies that B is
a densely defined bounded operator and B* € B(s,.#). Finally, observe that in this
case the closure of B is given by B**h = (h|T*v) v for all h € 2.

If v e # \ domT* then shows that {f,g} € B* precisely when (f|v)y =0
and g = 0. Hence B* is given by

(5.14) B* = {{f,0} € # x X |(f|v)x =0} =span{v}" x {0}.

Consequently, mul B** = (dom B*)* = span{v} D ran B, i.e., B is a singular operator.

In this case the formula for the closure of B is obtained by taking adjoints in ([5.14)).

5.3. Uniqueness of the Lebesgue-type decomposition

The following theorem was motivated by the uniqueness result of Ando [4], and can
be found in [16] as Theorem 4.4.

Theorem 5.8. Let t and w be forms on X and let t be almost dominated by vwo. Then the

following statements are equivalent

(i) t is not dominated by wo;
(i) t ha a decomposition t = t; + to where the non-zero form t; is almost dominated

by to and the non-zero form ty is singular with respect to vo.

Proof. Define the linear relation T on J4, x J{ by

(5.15) T = {{z+kert,z +kert} € 4, x # |z € X}.
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Clearly, T is densely defined and, t is to closable precisely when 7' is the graph of a closable
operator. Furthermore, t is dominated by to precisely when 7" is a bounded operator.

First we prove (i) = (i7). If t is not dominated by w, then 7" is not bounded. Hence,
dom T™ # 7 according to Lemma , and one can choose a unit vector v € ¢\ dom T™*.
Let P, be the orthogonal projection from J# onto span{v}. Then the decomposition of
T (see Theorem leads to the decomposition of the form t

(5.16) tlx] = t[z] + to[7] (x € X)

where t; is defined by

(5.17) tifz] = (I = P)T(y + kerw)|[{ = |/ = P)(z + ker t)[[{, (v €X)
and t; is defined by

(5.18) to[7] = ||P,T(z + kerw)||? = ||(T(z + kerw |v) ]2, (z € X)

It follows from Theorem that the form t; is tw-closable and hence t; is to-almost
dominated by. Since v € 4 \ dom T, t5 is non-trivial. Furthermore, P,T is singular and

(P,T)* = 4, x span{v}. In particular, dom P,T' C ker(P,T)* = J#, and therefore

: 2 2
(5.19) erk‘;rIrlva%ﬂm {II(ty = z) + kerw||%,. + || P,T(z + kerw)|%, } =0

holds for all x € X, or equivalently,
(5.20) inf {rw[y — z] + t2[y]} = 0.
yeX

This is equivalent with the singularity of to and t,. For the converse implication observe
that if t is dominated by tvo, then also t; and t; are dominated by to. In this case, t; is both

to-almost dominated and to-singular, and hence, t; must be o, which is contradiction. [

Now we are ready to state and prove the main result of this chapter (see Theorem 4.6
in [16]).

Theorem 5.9. Lett and o be forms on X. The Lebesgue-type (i.e., (Ka, L) or (Kaa, L)-
type) decomposition is unique if and only if Dyt (or equivalently, tieg ) is dominated by

to.

Proof. Assume first that Dt is dominated by to, and let t; + t; be a Lebesgue-type
decomposition of t with respect to . According to the maximality of Dt, we have on
the one hand

0 < Dpt—t; <Dyt <qtv,
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which implies Dt — t; <,q 0. On the other hand

which implies (Dt — t;) L w. Consequently, Dt — t; = 0. To prove the converse
implication assume that Dyt is not dominated by to. Then there is a non-trivial to-
Lebesgue decomposition of Dyt

(That is, t; <aq W, to L t0.) In this case t can be written as
t=[t; + Dp(to +t —Dpt)]| + [t + t — Dpt — Dy (t2 +t — Dypt)],

which is clearly a to-Lebesgue decomposition of t. Indeed, t; + Dy, (t2+t—Dyt) is to-almost
dominated, being the sum of two such forms, and t; + t — Dt — Dy (ts + t — Dy t) is 1o
singular because it is just the to-singular part of to +t—D,,t with respect to . It remains
only to show that this decomposition differs from the decomposition t = Dyt + (t — Dy t).
Assume indirectly that

Dpt=14 +Dy(ts +t — Dypt),

which leads to

This implies that t; is simultaneously to-almost dominated and (by assumption) singular,

consequently, to = o which is a contradiction. 0

Using the previous theorem, we can characterize also the uniqueness of the short-type

decomposition.

Theorem 5.10. Let t and o be forms on X. The (K, L)-type) decomposition is unique

if and only if t s dominated by tv.

ker ro

Proof. Assume first that t is dominated by to, and let ¢ be a constant such that

ker 1o

t.. . < cw (we may assume that ¢ > 1). Let t = t; +t; be an (<, L)-type decomposition.

Since t is maximal, we have

ker 1o

th=t—t >t (t.,. —t)>o0.

ker 1o ker o —

1 1
—t > ~(t,, —t)>0 and w>-t_ >
C C

SN

Since t; L t, one concludes that t,_ —t; = 0. For the converse implication recall that if

t is to-almost dominated (or equivalently, ro-closable), then it is t-absolutely continuous.
Consequently, every (<,q, L)-type decomposition is a (<, L)-type decomposition as well.
If the (<, L)-type decomposition is unique, then t_ = = Dyt, and t_ = <4 to according

to the previous theorem. [l
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We close this chapter with an interesting application. Namely, the following theorem
is a characterization of closed range operators. We know from Theorem that if A
is a bounded positive operator on the Hilbert space 7 then A splits into the sum of
a B-absolutely continuous and a B-singular part. The following theorem states that if

ran B is closed, then the decomposition is unique.

Theorem 5.11. Let B be a bounded positive operator with closed range. Then for every
Ae B, ()

A=A_, + A,

<,B
18 the unique decomposition of A into B-absolutely continuous and B-singular parts.

Proof. If ran B is closed, the inclusion ker B C ker A <. implies that ran A C ran B.

B <,B

Furthermore, if ran B is closed, then the following two sets are identical according to the

well-known theorem of Douglas [10]
{SeB(HA)| (S<A) A (ranSCranB)} ={SeB,(H#) | (S<A) A (S<aB)}.

Consequently, the statement follows from Theorem [2.3| and the previous theorem. O

Observe also that if ran B is closed, then A coincides with DgA in the sense of

<,B
Ando [4], and therefore it is strongly absolutely continuous (or closable) with respect to

B. Furthermore, according to [49, Theorem 7] we have the following characterization of

closed range positive operators.

Theorem 5.12. Let B be a bounded positive operator. Then the following are equivalent

(1) ran B s closed,

(i) VAe BL(#): A_, <4B,

<,B

If any of (1) — (4i7) fulfills, then DgA = A_ , for all A € B ().

<,B






CHAPTER 6

Parallel sum and parallel difference

The aim of this short chapter is to investigate the inverse operation of parallel addition,
the so called parallel subtraction. In the first section we present an interesting application
of identity

Dyt = (t: 1)+ 10.

Namely, we prove that the almost dominated parts Dyt and D¢v are mutually almost
dominated for every t and tv. In the second section we give a necessary and sufficient

condition for the solvability of the equation t: ¢ = s (with unknown r).

6.1. The equivalence of almost dominated parts

All results of this section can be found in [55]. The operator version of Lemma |6.1]is
due to Pekarev and Smul’jan (Theorem 3.7 in [25]).

Lemma 6.1. Let t and o be forms on the complex linear space X. Then we have
Dypt:D¢o =t: 1.

Proof. Since Dt < t, D¢to < tv, and the parallel addition is monotone, we have
Dypt: Do <t:to

To show the converse inequality, let f and g € X be fixed (h := f + g), and estimate
Dy t[f] + D¢to[g] using the formula Dyt = (t: tv) = w and the parallelogram identity.

D t[f] + Dyw[g] = sup{(t c)[f +u] — m[u]} —i—sup{(t: )[g + v] —t[v]}

> sup {(t:w)[f +u] + (4 0)[g + 0] — wolu] — 4fo]}
> sup {1(t: w)[2h] — w[u] — t[v]}
= 3(t: w)2h] — inf {wfu] + (]}

= 2t : w)[h] — (t: w)[h]
= (t: )[A].

57
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Hence, by taking the infimum over f and g with the restriction f + g = h, it follows that

(t:w)lh] < finefx {Dyt[f] + Dw[g]} = (Dypt: Dav)[h] (k€ X).
ffg:h
Consequently, t : 0 = Dy, t: Dyto. U
An analogous theorem for representable functionals can be found in [52].
Theorem 6.2. Let t and 1w be forms on X. Then we have

(D¢to : Dypt) + Dyt = Dyto,

.e., Dy is almost dominated by Dwt. And by symmetry, Dyt is almost dominated by
Dqto.

Proof. Since Dyt < t, it follows from Theorem [6.1] and the definition of parallel subtrac-
tion that

(Dpt: Do) + Dyt = (t: 1)+ Dyt > (t: 1) =t = Dyto.
On the other hand,

(Dmt : Dtm) - Dmt = DDmtDtm S Dtm.

Corollary 6.3. Let t and v be forms on X. Then

(6.1) Dyt = Dp,wt.

Proof. Since uy < uy implies D,,, < D,,, by definition, we have on the one hand that
Dyt > Dp,pt.

On the other hand, using (5.7)), Lemma [5.2] and the properties of parallel subtraction we
have

Dpwt = (t: Dgv) = Dyo = (t: w) -~ Do > (t: w) - 1w = Dyt
U

Since almost domination and closability are equivalent concepts, Theorem and
Theorem give the following corollary for bounded charges (see also [58]).

Corollary 6.4. Let Z be a ring of subsets of a non-empty set T', and let p and v be
bounded additive non-negative set functions on Z. Consider the (Kq, L)-type decompo-

sitions with respect to each other. Then the reqular parts ji,, and v,, are equivalent
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charges. That s, [tq, s strongly v, ,-absolutely continuous, and v,, is strongly fi,,-

absolutely continuous.

6.2. The parallel difference as a minimal solution

In this section we identify to = t as the minimal solution of an appropriate equation.
First we need some definitions and technical lemmas.

The first notion which is needed is the parallel difference of two forms. Recall that if
t and 1w are (not necessary nonnegative) sesquilinear forms on the complex linear space
X, then the parallel difference t + to of t and to is a mapping from X to R U {oco},which
is defined by
(6.2) (t+w)z] = sug{t[x +y| —rwly]} (z€X).

ye
If t and v are nonnegative, we say that the parallel difference t + to exists, if t -t is a
nonnegative form. The second notion which is needed is the complement of forms. We
define the complement of tv with respect to t (or shortly, the t-complement of w) as a
mapping from X to RU {400} by the following supremum
(6.3) ty[z] = sup {t(z,y) + t{y,z) —wly]} (v e€X).
ye

Remark that the supremum need not be finite, i.e. to; is not a form in general. We say
that the complement oy exists, if the formula above defines a form. Observe that to < v
implies vy < toy.

The following lemma provides a useful formula for the t-complement of tv using the

concept of the parallel difference.
Lemma 6.5. Let t and o be sesquilinear forms on the complex linear space X. Then
(6.4) wy=t+(t—1) =+t

Proof. The assertion follows immediately from the definitions (5.3) and (6.3]). Completing
squares leads to

ro[z] = §2£{t<x’ y) + t(y, ) — wlyl}

- zgg{t[x] + t{y] — t{r — y] — wly]}

= t[z] + zlelg{(f —w)[y] =tz —yl}

= t[z] + (t — o) = t[z].
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Corollary 6.6. Let t and s be sesquilinear forms on the complex linear space X. Then
(6.5) (t—s)—t=(t—5)s+s5=5+1

Furthermore, if t and s are forms, then

(6.6) (t—s5) >t

Proof. The identity (t —s); — t = s + t follows immediately from (6.4). For the other
equality observe that

t(x, h) +t(h,z) — (t—s)[h] —tz] =s(x,h —x) +s(h —z,2) — (t — 5)[h — 2| + s]x].

Hence, we can obtain that

(t —s)¢[z] — tlx] = sup {t(z, h) + t(h,z) — (t — 5)[h] — t[x]}

= igg {s(z,h —x)+s(h—x,2) — (t —s)[h — x] +s[z]}
= sup {s(x,9) +5(g,2) — (t = 5)[g] + s[a]}

= (t — 8)s[z] + 5[]

holds for all z € X. OJ

The previous results imply immediately the following generalization of Theorem 3.
[24] for forms. It is not connected with the subject of this section, we present it for its

own interest.
Theorem 6.7. Let t and v be forms on the complex linear space X. Then
(6.7) Diw=(t—t:1m)y,+t:to.
Proof. The equality D¢to = (t — t: 10) ¢, + t : 10 follows immediately from , because
(t—t:)pp +t:to=(((t:w)+t) —t:10)+t: 1w =Dy.
O

Lemma 6.8. Let t and to be forms on the complex linear space X such that 0 < t < 1.
Then

(6.8) t=r+ (w—t):t
Hence, to¢ is a form which is majorized by t. In particular,

(6.9) t= (0 +t)+1:t
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Proof. Since tfz — y] = t(zx —y,x — y) = t{z] + tly] — t(x,y) — t(y, ) holds for all x and y
in X, it follows that

ro[r] = sup {t(z,y) + t(y, x) — w[yl}

= sup {—t{z — y] + t{z] + t[y] — w[y|}

= {[x] +21€1313{(t— w)ly] — tlr — y]}
= t[z] — gxeljfg{(m —Yy] + tx —y]}

= t{z] — (v —t) : t)[z].
The sesquilinear form (v — t) : t is nonnegative, and majorized by t, hence 0 < to; and

o, < t. ]

For the operator version of the following result see Theorem 3.2 in [25].

Theorem 6.9. Let t and s be forms on the complex linear space X such that t > s > 0.

Then the following statements are equivalent.

(i) There exists a form v such that t: 1w = s.

(i1) (t—s)¢ is a (sesquilinear) form on X satisfying ((t — s)t),L =t—s.

Furthermore, if the equation t : to = s 1is solvable for v, then there exists a minimal

solution, namely s = t.

Proof. First assume that there exists to > 0 such that t: v = s. Recall that
Div = (o:t) +t<to,
hence implies that
t+Dipo=t+(w:t)-t=t+s+t=(t—s).

Hence, in particular (t — s)¢ and s = t are nonnegative forms on X. Since t+ Dv > 0
and (t+ D) — t = Dyro > 0, it follows from (5.5)) and that

(t—=9)), = (t+ Do) =t— ((t+Dw) —t) :t=t—Dyww:t=t—t:w=t—s

For the converse implication, assume that ((t — 5)t) . = t—s. Then, by and 1@' it

follows that the equation t: 3 = s is solvable, and to := (t — 5); — t is a solution, because
s=t—(t—s)=t— ((t—s)), =t—(t+(t—s) —t),

—t—(t+t)=t—(t—t:w)=t:r10.
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So, the equivalence of (i) and (ui) is proved. Now, assume that there exists w, such that
t: 1 =s. In this case Do = (t: tv) -t = s = t, i.e. the parallel difference s + t exists
and 0 < D¢to = s +t < tv. On the other hand, it follows from (5.5)) that

t:(s+-t)=t:Dipo=t:10 =5,

i.e. s—1t1is a solution. Since to was an arbitrary solution, s =t is minimal. This completes

the proof. 0



CHAPTER 7

Radon—Nikodym-type theorems

The Lebesgue decomposition theorem and the Radon-Nikodym theorem are corner-
stones of the classical measure theory. These theorems were generalized in several settings
and several ways (see e.g. [14, 18|, 31, 41, [60]). For example, Radon—Nikodym-type
questions for forms were investigated independently by Zs. Tarcsay, from a different point
of view. For more information and applications we refer the reader to [50].

The main purpose of this chapter (which is based on paper [37]) is to formulate
and prove Radon-Nikodym type results for forms. Consider first a simple version of the

classical theorem.

Theorem 7.1. Let i and v be real valued finite measures defined on a common o-algebra
2 of subsets of a set X. If p is absolutely continuous with respect to v then there ezists

a nonnegative v-integrable function f such that

/,L(A):/f dv (VA €9).

A

The function f is unique up to a set of v measure zero.

By means of positive operators the previous theorem can be phrased as follows: if
is absolutely continuous with respect to v, we can compute the || -[|12(,) norm of every -
simple function via a (not necessarily bounded) multiplication operator, which is positive

and self-adjoint. Indeed,
”XA”%Q(M) :M(A) = /f dV:/fXA dl/:/|f1/2XA|2 dv = Hf1/2XA||%2(V)
A b's b

holds for every A € 2, and similarly, for every 2-simple function. Our main purpose is to
prove an analogous theorem in the context of forms. Namely, for every pair of forms t and
tv, the Lebesgue decomposition exists, and the almost dominated part can be computed
via a (not necessarily bounded) positive self-adjoint operator acting on a Hilbert space
associated to the form to.

Let t and tv be forms on the complex linear space X, and consider the Hilbert spaces
I and 4, . The kernel of to and tv + t will be denoted by £ and R, respectively, while

the identity operator on these spaces will be denoted by [, and [, ¢, respectively. Recall
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that since

K=kerroNkert C kertv = £,
the linear operator J, defined by

Jz+R)=x+£ (zeX),

is a densely defined contraction from %, to J%,. Consequently, its closure (i.e., its
second adjoint) J** is a contraction with dom J** = 4, and ran J** is dense in J7,.
Moreover, J* is an injective contraction with dom J* = 77, and ran J* is dense in ¢, (O
ker J**. Consider the operator J**J*, which is an everywhere defined positive self-adjoint
operator on J#,. Since ker J* = ker J**.J*, the operator J**J* is injective and its (not
necessarily bounded) inverse is also a densely defined positive self-adjoint operator. The
positive self-adjoint square root of these operators will be denoted by (J**J*)'/? and
(J**J*)~/2 respectively.

As was mentioned in the introduction, the classical Radon-Nikodym theorem (see
Theorem |7.1) can be phrased by means of Hilbert space operators. This is done by con-
sidering the Radon-Nikodym derivative as a (positive self-adjoint) multiplication operator
on L%(v). In the following theorem we present an analogous result. Namely, the quadratic
form of the tv-regular part of t is derived from a positive self-adjoint operator acting on
the Hilbert space associated to the form tv.

Before stating the main result of this chapter, recall that the form induced by the
orthogonal projection I — P := @ from %, onto {ker J**}

(7.1) tingw[2] = |Q( + B[ (v € X),

is singular with respect to tv.

Theorem 7.2. Let t and v be forms on the complex linear space X. Then
(7.2) te] = [[(J7T) 7 = L] P+ Q)5 + Q@ + R[5y (2 €X)

i1s a Lebesgue-type decomposition of t with respect to 1v.

Proof. Let x and y be arbitrary elements of X, and consider
[(Tose = Q)@ + 8) + T (y + D)4
According to the equalities

(S y+2)Q+R),, = W+LlJ*Qz+8), =0,

wH+t
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and

(z+RI1QE+R)), ., = Q@+ R[5

one obtains that
[(Toe = Q) + &) + T (y + L)l =
=llz+ 8+ T+ £) = Qa + K]l =
o Rt 1+ D+ QG + DI+ 2Re(S(y + )] QL + )
+2Re(z + RI T (y+L2)),,, —2Re(z+ R[Q(x +R) ., =
= o+ Kllgse + 1770 + )5 — Q@ + R) 54 + 2Re(z + R J*(y + £))
= wofa] + tz] + [|(J7T) 2y + L)% — 10 + &) |5 + W (g, h) + (R, 9),

m+t+

o+t

o+t

where the last equality follows from

17+ D)= (S W+ )T+ L), = (I T+ L) |y+2), =
= ((J=T) Py + [ (J*T) Py + &), = I(J*T) 2 (y + 2%

and

(Jy+8)|z+8R),,, =W+LlJ*@+R),=@W+Llz+L) =w(yz).

+t

There is another observation which is needed. Namely, completing squares gives
1T T) 2 (y + L)%, + 2] + (2, y) +w(y,z) =
= [[(J*T) 2 @+ L)+ (JHT) y + D)5 — T T) ™ = L) (2 + LI
We are now in the position to verify . Observe first that
Inf [|(loye = @)z + K) + Ty + e =0,

because ran .J* is dense in (ker J**)*. On the other hand, since ran J**.J* C ran(J**J*)!/2

and ran J**.J* is dense in 7, one obtains

inf ||(J*T) V2 (x4 L) + (T2 (y + &)1 =0,

yex

and hence
(e = Q)+ 8) + T+ ) =

= tlz] — |Q(z + R) [ = I(T7T) " = L] (2 + I3,
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Since tging w 1S singular with respect to ), it remains to show that the form t,eq w, defined

by

(7.3) tregw (2] = t[z] — tingw[2] = [[(J7T) 7 = L) Pz + Q)5 (2 € X),

is tu-closable, or equivalently, tv-almost dominated. From now on we will use the notation
T = [(J*T) L = I]V2

Due to the spectral theorem, there exists a unique resolution of the identity £ on the
Borel subsets of the real line, such that

+oo

T = /)\dE()\).

— 00

For a fixed 2 € X, the Borel measure w — (E(w)(z + £),2 + £) _ will be denoted by E,.
Consider the bounded positive self-adjoint operators T;, on J7,, defined by

+oo
T, := /min{n, A dAE(N),

and the forms
(7.4) tolz] == (T2 (x + &), 2+ L), = ITu(z + L)%

Since the inequality
“+o00 “+o00
o] = / Imin{n, A}2 dE,()) < / A2 dE,(\) = b le]

holds for all € X, we have t, < t, . On the other hand,
to[z] = [Tl + D)% < 1 T0llsum) 17 + Ll = 1TallB s, wl2],

i.e. the forms t, are majorized by t, dominated by tv and clearly

(7.5) sup t, = treg
neN
which means by definition that t..sn is almost dominated by tv. O

We close this section with a weaker Radon-Nikodym-type result. The classical Radon—

Nikodym theorem (stated in Theorem can be view also as follows

10 (1), =) = [ o= [ £oxe dv=(F10)ya, = i (b,
F T
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where f,’s are step functions. So that, the following theorem is a natural generalization.

Lemma 7.3. Let t and v be forms on X and assume that t < c¢-vw for some ¢ > 0. Then

for every y € X there exists a unique vector &, in J&, such that
Ve e X: t(z,y) = (r+ kerw | &)w.

Proof. Let y be an arbitrary but fixed element of X and define the linear functional ®, as

follows
D, X/kernw — C; x+kerto — (x4 kert | y + ker t),.

According to the Cauchy-Schwarz inequality and the assumption it is clear that ®, is a

bounded linear functional. Indeed,
1@, (z + kerw)|* < ||z + ker t||7 - |y + ker t]|7 < ¢® - ||z + ker o[ - ||y + ker ro]|2.

Consequently, due to the Riesz representation theorem there exists a unique vector ¢, in

J;, such that
Ve e X: t(z,y) = (x+kert |y +kert)y = O (x +kert) = (v +kerw | §)w.
U

Theorem 7.4. Let t,vo € F,(X) be forms on X and let t be almost dominated by vo.
Then for every y € X there exists a sequence (Yp)neny € XN such that

Vo e X t(r,y) = lim w(z,y,).

n—-4o0o

Proof. Fix an arbitrary y € X. Since t is almost dominated by tv, there exists a suitable
sequence (t,)nen of to-dominated forms and a sequence (&, ,,)nen Of representant vectors

such that
nl_i)rfootn =t and (VzeX) (VneN): t,(z,y)=(r+kerw | & n)w.
As t, < t, we can apply the Cauchy—Schwarz inequality on the form t — t, that gives
(6= ) (2, 9)]" < (t— ) 2] (t = t)[y] = 0, 0 — +oo,

whence we infer that

t(x,y) = lim t,(z,y) = nl_l)I_{lQQ(% +kertw | & 1)w-

n—-+oo
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Since X /yerw is dense in H,, we can choose a sequence (y,)nen € XN such that
|€yn — (yn + kerwo)|| = 0.
According to the Cauchy—Schwarz inequality, this implies that
[(z +kerto | &)w — (@ +kerto | g, + ker )y, | — 0
and thus

Ve e X: t(r,y) = lim w(z,y,).

n—-+o0o



CHAPTER 8

Extremal problems for forms

The aim of this chapter is to investigate some extremal problems that are in close

relation with the Lebesgue decomposition.

8.1. Infimum of forms

In this section (which is based on [54]) we present a generalization of Ando’s theorem
for nonnegative forms. It is known that B, (2¢) is a so-called antilattice with the order
induced by the cone of positive operators [19]. That is, for self-adjoint operators A and
B the infimum A A B € B, () exists precisely when A and B are comparable.

The situation is completely different when consider the positive cone B, (%) instead
of Bga(7). The problem whether the infimum A A B € B () exists for two posi-
tive operators has been studied by several authors in mathematical physics. Particularly,
Moreland and Gudder have solved it when the space is finite dimensional [13]. In the
general case a necessary and sufficient condition was given by Ando [5]. He used the con-
cepts of the parallel sum and the generalized short of positive operators. These notions
were introduced by Anderson, Duffin and Trapp for the matrix case (see [1, 3, 2]). The
infinite dimensional case was further studied by Ando [4], Fillmore and Williams [12] and

Pekarev and Smul’jan [25].

Next we briefly review some basic definitions. For more details the reader is referred
to [5] and [25].

Let 7 be a complex Hilbert space and denote by B () the cone of bounded positive
operators on 7. We say that the positive operators A and B are comparable if B < A
or A < B. The parallel sum A : B of two positive operators A and B is defined by the

quadratic form

(8.1) ((A:B)h|h) = inf {(Ag|g) + (Bh—g)|h—g)} (heH).
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The notion of generalized short of operators was introduced by Ando in [4] by means

of the strong limit

(8.2) [B]A = nh_>nolo (nB: A).
Note that 0 <nB: A< (n+1)B: A< Aand [BJA=sup (nB: A).
neN

Now, we are ready to present of the result of Ando (Theorem 6. in [5]):

Theorem 8.1. Given A, B € B (), the infimum AN B ezists in B, () if and only
if [A]B and [B]A are comparable. In this case

AA B = min{[A] B, [B]A}.

The following construction (cf. [27]) gives an opportunity to consider forms in terms
of positive operators. Let t and v be nonnegative form on the complex linear space X

such that v < t and consider their auxiliary Hilbert spaces { and J7;,, respectively.

Let us define the operator Ji y from X/ger ¢ C 4 to J4, by
(8.3) Jiw(x +kert) =z +kerw  (z € X).

Since ker t C ker to we have that the operator Ji, is a densely defined contraction, hence
its closure (i.e. the second adjoint of Ji ) is a contraction with dom S = ¢ such that
ran J{, is dense in 77,. Now, consider the bounded operator J{, J{7, on 7 and observe
that

(szjzi;(fb'—l-kert),x—l—kert) (x + ker t) Jf,;;(x—l-kert))m

(T
=

r + kerto, x+kerm)

w[z].

Recall that if 7 is a Hilbert space then there is a bijective isometric correspondence
between the operators in B(7#°) and the bounded sesquilinear forms on 7, given by
A+ ty, where A € B(J¢) and

(8.4) ta(z,y) = (Az,y) (z,y € H).

Let us denote by F(t) the set of nonnegative forms on X which are majorized by t and
let £(t) be the set of those positive operators on .7 which are majorized by the identity.
The mapping defined by the above construction will be denoted by iy, i.e.

(8.5) i F(t) = E(t); o= () = Jf I
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It easily follows from the definition that i;(0) = 0 and i(t) = I where 0 and I denote the
zero and the unit elements in B(J%), respectively.

The following lemma plays a key role in the proof of our main result.

Lemma 8.2. Let iy be the above defined map. Then
(a) i 1s bijective.
(b) Ifu and w € F(t), then u < w if and only if if(u) < i(t).
(¢) If (up)nen € F(t) such that u, T u, then u € F(t) and i(u) = supig(u,).
(d) Ifu,ro and u+1w € F(t), then iy(u) + ig(w) = iy(u + 1o). "
(e) Ifu and w € F(t), then u:w € F(t) and ig(u: w) =i (u) : ig(mw).
(f) If u and o € F (%), then Dyt € F(t) and if(Dyto) = [ig(u)]i(t).

(a) If u,w € F(t), such that u # o, then there exists € X such that u[z] # wlz].

Hence the equalities

ulz] = (J{Jii(z + kert) | 4 ker t),
and

w(z] = (JiwJin (@ + kert) |z 4 kert),

imply that i(u) = J{,Jit # Jiwdin = i(tv). Consequently the mapping i

,u

is injective. On the other hand let A be an arbitrary element of £(t). Then
(A(z + kert) |z + ker t)t < (I(x + kert) |z + ker t), = t[z] thus it is clear that
the sesquilinear form w defined by w(x,y) := (A(z +kert) |y +kert), is in F(t).

Moreover,
(ie(ro)(z + ker t) |z + kert)t = (Jindin(@ +kert) |z + kert)t = 1[z]
and
(A(z 4 kert), z + ker t), = wlz]
imply that i¢(w) = A. Hence i; is surjective.

(b) The equivalence follows from the equalities ufz] = (J;,Ji%(z +kert) |z +kert)),
and w[z] = (J{ Sz +kert) |z +kert)), for all z € X.

(c) Recall that if (u,),en is @ monotonically nondecreasing sequence of nonnegative

forms which is bounded from above by a nonnegative form t, then the pointwise
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limit supu,[z] = u[z] exists and defines a nonnegative form, such that u < t.
neN

Using (b) the sequence (if(un))ne is monotonically nondecreasing and bounded

N
from above by i¢(t). The equality i¢(ut) = supi¢(u,) follows again from (b).
neN

(d) Combining (u 4 w)[z] = u[z] + wlz] with the equality
s[z] = (J{,Je(z + kert) |z + kert)t

and replacing s respectively with u, to, and u + tv the required equality follows.

(e) Recall that (u : w) < u,tv and that (u : w)[z] = ig;fe{m[g + x] + ug]}. For
g
A, B € £(t), the parallel sum A : B is given by the formula

((A:B)(a +kert) |z + kert), =

:y-&-k(ia?tfe%/t {(B(z +y+kert)|z+y+kert), + (A(y + kert) |y + kert), }.

Replacing A and B respectively by ii(u) and i;(w), and using that
wlg 4 2] = (i(w)(g + z + kert) | g + = + kert),
and
ulg] = (i(u)(g + kert) | g + ker t)t

the equality i¢(u : ) = i(u) : ig() follows.

(f) Since (to : nu) < v < t, so Dy = sup(w : nu) is an element F(t). Furthermore,
neN
i¢ is isotone and preserves the parallel sum, hence

iy(Dyto) = it(ilelg(m tnu)) = ilelg(it(m) tnig(u) = [i(u))i()
holds.
O

Now we are ready to prove the main result of this section. Namely, we give a necessary

and sufficient condition for the existence of the infimum of two given nonnegative forms.

Theorem 8.3. Let t and v be nonnegative forms on the complex linear space X. Then
the following statements are equivalent.
(i) Dyw < Dyt or Dyt < Dyto.
(ii) Do <t or Dt < to.
(i) The infimum t A\ vo ezists.
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Proof. Assume that Dy < Dyt (resp. Dyt < Dyto). From the inequality Dyt < t (resp.
D¢ < w) it follows that D¢to < Dyt <t (resp. Dyt < Dyto < tv).

On the contrary assume that D¢v < t. The inequality D¢o < to implies that
D¢tv <,q tv. On the other hand, Dyt is the maximum of all forms which are majorized
by t and almost dominated with respect to to, hence D¢v < D,t. Similarly, Dyt < to
implies that Dyt < Dyto. So the equivalence of (i) and (ii) is proved.

Assuming (i), the infimum of Dyt and Dyt exists and equals to the smaller. We shall
prove that t A to exists and equals to Dt A D¢tv. Let s be a nonnegative form such that
s < tand s <. As in the proof of (i)=-(ii), we have that s < ro implies § <,q 0. Thus
the inequality s < t and the maximality of D,t gives s < D,,t. Similarly, we have that
5 < D¢to, and hence s < Dyt A D¢to. On the other hand, from the inequalities Dt < t
and Do < w it follows that Dt ADto <, tv. This shows that Dt AD¢tv = tAto holds.

Finally, we prove that the existence of tAto implies that Dt and D¢tv are comparable.
Consider the sets F(t+1), and £(t+10) and the mapping i¢;n. Recall that i¢;y, is defined
by

g FE+m) = Ef+1); u e (u) = Jf-g—m,u‘]:im,u'

Recall also that i¢,n is bijective, order preserving, and preserves the parallel sum. Con-
sequently, if the infimum of t and w in F (t + ) exists, then iy (t) and igye () have a
greatest lower bound in By (). Using Theorem this is equivalent to

it (D]t (0) < [isw (0)]icin () oF [iiw (0)]iviw () < ficiw (H)]igw ().
Now Lemma [8.2] (f) completes the proof. O

Remark 8.4. Observe that Ando’s theorem was used in the proof above only in the
special case when A, B € B, () and A+ B = I. (See [5], Theorem 2.)

8.2. Extreme points of form segments

Our next purpose is to describe the extreme points of [0,t]. These results were moti-
vated by Pekarev’s paper [26] (see also [11], [31]). First we recall the notion of closability.

If t and 1o are forms, t is called ro-closable if

wlz,] -0 and tlx, —x,] =0 imply tz,] —0
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for any sequence (x,,),en of X. Recall also the nontrivial fact that t is to-almost dominated
if and only if t is tv-closable.

To prove the main result of this section we need also the following lemma.

Lemma 8.5. Let t,10,h € F,(X) be forms and assume that t is vo-dominated. Then the

following statements are equivalent

(i) w LB,
(ii) Dy (t+b) = Dyt.

Proof. Since wo L § is equivalent with Dy = 0, implication (i) = (7) follows from
Dyt =Dy (t+h) > Dot + Dih > Dyt

To prove (i) = (i) observe first that t = Dyt < Dy (t+ ) < t+ b, consequently,
Dy (t+bh) = t + € with some ¢ € F (X) (0 < € < b). Assume indirectly that € # 0.
Since to 1. h and € < h, we have to L . Consequently, £ is not to-closable, because
the only form which is simultaneously tv-singular and tv-closable is the identically zero
form. In this case, there exists a sequence (z,)neny in X such that €[z, — x,,] — 0 and
w[z,] — 0, but £x,] - 0. Since t is to-dominated, t[x,,] — 0 holds for this sequence, and
thus t[x, — z,,] — 0, which is contradiction. Indeed, t+ € is to-closable by assumption,
but
(t+¥€[z, —x,] — 0, w[z,] — 0 (t+€)[z,] =~ 0.

Assume that t and 1 are forms such that o < t. We say that 1o is a disjoint part of t
if o and t — to are singular. The following theorem states that the extreme points of [0, ]
are precisely the disjoint parts of t.

For the operator version of the following theorem we refer the reader to [11].

Theorem 8.6. Let t and w be forms, and assume that wo < t. Then the following

statements are equivalent.

(i) w is an extreme point of [0, ],
(ii) w is a disjoint part of ¢,
(ili) Dpt =
A
(iv) (Au): ( ) sipu for all A, > 0.
(v) (Au):t=u: (At) for all A > 0.
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Proof. To prove (i) = (it) assume that t is not singular with respect to t — to. In this
case, according to Theorem (a), o : (t—w) # 0, and hence,

1 1
§<m— (ro : (t—m))) +§<m+ (ro : (t—m))) =1
is a nontrivial convex combination in [0, t]. Implication (i7) = (ii7) follows directly from

Theorem [£.3(b) and Lemma
Dyt =Dy(to+ (t —w)) = Dyptv = 1.

To prove (iti) = (i), assume that Dyt = w0, but w is not an extreme point of [0,4]. In
this case, there exists h, ¢ € [0,4] (h # €) and A € (0,1) such that v = A\h + (1 — \)E.
According to Proposition 4.1, we have

n
nA+1

t:nw >bh:n\h= h = w=Dyt>H

and similarly,

n(l—A)

: >t:n(l— =
t:nto > €:n( e A= +1

E = w=Dyt>¢t

These imply that to = b = £, because if there exists a € X such that rlz] > h[z] or
w[z] > €[z] then

w[z] = Arofz] + (1 — Mwfz] > Ab[z] + (1 — N\)E[z] = wz],

which is contradiction. Now we prove the implications (iii) = (iv) = (v) = ().

Assume that tv is a t-quasi unit, and observe that

() & (1) = (o) (D (1) = () : (4Dt = (o) : o) = 5o

according to the properties of the parallel sum and the following equalities
t:1w=Dy(t: w)=Dyt: .
Assuming (iv) it is clear that

A
(Ao) 1 t= H—)\m =10 : (At).

Finally, since w < t, property (v) implies that

Dyt =sup (t: (ntv)) = sup ((nt) : wv) = Dy = 10.
neN neN
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Remark that if w is an extreme point of [0, t], then the equivalence (i) < (ii) asserts
that t — to belongs also to ex]0, t|.
The following observation will be very useful, hence we state it separately. This is just

the translation of [11, Theorem 4.2, Corollary 4.3] to the language of forms.

Lemma 8.7. Let t and v be forms on X. Then the following statements are equivalent.

(i) t is a w-quasi-unit.

(ii) t: 10 = it.

Proof. If t is a t-quasi-unit then t : w =t : Do =t : t = %t according to (5.5)). To
prove the converse implication, assume that t : v = %t. Define the sequence \; = 1,
A= M1 (A1 + 2) for k > 2. Since A, > 2F=1 it is enough to show that

Ak

Apt) o=
(k)m 14+ M

holds for all £ € N. If this is the case, taking the supremum in k € N we obtain Do = t.
Ifk=1thent:to = %t holds by assumption. Now assume that it holds for some
k € N. Using the hypothesis twice, we obtain that

1 1 1+ M\ 1
t=t: — = Art) P — =
T+ M e < N (W m)) P
1+ X 1 1+ M\
=((14+ M)t : w:—m | =(1+M)t): ————w0 =
(s (e ) = (4 A9 s 1
1 1+ A
Akt1 Akt1
and hence,
A A
Oesrt) : 0 = k+1 - k+1

(T+M)2 T+ N
0

Observe that if t and o are forms on X, then the form 3 € [0, t]) becomes a solution of
(8.6) (t—3):(v+3)=0

precisely when tv + 3 is an extreme point of the interval [0, t + w]. Indeed, the expression
(t—3) : (v +3) can be written as (t+ 10 — (v +3)) : (v +3) =0, i.e. w + 3 is a disjoint
part of t + 1, or equivalently, 1o + 3 € ex|0, t + 1o].

Remark that ex[t, w] = {t+u: u € ex[0, 0 —t|}. Obviously ex|t, to] contains all points
of ex[0, w] in [t, w]. The converse is not true if t ¢ ex|0, w].

Theorem 8.8. Let t and w be forms on the complex linear space X. Then the following

statements are equivalent
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(i) tis an extreme point of [0,t+ ro].
(1) ex[t,t + w] C ex[0, t + to].

Proof. The implication (i7) = (i) is trivial. Conversely, assume that t is an extreme point
of [0, t+1], or equivalently t : to = 0. If u € ex[t, t+w], then there exists v € ex[0, ] such
that u = t + v. Recall that v is an extreme point of [0, to] exactly when Dy(to —v) =0
and Dyto = v. Remark also that Dy (t 4+ v) = Dy,0, because v is dominated by ), and
t is singular with respect to to. Now, we need to show that t + v € ex[0,t + ], i.e
(t+v): (t+1m — (t+1v)) =0. Or equivalently,

Do (to —0) = 0.
Applying Corollary and the previous remarks we have that
Df+0 (m - U) = DDmfu(H'U)(m - U) < DDm(t'i‘U)(m - U) = DDmU<m - U) = DU(m - 0)7

and hence, the proof of the equivalence (i7) < (i) is complete. O

Remark 8.9. Replacing tv with 1o — t we have the following statement:
tcex[0,0] < ex[t, ] C ex|0, to].
The followings are immediate consequence of the previous theorems

Corollary 8.10. Let A, B € B, (J) be bounded positive operators on the Hilbert space
FC such that A < B. Then the following statements are equivalent:

(i) A is an extreme point of the convex set [0, B].

:(B—A)=0.
(iv) ex[A, B] C ex[0, B].

)
(i) The almost dominated part of B with respect A is equal to A.
(171) A

)

Corollary 8.11. Let u and v be contents on the algebra 2. Then the following statements

are equivalent:

(i) p is an extreme point of the convex set [0, v].

pA(v—p)=0.
ex|u, v] C ex|0,v].

(14i
(i

Finally, we are going to prove that the set of w-quasi-units (denoted by Q(w)) is a

)

(i) The almost dominated part of v with respect p is equal to .
)
v)

lattice in contrast with the set F, (X). For the operator version of this result see Theorem
4.2 (iii) < (¢) and theorem 5.4 in [11].
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Theorem 8.12. Let to be a form, and consider the set Q(t0) of w-quasi-units. Then the
partially ordered set (Q(w), <) is a lattice. Namely, if s and t are vo-quasi units, then the
greatest lower bound s A t and the least upper bound s Y t in Q(w) exist, and

sAt=2(s:1), §Y t= D, .

Furthermore, s At =5 At= Dyt = Dys.

Proof. First observe that 2(s : t) is a w-quasi-unit. Indeed,

2(s: 0] 10 = [2(5: )] : [2(w0 2 )] = 2[(s: ) : (1 10)] = 2[(%5) : (%t)] —5:t.

Now let u be a form such that u < s and u < t. According to
2(5:t) > 2(u:u) =u,

it is enough to show that 2(s : t) < s and 2(s : t) < t. This follows immediately from
the previous lemma, because 2(s : t) < 2(to : t) = t and 2(s : t) < 2(s : t0) = s.
This shows also that 2(s : t) is the infimum of s and t in F,(X). Now we show that
2(s : t) = D4t = Dys. Since Dys < Dyww = t we have Ds = Dy(Dys) < Dgt. And by
symmetry, Dt < Ds. On the other hand, Dt < t and D¢ < s imply Dgst: Do < t:s.
Since Dt = D we conclude that %Dst = %Dts < t: s. For the converse inequality
observe that 2(s : t) < 2(s: w) = s, and hence 2(s : t) = D¢(2(s : t)) < Dyto.

To prove that the least upper bound of s and t in Q(tv) is Dy to take an u € Q(tv)
such that u > s and u > t and observe that u = Dyto = Dy,tv > D, (tv. Since
D ¢tv > Dgto =5 and Dy ¢tvo > Do > t it is enough to show that D, ¢tv is a tv-quasi
unit, or equivalently, a disjoint part. This follows immediately from Corollary[5.4] because

(to — Dsi¢tv) : Doypyo < (0 — Dy o) : (o 4+ Dyoyto) = o,

which means that to — D¢ to and D, v are singular according to Theorem [4.3|(a). O



CHAPTER 9

Overview

In this closing chapter we make a short overview of our results. Moreover, we show

also that how this general theory can be used for applications.

Notions, notations

Let X be a complex linear space and let t be a nonnegative sesquilinear form (or
shortly just form) on it. That is, t is a mapping from X x X to C, which is linear in the

first argument, antilinear in the second argument, and the corresponding quadratic form
VeeX: tz] =tz x)

is nonnegative. A crucial fact is that a form is uniquely determined via its quadratic form
due to the polarization formula

3

> it +ity).

k=0

Ve,yeX: t(z,y) =

o

The set of forms is denoted by F, (X). For t,1w € F(X) we write t < w if t{z] < w][z]
for all x € X. Domination means that there exists a constant ¢ such that t < c¢-w. Using
the ordering we can define singularity and almost domination. The forms t and to are
singular (t L ) if for every form s the inequalities s < t and s < to imply that s = o
(i.e., s is the identically zero form).

We say that t is almost dominated by w (in symbols: t <,q ) if there exists a
monotonically nondecreasing sequence of forms t,, each dominated by to, such that t =

sup t,, (pointwise supremum). The form tis w-closable (t < to, in symbols), if
neN

V(zn)nen € XV 0 ((Hzn — 2] = 0) A (w[z,] = 0)) = t{z,] = 0.
It is a crucial thing that t is to-almost dominated precisely when t is tv-closable. The
form t is called absolutely continuous with respect to vo (or t is tv-absolutely continuous,
in symbols: t <, W), if to[z] = 0 implies tjz] = 0 for all x € X. If t € F,(X) then the
square root of its quadratic form defines a seminorm on X. Hence the set
kert:= {z € X | t{z] =0}

79
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is a linear subspace of X. The Hilbert space 7 denotes the completion of the inner

product space X/yer¢ equipped with the natural inner product
Ve,ye X (z+kert|y+kert), :=t(z,y).

Observe that t is to-closable if and only if the canonical embedding (which assigns the
coset x + kert to = + kerw) from 5%, to 4 is well-defined. Strong absolute continuity

means that this embedding is a closable operator.

Decomposition theorems

We establish two decomposition theorems. The first one is the so-called short-type
decomposition, which is a decomposition of t into absolutely continuous and singular parts.
The key notion is the short of a form to a linear subspace of X, which is a generalization
of the well known concept of operator short.

If t and tv are forms on X, then the short of t to the subspace ker to is

VeeX: t_ [z]:= inf txz—y|

ker 1o [ yEker 1o

The short-type decomposition theorem is stated as follows.

Theorem 9.1. Let t,10 € F(X) be forms on X. Then there exists a short-type decom-
position of t with respect to vwo. Namely,

t: tkerm _I_ (t_tkerm)7

where the first summand is w-absolutely continuous and the second one is to-singular.

Furthermore, t 1s the largest element of the set

{seFL(X) | (s<t) A (5§ <ac0)}.

The decomposition is unique precisely when t 15 domanated by to.

ker 1o

A decomposition of t into a w-almost dominated (or equivalently, ro-closable) and
to-singular parts is called Lebesgue-type decomposition. This is a generalization of the
well-known operator decomposition of T. Ando. In order to establish the existence of
such a decomposition, we need to introduce the notion of parallel sum. The parallel sum

t : o is determined by the formula

VeeX: (t:w)z]:= ylgafe {tlx — y] + w[y]}.



RADON-NIKODYM THEOREMS 81

We can define also the operator Dy, : F(X) — F,(X) as follows

Dyt :=sup(t: nw).
neN

The form Dyt is the so-called almost dominated part of t with respect to tv, as the

following fundamental theorem states.
Theorem 9.2. Let t and 1w be forms on X. Then the decomposition

18 a Lebesgue-type decomposition of t with respect to vwo. That is, Dyt is almost dominated

by v, (t — Dywt) is w-singular. Furthermore, Dyt is the largest element of the set
{seFiX) | (s<t) A (5 <aaW)}.

The decomposition is unique precisely when Dyt is dominated by to.

Moreover, for the almost dominated part we have the following two formulae

(Dwt)[z] = inf { lim t{z — z,] | (€p)nen € X ¢ (tn — 2] = 0) A ([2,] = 0)}

n—4o0o
and

(Dwt)[z] = inf { liminf t{z — ,)] | (z)nen € X ¢ w[z,] — 0}.

n—-+00

It turns out that if t and w are forms, then the almost dominated parts have an

interesting property.

Theorem 9.3. Let t and v be forms on X, and consider their Lebesgue-type decompo-

sitions with respect to each other. Then the almost dominated parts are mutually almost

dominated, i.e.,

Dmt <ad Dtm and Dtm <K ad Dmt

Radon-Nikodym theorems

Similarly as for measures, the regular part can be characterized in an appropriate
fashion. The next result is the Radon-Nikodym theorem for forms. To see the analogy

consider the following line of equalities:

L2(v)

ol =Py = [ £ v =[x dv=IVF
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Theorem 9.4. Let t and w be forms on the complex linear space X. The following

statements are equivalent:

(1) t is ro-closable,

(ii) There is a positive selfadjoint (in general, unbounded) operator T in s, such that
X/xero € dom T2 and

Ve eX: tz] = |TY*(x + kerw)|?.

A weaker result, which is according to
U)oy = 0lF) = [ = [ Foxe v = (1),
F T

an other possible generalization of the classical Radon-Nikodym theorem is stated as

follows.

Theorem 9.5. Let t, o € F(X) be forms on X and let t be almost dominated by to.

Then for every y € X there exists a sequence (Yn)nen in X such that

Vee X: t(r,y) = lim w(z,y,).

n—-+0o0o

Extremal questions

It turns out that the Lebesgue-type decomposition is in close relation with some
problems regarding the order structure of forms. The first natural question is whether
the infimum (i.e., the greatest lower bound) t Ato of t and to exists in F (X). Recall that
the infimum of t and t exists if there is a form denoted by t A to, for which t A o < ¢,
t At < 1o, and the inequalities u < t and u < tv imply that u < t A ro.

Theorem 9.6. Let t,ro € F(X) be forms on X. Then the following statements are

equivalent.

(ii) Dgw <t or Dyt < 1.

(iii) The infimum t A vo ezists.

The Lebesgue-type decomposition turns up again by examining the extreme points of

the convex set [0, t]. Here the segment [t;, to] for ¢; < t5 is defined to be the convex set
[t 6] ={s € Fi(X) | i <5 <t}

The following theorems characterize the extreme points of form segments.



9.1. APPLICATIONS 83

Theorem 9.7. Let u and t be forms on X, such that u < t. The following statements are
equivalent

(i) u and t — u are singular,

(7)) Dyt =u,

(i73) u is an extreme point of the convex set [0, 1].

Furthermore, we have the following characterization.

Theorem 9.8. Let t and v be forms on X. Then the following statements are equivalent

(i) t is an extreme point of [0,t+ ],
(17) ex[t, t + w] C ex[0, t + tv].

Replacing vo with vo — t (if t < ) we have

tecex[0,w] < ex|t, ] Cex|0, w].

9.1. Applications

In this section we carry over the previous theorems for positive definite operator func-
tions. Szymariski in [48] presented a general dilation theory governed by forms. We will
see (after making some generalities) that the absolutely continuous part in Theorem
(and the almost dominated part in Theorem [9.2)) is the largest dilatable part in some
sense. Finally, we describe some order properties of kernels. Throughout this section we
will use the notations of [16] Section 7], which is our main reference. Recall again that
almost domination and strong absolute continuity (or closability) are equivalent concepts
for forms.

Let S be a non-empty set, and let € be a complex Banach space (with topological

dual €*). The dual pairing of z € € and x* € €* is denoted by (x, x*). Here the mapping
():ExeE - C

is linear in its first, conjugate linear in its second variable. The Banach space of bounded
linear operators from & to €* will be denoted by B(&, €*).
Let X be the complex linear space of functions on S with values in B(&, €*) with finite

support. We say that the function
K:S xS — B(€ ¢
is a positive definite operator function, or shortly a kernel on S if

vfex: ) (F().K(st)f(s)) > 0.

s,tes
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We associate a form with K by setting
VigeXx:  wk(fig) =) (f(1),K(st)g(s)).
s,tes
The set of kernels will be denoted by I, (X). If K and L are kernels, we write K < L if
tok < tog.

The following lemma states that the order structures of forms and of kernels are the
same. This statement was proved by Hassi, Sebestyén, and de Snoo in [16, Lemma 7.1]).
An analogous result in context of bounded positive operators can be found in [7, (2.2)
Theorem].

We emphasize here that this is always the crucial question when we want to apply our
general results.

If we take two objects, consider its induced forms, and make the decomposition the-
orems, it is not clear that whether the shorted or closable part is induced by an object.
However, the following lemma guarantees that this is the case when the objects are posi-

tive definite operator functions.

Lemma 9.9. Let K € K (X) be a kernel on S with associated form ok and let to be a

form on X. Then the following statements are equivalent

(i) w < ok,
(17) w =1 for a unique kernel L < K.

Proof. Tmplication (i) = (i) follows from the definitions. To prove the converse implica-

tion define for each s € S and x € & the function
hs oz € X; VueS: hgi(u):=ds(u)x

where d, is the Dirac function concentrated to s. Now, define L pointwise as follows. For

each s,t € S
Ve,ye €: (x,L(s,t)y) = 1w (hey, hsy)
It follows from the nonnegativity of to[-] that

D (1), L(s, 1) f(s))

s,tesS
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is nonnegative for all f € X. The only thing we need is to show that L(s,t) € B(&, €*).
According to the Cauchy-Schwarz inequality, we have for all z,y € € that

|<x7L<57t)y>‘2 = ’m(ht,wa hS,y)|2 < m[ht,r] ) m[hs,y] < mK[ht,w] 'mK[hs,y]

= (@, K(t,)z) - {y, K(s,s)y) < | K(t,1)[B(e.c) - 1K (s, 8)[Be.e) - [2lle - [ylle-

We emphasize here that the preceding is the key observation of this section. Most of
the results gathered below are immediate consequences of this lemma, and the theorems
listed in the previous sections of this overview.

Now, we can define domination, almost domination, singularity, closability, and (strong)
absolute continuity of kernels via their associated forms. We say that K is L-almost dom-
inated; L-closable; (strongly)-L-absolutely continuous if vk is o -almost dominated; o -
closable; (strongly)-to -absolutely continuous, respectively. K and L are singular if vk
and to_ are singular.

Before stating the short-type and Lebesgue-type decomposition of kernels, we mention
a result of W. Szymaniski (reduced to our less general setting). For the details we refer
the reader to [48], (3.5) Theorem).

Theorem 9.10. Let K,L € K (X) be kernels on S with associated forms vk and to.
Then

(a) K is absolutely continuous with respect to L (i.e., kervo, C kertog ) if and only if
there exists a Hilbert space H and a linear mapping T : X /xerw, — H such that

(y, K(s,t)x) = (T(hyy + kervor) | T(hy, + ker mL))H,

(b) K is strongly absolutely continuous with respect to L (i.e., wg is strongly 1o -
absolutely continuous) if and only if there exists a Hilbert space H and a closed

linear mapping T : X /xerw, — H such that
(y, K(s,t)x) = (T(hyy + kervor) | T(hy, + ker mL))H.

The operator T is called the dilation of K and the auxiliary space H is called the
dilation space.

In view of the previous theorem, the following two decomposition theorems can be
stated as follows. For every pair of kernels K and L there is a maximal part of K which

has a (closed) dilation with respect to L. These are straightforward consequences of
Theorem [9.1] and Theorem [9.2]



86 9. OVERVIEW

Theorem 9.11. Let K,L € K (X) be kernels on S. Then there exists a short-type
decomposition of K with respect to L, i.e., the first summand is L-absolutely continuous

and the second one is L-singular. Namely
K= Kac,L + KS,L)
where

D (1), Kacr (s, 1) f(s)) = inf Z ft) K(s, 8)(f(s) = 9(5)))-

s1eS g€E€ker mL
The decomposition is unique precisely when Ky is dominated by L.
Theorem 9.12. Let K,L € K (X) be kernels on S. Then the decomposition
K=D.K+ (K—-D.K),

18 a Lebesque-type decomposition of K with respect to L. That is, D K is strongly L-
absolutely continuous, (K—D_K) is L-singular. The almost dominated part D K is defined
via

Wp, Kk = Dy, ok,

and hence

wp,k[f] = inf { nETmmK[f — Gn) ’ (gn)nen € XN 1 (0k[gn — gm] = 0) A (roL[g,] — 0)}

and

wp,k[f] = inf { ITiLI_T)lglome[f — gn] | (gn)nen € X7 o [z,] — 0}

The decomposition is unique precisely when D K is dominated by L.

Due to Theorem [9.5] we have the following Radon—Nikodym-type result for kernels.

Corollary 9.13. Let K,L € K (X) be kernels on S and assume that K is almost domi-
nated by L. Then for every g € X there exists a sequence (gn)nen € X such that

ViEX: (0K 0g(s) = Tm 370, L(5)gn(s).

The following statements are immediate consequences of Theorem and Theorem

9.0l

Corollary 9.14. Let K,L € K (X) be kernels on S, then D K is DgL-almost dominated.
And by symmetry, DL is D K-almost dominated.
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Corollary 9.15. Let K and L be kernels on S. Then the infimum KAL of K and L exists

precisely when DkL and D K are comparable.

Finally, we have the following characterizations according to Theorem[9.7/and Theorem
0.8

Corollary 9.16. Let J,K € K. (X) be kernels on S, such that J < K. The following

statements are equivalent.
(1) J and K —J are singular.
(17) DK =J.
(iii) J is an extreme point of the convex set [0,K] = {U € K, (X) | 0 < U < K}.
In view of Theorem the previous corollary says that the extreme points of the

convex set [0, K] are precisely those kernels that have closed dilation.

Corollary 9.17. Let K,L € K (X) be kernels on S. Then the following statements are
equivalent

(1) K is an extreme point of [0, K + L].

(11) ex[K,K+ L] C ex[0, K+ L].
Replacing L with L — K (if K < L) we have

Keex[0,L] & ex[K,L] Cex[0,L].
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Summary

The Lebesgue decomposition theorem and the Radon-Nikodym theorem are corner-
stones of the classical measure theory. These theorems were generalized in several settings
and several ways. In 2009, Seppo Hassi, Zoltan Sebestyén, and Henk de Snoo proved a
Lebesgue-type decomposition theorem for nonnegative sesquilinear forms (or shortly, for
forms). The present dissertation contains the author’s contributions to this general de-
composition theory.

The first part deals with several important decomposition theorems of forms. The
reason is that there are a lot of objects in analysis that induce sesquilinear forms in a very
natural way. For example, bounded positive operators, finite measures on o-algebras,
positive definite kernels on Banach spaces, positive linear functionals on (Banach) *-
algebras, and so on.

We establish two different kind of decomposition theorems. The first one is the so-
called short-type decomposition, which is a decomposition of a form into absolutely con-
tinuous and singular parts with respect to an other form. The key notion here is the
so called short of a form to a linear subspace of the underlying vector space. This is a
generalization of the classical notion of operator short defined by Krein.

The second decomposition result is the Lebesgue-type decomposition, i.e., a decom-
position of a form into almost dominated (or equivalently, closable) and singular parts.
This is a common generalization of the well-known Ando-decomposition of bounded pos-
itive operators, the canonical decomposition of densely defined quadratic forms proved
by Simon, and the Lebesgue-Darst decomposition of finitely additive nonnegative set
functions.

We also show that the regular part in the Lebesgue-type decomposition theorem can
be described in an appropriate fashion (similarly as for measures). Namely, regularity is
characterized by means of densely defined closable operators.

We close our investigations with two extremal problems in which the regular part plays
an important role. The first one is the characterization of whether the infimum of two
given forms exists (with respect to the ordering). The second problem is to describe the

extreme points of form segments.
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Magyar nyelvii osszefoglalas

A Lebesgue felbontési tétel és a Radon—Nikodym tétel a klasszikus mérték- és integralelmélet
két sarokkove. Ezen tételeknek szamtalan altalanositasa ismert a matematika kiilonb6zo
teriiletein. Seppo Hassi, Sebestyén Zoltan, és Henk de Snoo nevéhez flizédik a Lebesgue
felbontdsi tétel altaldanositasa nemnegativ sesquilinearis formékra (réviden: formdkra).
Ezt az altalanositast, illetve ennek kovetkezményeit és alkalmazasait mutatja be a dissz-
ertacio.

A matematika szamos teriiletén talalkozhatunk olyan tételekkel, amelyek bizonyos ob-
jektumok reguléris, illetve szingularis részekre valé felbonthatésagat garantaljak. Termé-
szetes moédon addédik a kérdés, hogy megadhatd-e ezen tételeknek egységes targyaldsa,
azaz megfogalmazhatdak-e olyan tételek, amelyeknek ezek az analdg eredmények mind
specialis esetei. Az elsé részben ezt a kérdést valaszoljuk meg.

Két kiilonbozo tipusu felbontasi tételt igazolunk. Az els6 az dgynevezett short-tipusi
felbontds, amely Mark Grigorievich Krein hires eredményének altalanositasa. Bevezetjiik
formak linedris altérre valé shortjanak fogalmét, majd az altalanos eredményt felhasznalva
igazolunk egy-egy analog felbontési tételt operatorokra, halmazfiiggvényekre, illetve repre-
zentalhaté funkcionalokra.

A masik eredmény az ugynevezett Lebesque-tipusi felbontdsi tétel, amely kozos altala-
nositasa szamtalan nevezetes tételnek. Tobbek k6zott Tsuyoshi Ando pozitiv operatorokra
vonatkozo tételének, Barry Simon stirtin definialt formak felbontasara vonatkozo tételének,
és a végesen additiv mértékek felbonthatosagat garantalé Lebesgue-Darst tételnek.

A Radon-Nikodym tétel mintajara megmutatjuk, hogy a Lebesgue-tipust felbontasban
szereplé regularis rész mindig egyfajta kanonikus alakba irhaté. Nevezetesen, bebizo-
nyitjuk, hogy az abszolit folytonossag jellemezheté stirtin definidlt lezarhaté operatorok
segitségével.

A disszertacié masodik felében olyan extremalis kérdéseket valaszolunk meg, amelyek-
ben a Lebesgue-tipusu felbontas kulcsszerepet jatszik. Az egyik probléma annak eldontése,
hogy két adott formanak 1étezik-e infimuma a kvadratikus alakok pontonkénti rendezésére
nézve, a masik pedig egy ugynevezett szegmens extremalis pontjainak meghatérozasa. Be-

bizonyitjuk tovabba, hogy az ilyen formaszegmensek extremalis pontjai halét alkotnak.
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