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Who is Harnack?

Carl Gustav Axel Harnack (1851-1888),
born in Tartu, Estonia, died in Dresden, Germany.
PhD in 1875 from Felix Klein (...... Klein bottle ...... )

wikipedia.org
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The classical Harnack inequality in Potential Theory

Axel Harnack's book, pp.158, 1887, Die Grundlagen der Theorie des
logarithmischen Potentiales und der eindeutigen Potentialfunktion in
der Ebene, Leipzig: V. G. Teubner

In English: Foundations of the theory of the logarithmic potential and

single-valued potential functions in the plane

in which an inequality of a positive harmonic function was
introduced, later generalized to solutions of elliptic or parabolic
partial differential equations. Perelman’s solution (2003) of the
Poincaré conjecture uses a version of the Harnack inequality, found by
R. Hamilton (1993), for the Ricci flow.
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The Harnack inequality in Functional Analysis

Let f(z) be a positive harmonic function on |z| < 1 in the plane.
Then

ﬂm1+ll<f()<f@ﬁ4w3

Recall that a harmonic function is a twice continuously differentiable

function on an open set (in R” or C") satisfying the Laplace equation

V=0

Example: Take a point z on |z| = 0.5. Then 1£(0) < f(z) < 3f(0).
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A harmonic function defined on an annulus
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Courtesy: en.wikipedia.org
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The Harnack inequality in Functional Analysis

Set z = re'®, where r is the modulus, 6 is the argument of z. Then

0 < F(2) < F(O)

If we scale and translate to an arbitrary disk of radius R with center

7y, then we have for f(z), a positive harmonic function on |z| < R,

<f(z)<f(zo)R+:, lz—2z| <r<R

flao) o
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The Harnack inequality in higher dimension

Denote the open ball (in usual topology) centered at x; with radius R

in the n-dimensional space R” by
Br(x) = {x € R": |x — x| < R}

Consider
B.(x) ={x€eR": |x —xo| < r <R}

Then for any z on the surface of B,(x), i.e., |z — xo| = r, we have

1+p r
T S f(z) < f(zo)(lT =5

1-p
i TR

(Extensions for general domains; proof by Poisson's formula fsphere )
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The Harnack-type inequalities in PDEs
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Poincaré Conjecture: A $1M Millennium Prize Problem

Poincaré conjecture (1904-2003):

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

For compact 2-dimensional surfaces without boundary, ifevery loop &7
can be continuously tightened to a point, then the surface is topologically
homeomarphic to a 2-sphere (usually just called a sphere). The Poincaré
conjecture, proved by Grigori Pereiman, asserts that the same is true for

3-dimensional spaces.

Courtesy: en.wikipedia.org Neither of the two colored &
loops on this torus can be
continuously tightened to a
point. Atorus is not
homeomarphic to a sphere
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Perelman’s Harnack inequality in his solution to

Poincaré Conjecture

Perelman resolved the Poincaré conjecture in 2003...

Perelman's solution uses a version of the Harnack inequality for the
Ricci flow, found by R. Hamilton (1993), which is an extension of a
result of P. Li and S.-T. Yau (1986).
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Li-Yau -> Hamilton

CoMMUNTCATIONS 1N
ANALYSIS AND GEOMETRY

A MATRIX HARNACK ESTIMATE
FOR THE HEAT EQUATION

RICHARD 8. HAMILTON

Tn the important paper|LY] by Peter Li and S.-T. Yau, they show how the
classical Harnack principle for the heat equation on & manifold can be derived
from a differential inequality. In particular, they show that for any positive
solution f > 0 of the heat equation

af

"= Af
on a compact Riemannian manifold of dimension m solving the equation for
¢ > 0, if the manifold has weakly positive Ricei curvature Ry; > 0 then for any
vector field ¥ on M

5 f+20f(V) +fIVP =0

an error term if the Ricei curvature is bounded

a similar result holds
below. The quadratic version in V. given here is equivalent to the more com-
plicated formula in their paper by choosing the optimal V. We shall show
in this paper that the Hamack estimate of Li and Yau is the trace of a full
‘matrix inequality.

Main Theorem. If M is o compact Riemannion manifold and f > 0 is o
positive solution to the heat equation on: M

af _
bt

fort >0, the for any vector field V; on M we have
DiB,f+ 3 fau + D Vi + Dif Vi fV¥; 20

Research partially supported by NSF contract DMS 90-03333.

-> Perelman

9 Differential Harnack inequality for solutions
of the conjugate heat equation

9.1 Proposition. Let g;;(t) be a solution to the Ricei flow (g;): = =2R;.0 <

t < T, and let u = (4x(T — t))~%e/ satisfy the conjugate heat equation
O'u = —u, = Au+ Ru=0. Then v=[(T = t)2Af = [Vf +R) + f = nlu
satisfies

1
*, —HT — + Sl— {
O'v = =XT = 1)|R;; + V.V, f 3(7_,)%\ (9.1)
Proof. Routine computation.
Clearly, this proposition immediately implies the monotonicity formula

(3.4); its advantage over (3.4) shows up when one has to work locally.

9.2 Corollary. Under the same assumptions, on a closed manifold M or
whenever the application of the mazimum principle can be justified, min v/u
is nondecreasing in .

9.3 Corollary. Under the same assumptions, if u tends to a S-function as
t— T, thenv <0 forallt <T.

Proof. 1f h satisfies the ordinary heat equation hy = AAh with respect to
the evolving metric g;;(#), then we have 4 [ hu=0and £ [ hv > 0. Thus we

only need to check that for everywhere positive h the limit of [ hv as t — T

is nonpositive. But it is easy to see, that this limit is in fact zero.

9.4 Corollary. Under assumptions of the previous corollary, for any smooth
curve y(t) in M holds

d
-Z100.0

(ROE0+HOP) - 7= /000 02)

Proof. From the evolution equation f; = —=Af +[Vf[* = R+ gy and
v < 0we get fi+3R—3|VfI?~ sy > 0. On the other hand,— £ (y(2),£)
=fe= < VLA >< =fi+ 5V + 3
we get (9.2).

2. Summing these two inequalities,



Ky Fan's Harnack type inequality for Operators

Theorem (Fan 1988)

Let F be an operator-valued analytic function on the open unit disk
© ={z € C:|z| <1} such that for any z € ©, F(z) is an operator
on a complex Hilbert space H with Re F(z) > 0 and F(0) = I. Then

1—|z| 1+ |z|
I <ReF(z) <
1+ |z| — ()*1—|z|
Proof. For each x in H with ||x|| = 1, define the complex-valued
f.(z) = (F(z)x, x). Use the classical Harnack inequality. O

Note: There is an analog for Im F(z) .
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Tung's Harnack type inequality for matrices

Theorem (Tung 1964)

Let Z be an n x n complex matrix with singular values ry that satisfy
0<rn<1 k=1,2,...,n (i.e, Z is a strict contraction). Let Z*
denote the conjugate transpose of Z and | be the n x n identity
matrix. Then for any n x n unitary matrix U

L l—r det(/ — Z2*Z N
H1+r::<|det((l—UZ))2<Hli_ri (1)

k=1 k=1

Proof. Consider f(U) = det((/ — ZU*)(I — UZ*)) for fixed strict

contraction Z and use the method of Lagrange multipliers. O
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Marcus and Hua

Marcus (1965) gave another proof and pointed out that Tung's

inequality is equivalent to

H(l—rk < |det(/ — A |<H1+rk (2)

for any n x n matrix A with the same singular values as the

contractive matrix Z.

L.-K. Hua (1965) gave a proof of (2) using an inequality he had
previously obtained in 1955: For strict contractions A, B,

(I=AA) (1=BATY
(I—A*B)" (I-B*B)! ) ~
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(i). In the book by Marshall, Olkin and Arnold, Tung's theorem is

cited in which the condition that A be contractive is missing.

(ii). Inequalities (1) and (2) are not equivalent for general matrices.
The right-hand side inequality in (2) is true for all n x n

matrices A; that is,

|det(/ — A)| < ﬁ(l + ri)
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Restatement of Tung's Theorem and equality case

Theorem (Left inequality)

Let Z be an n x n positive semidefinite matrix with eigenvalues
r,r,...,r,. Let U be an n x n unitary matrix such that | — UZ is

nonsingular. Then

H |1—rk| | det(/ — Z2)| 3)
1+ |det(l — UZ)?

with equality if and only if Z has an eigenvalue 1 or UZ has
eigenvalues —ry,—r>, ..., —r,. If both Z and | — Z are nonsingular,

the strict inequality holds for U # —1I.
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Restatement of Tung's Theorem and equality case

Theorem (Right inequality)

Let Z be an n x n positive semidefinite matrix with eigenvalues
r,r,...,r,. Let U be an n x n unitary matrix such that | — UZ is
nonsingular. If0 < r. <1, k=1,2,...,n, then

det(/ — Z?) 1+ rg
4
[det(/ — UZ)P Hl—rk ()

with equality if and only if UZ has eigenvalues ri, ra, ..., r,. If Z is

nonsingular, then the strict inequality in (4) holds if U # I.
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Let x = (x1, X2, ...,X,) and y = (1, Y2, - .., ¥n) be real vectors whose

components are arranged in nonincreasing order:

X1 Z2X2 2 Xy, YIZYoZ "2 Yn

k k
ZX:'SZY/’ k:1727"'7n
i=1 i=1

we say that x is weakly majorizaed by y, written x <, y. If the last

inequality becomes equality, then x is majorized by y, denoted x < y.
X <wY, X<y
Replacing > by [], we have log-majorization:

X <wlog Y, X <log y
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Lemma

Lemma

Let x = (x1,X2,...,X%,) and y = (y1, Y2, ..., ¥n) be nonnegative
vectors and assume that y is not a permutation of x (i.e., the
multisets {xi, X2, ..., X} and {y1,¥a,...,¥n} are not equal). Denote

z=0142z,142,...,1+ z,). We have:
If X <gy, then X <ylog¥

and

1 +x) < [+ ). (5)

k=1 k=1

Proof. f(t) = In(1 + e*) is strictly increasing & convex on (0, c0). O
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If all x;,y; € [0,1), x is not a permutation of y, and x <.s y, then

n

[T =) > TT =) (6)

k=1

Proof. —In(1 — e') is strictly increasing and convex on (—00,0). O
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Proof of the equality case of the theorems

Proof of the Theorems. Use Majorization Theory.
Only show the equality cases. For (3), if Z has a singular (eigen-)
value 1, then both sides vanish. If UZ has eigenvalues
—n,—r,...,—r, then det(/ — UZ) = T];_,(1 + rx). Equality is
readily seen. Conversely, suppose equality occurs in (3). We further
assume that no ry (k =1,2,...,n) equals 1. Since
|det(/ — Z%)| = TTi—; 11 — re|(1 + ri), we have

|det(/ — UZ)| = ] (1 + ro) (7)

k=1

Moreover, by Weyl majorization inequality
IAUZ)| <10g 0(UZ) = 0(Z) = M(2),

where A(X) and o(X) denote the vectors of the eigenvalues and

singular values of matrix X, respectively.

F. Zhang



With A, (X) denoting the eigenvalues of the n x n matrix X,
k=1,2,...,n, by the lemma, we have

n

0 < |det(I-UZ)| = J] [1-M(UZ)| < H 1+ (U2)]) < H(l—f—rk)

k=1 k=1
Thus, (7) yields |1 — A\ (UZ)| = 1+ |\(UZ)| for all k, which implies
M(UZ)<O0for k=1,2,...,n, ie., all eigenvalues of —UZ are
nonnegative. If |A\(UZ)| = A(—UZ) is not a permutation of \(Z),
then, by strict inequality (5), we have

[T (U4 A(U2)]) < TTeea (T + A(2)) = Tlica (T4 1), 2
contradiction to (7). It follows that UZ has the eigenvalues

—h,—r,...,— .
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For the equality in (4), it occurs if and only if
[T;-1(1 = ri) = |det(/ — UZ)|. Note that |[AN(UZ)| <iog 0(Z) and

n

[T xw2)>JJa- w2 > [[a-ez)=]]-r) ®

k=1 k=1
The first equality in (8) occurs if and only if all A\ (UZ) are in [0,1);
the second equality occurs if and only if A(UZ) is a permutation of
o(2), i.e., Spec(UZ) = Spec(Z).
Now assume that Z is nonsingular and suppose that equality holds in
(4). Then UZ has eigenvalues ry, ra, ..., r,. Moreover, the singular
values of UZ are ri,ra, ..., r,. Let P = UZ. Then the eigenvalues of
P are just the singular values of P. So P is positive definite. It
follows that U = PZ~! has only positive eigenvalues. Since U is

unitary, U has to be the identity matrix. The case for (3) is similar. [
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Extension of Tung's Theorem on Harnack inequality

Theorem (Lin and Z. 2017)

Let Z;, i=1,2,...,m, be n X n positive semidefinite matrices.

Suppose that the eigenvalues of Z; are ry. satisfying 0 < ry < 1,

k=1,2,...,n. Then for any n x n unitary matrix U and positive
scalars w;, i=1,2,....m, 3" w; =1, we have

1—r\™ det(/ — (>0, wiZ)) T 14\
T (555) < i ooy < I (G2) " o
k=1 i=1 Fik | et( Z ]_WI l k=1 i=1 ik

Equality on the left-hand side occurs if and only if all Z; are equal to
Z, say, and Z has an eigenvalue 1 or Spec(UZ )=Spec(—Z) (in which
U = —1 if Z is nonsingular); Equality on the right-hand side occurs if
and only if all Z; are equal to Z, say, and Spec(UZ )=Spec(Z) (in
which U = | if Z is nonsingular).
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Outline of the Proof

Fact: for n x n Hermitian A and B, if A\ (A + B) = M\ (A) + M\(B)
for all k, then A and B are simultaneously unitarily diagonalizable
with their eigenvalues on the main diagonal in the same order.
Fan's majorization A(H 4+ S) < A(H) + A(S) for n x n Hermitian

matrices H and S and Lewent’s inequality for x; € [0, 1),

1+ 30 i < - (1+Xf>ai
1

1-— 27:1 apXp 1-— Xi
where >0, ; =1, o; > 0. Equality holds iff x; = xp = - -+ = x,,.
Let r,.i be the kth largest eigenvalue of Z;, i =1,2,..., m, and sx be

the kth largest eigenvalue of W :=3"" w;Z;, k=1,2,...,n

A(W)<Zm:w;A(Z;)7 Zsk<22w, r, 0=1,2...n
i=1

k=1 i=1

(Note that the components of A(+) are in nonincreasing order.)
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Now the convexity and the monotonicity of the function
—|n 1t :
f(t) =In=, 0<t <1, imply

" 1+s 1 ™ owiry
St <y R
o Lose o 1= X wirg
where equality holds if and only if s, = Z;’;l W,-r,.i for all k; that is,
AW) =37, wiA(Z). It follows that all Z; are simultaneously
unitarily diagonalizable with their eigenvalues on the main diagonals

in the same order (nonincreasing, say).
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Applying the exponential function to both sides and using Lewent'’s
inequality yield

n n

H1+sk< Hl—f—Z,f":lw,-r,t

_ — m 4
1 — s o1l — D sy Wil

n m 1 + r’l wi
(1 f) (10)
k=1 i=1 — ik

k=1

I IA
—= 7
—3 [ —
N
==
| |+
=

in which equality occurs in the second inequality if and only if
Mk = rx == Iy for k =1,2,...,n. Thus both equalities in (10)
holdifandonlyif Z1 =2, =--- = Z,,.
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By (4), we have
det(/ — (X1, wiZ) 1+sk>
= . 11
|det(/—UZ,1W, 1) U(l—sk (11)

Combining (10) and (11) gives the second inequality of (9).

Note that the inequalities in (10) reverse by taking reciprocals, which

implies

z 1—Sk A <1—r,k>w’
. (12)
155 = G,
Then by (3), we have

det(/ — (30, wiZ))? ~1—

|det(/ — U, w;Z))| 1+ s,

k=1

Combining (12) and (13) yields the first inequality of (9).
If either equality holds in (9) then all Z; are equal to Z, say. The

conclusions are immediate from Theorem 3. [
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Corollary

Corollary
Let Z;, i=1,2,...,m, be n X n complex matrices with singular
values ry such that 0 < ry <1, k=1,2,....,n. Then for any n X n

unitary matrix U

det(l—zi:’%W;Zi Z,) < H<1+I’,'k> '7
| det(/ — UL, wil Zi)1?

k=1 i=1

where w; >0, i =1,2,...,m, such that >, w; = 1. Equality
occurs if and only if all Z; have the same absolute value, say Z, and
Spec(UZ)=Spec(Z) (in which U = | if Z is nonsingular).

Proof. With (27;1 W;lZ;|)2 < Z:’;l W,'|Z,'|2. O
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An example

In view of the inequality in the corollary, it is tempting to have the

lower bound inequality

1+ ri |det(/—UZ 1W,|Z|)|

k=1 i=1

However, this is not true. Set m=n =2, w; = w, = 1/2 and take
0.34 -0.15 0.02 -0.01
Zl - P Z2 = )
—-0.15 0.07 —-0.01 0.01

U —0.60 0.80
~\ 080 060 )
One may check that the left hand side is 0.6281, while the right hand

side is 0.6250.



Replace Z with U*Z and leave the singular values unchanged in the
Theorem. Giving an upper bound and lower bound, in terms of the
singular values of individual matrices, for the quantity

det(l — Zlfil W,'ZI*Z,')

| det(/ = 3272 wiZi) >
contractive matrices. We would guess

— i det(1 =" wiZF Z; — L\ Wi
HH(I r,k> et(/—=> " wi )< H(1+r,k) ()
1+ ri |det(l—zi W,Z)| 1—ri

k=1 i=1

where Z;, i =1,2,..., m, are general

The first inequality in (14) is untrue in general as it is disproved by
substituting Z; and Z, in (14) with U|Z;| and U|Z,|, respectively, in
the previous example. However, simulation seems to support the

second inequality which is unconfirmed yet.
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