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Who is Harnack?

Carl Gustav Axel Harnack (1851-1888),
born in Tartu, Estonia, died in Dresden, Germany.
PhD in 1875 from Felix Klein (...... Klein bottle ......)

wikipedia.org
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The classical Harnack inequality in Potential Theory

Axel Harnack’s book, pp.158, 1887, Die Grundlagen der Theorie des
logarithmischen Potentiales und der eindeutigen Potentialfunktion in
der Ebene, Leipzig: V. G. Teubner

In English: Foundations of the theory of the logarithmic potential and
single-valued potential functions in the plane

in which an inequality of a positive harmonic function was
introduced, later generalized to solutions of elliptic or parabolic
partial differential equations. Perelman’s solution (2003) of the
Poincaré conjecture uses a version of the Harnack inequality, found by
R. Hamilton (1993), for the Ricci flow.
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The Harnack inequality in Functional Analysis

Let f (z) be a positive harmonic function on |z | < 1 in the plane.
Then

f (0)1− |z |1 + |z | ≤ f (z) ≤ f (0)1 + |z |
1− |z |

Recall that a harmonic function is a twice continuously differentiable
function on an open set (in Rn or Cn) satisfying the Laplace equation

∇2f = 0

Example: Take a point z on |z | = 0.5. Then 1
3 f (0) ≤ f (z) ≤ 3f (0).
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A harmonic function defined on an annulus

Courtesy: en.wikipedia.org
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The Harnack inequality in Functional Analysis

Set z = re iθ, where r is the modulus, θ is the argument of z . Then

f (0)1− r
1 + r ≤ f (z) ≤ f (0)1 + r

1− r

If we scale and translate to an arbitrary disk of radius R with center
z0, then we have for f (z), a positive harmonic function on |z | < R,

f (z0)R − r
R + r ≤ f (z) ≤ f (z0)R + r

R − r , |z − z0| < r < R
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The Harnack inequality in higher dimension

Denote the open ball (in usual topology) centered at x0 with radius R
in the n-dimensional space Rn by

BR(x0) = {x ∈ Rn : |x − x0| < R}

Consider
Br (x0) = {x ∈ Rn : |x − x0| < r < R}

Then for any z on the surface of Br (x0), i.e., |z − x0| = r , we have

f (z0) 1− ρ
(1 + ρ)n−1 ≤ f (z) ≤ f (z0) 1 + ρ

(1− ρ)n−1 , ρ = r
R

(Extensions for general domains; proof by Poisson’s formula
∫

sphere )
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The Harnack-type inequalities in PDEs
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Poincaré Conjecture: A $1M Millennium Prize Problem

Poincaré conjecture (1904-2003):
Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

Courtesy: en.wikipedia.org
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Perelman’s Harnack inequality in his solution to
Poincaré Conjecture

Perelman resolved the Poincaré conjecture in 2003...
Perelman’s solution uses a version of the Harnack inequality for the
Ricci flow, found by R. Hamilton (1993), which is an extension of a
result of P. Li and S.-T. Yau (1986).
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Li-Yau -> Hamilton -> Perelman
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Ky Fan’s Harnack type inequality for Operators

Theorem (Fan 1988)

Let F be an operator-valued analytic function on the open unit disk
D = {z ∈ C : |z | < 1} such that for any z ∈ D, F (z) is an operator
on a complex Hilbert space H with ReF (z) > 0 and F (0) = I. Then

1− |z |
1 + |z | I ≤ ReF (z) ≤ 1 + |z |

1− |z | I

Proof. For each x in H with ‖x‖ = 1, define the complex-valued
fx(z) = 〈F (z)x , x〉. Use the classical Harnack inequality. �

Note: There is an analog for Im F (z) .
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Tung’s Harnack type inequality for matrices

Theorem (Tung 1964)

Let Z be an n × n complex matrix with singular values rk that satisfy
0 ≤ rk < 1, k = 1, 2, . . . , n (i.e., Z is a strict contraction). Let Z ∗

denote the conjugate transpose of Z and I be the n × n identity
matrix. Then for any n × n unitary matrix U

n∏
k=1

1− rk
1 + rk

≤ det(I − Z ∗Z )
| det(I − UZ )|2 ≤

n∏
k=1

1 + rk
1− rk

(1)

Proof. Consider f (U) = det((I − ZU∗)(I − UZ ∗)) for fixed strict
contraction Z and use the method of Lagrange multipliers. �
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Marcus and Hua

Marcus (1965) gave another proof and pointed out that Tung’s
inequality is equivalent to

n∏
k=1

(1− rk) ≤ | det(I − A)| ≤
n∏

k=1
(1 + rk) (2)

for any n × n matrix A with the same singular values as the
contractive matrix Z .

L.-K. Hua (1965) gave a proof of (2) using an inequality he had
previously obtained in 1955: For strict contractions A, B,

(
(I − A∗A)−1 (I − B∗A)−1

(I − A∗B)−1 (I − B∗B)−1

)
≥ 0
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Remarks

(i). In the book by Marshall, Olkin and Arnold, Tung’s theorem is
cited in which the condition that A be contractive is missing.

(ii). Inequalities (1) and (2) are not equivalent for general matrices.
The right-hand side inequality in (2) is true for all n × n
matrices A; that is,

| det(I − A)| ≤
n∏

k=1
(1 + rk)
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Restatement of Tung’s Theorem and equality case

Theorem (Left inequality)

Let Z be an n × n positive semidefinite matrix with eigenvalues
r1, r2, . . . , rn. Let U be an n × n unitary matrix such that I − UZ is
nonsingular. Then

n∏
k=1

|1− rk |
1 + rk

≤ | det(I − Z 2)|
| det(I − UZ )|2 (3)

with equality if and only if Z has an eigenvalue 1 or UZ has
eigenvalues −r1,−r2, . . . ,−rn. If both Z and I − Z are nonsingular,
the strict inequality holds for U 6= −I.
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Restatement of Tung’s Theorem and equality case

Theorem (Right inequality)

Let Z be an n × n positive semidefinite matrix with eigenvalues
r1, r2, . . . , rn. Let U be an n × n unitary matrix such that I − UZ is
nonsingular. If 0 ≤ rk < 1, k = 1, 2, . . . , n, then

det(I − Z 2)
| det(I − UZ )|2 ≤

n∏
k=1

1 + rk
1− rk

(4)

with equality if and only if UZ has eigenvalues r1, r2, . . . , rn. If Z is
nonsingular, then the strict inequality in (4) holds if U 6= I.
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Majorization

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be real vectors whose
components are arranged in nonincreasing order:

x1 ≥ x2 ≥ · · · ≥ xn, y1 ≥ y2 ≥ · · · ≥ yn

If
k∑

i=1
xi ≤

k∑
i=1

yi , k = 1, 2, . . . , n

we say that x is weakly majorizaed by y , written x ≺w y . If the last
inequality becomes equality, then x is majorized by y , denoted x ≺ y .

x ≺w y , x ≺ y

Replacing
∑

by
∏
, we have log-majorization:

x ≺wlog y , x ≺log y
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Lemma

Lemma
Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be nonnegative
vectors and assume that y is not a permutation of x (i.e., the
multisets {x1, x2, . . . , xn} and {y1, y2, . . . , yn} are not equal). Denote
z̃ = (1 + z1, 1 + z2, . . . , 1 + zn). We have:

If x ≺log y , then x̃ ≺wlog ỹ

and
n∏

k=1
(1 + xk) <

n∏
k=1

(1 + yk). (5)

Proof. f (t) = ln(1 + et) is strictly increasing & convex on (0,∞). �
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Lemma

Lemma
If all xi , yi ∈ [0, 1), x is not a permutation of y , and x ≺log y , then

n∏
k=1

(1− xk) >
n∏

k=1
(1− yk). (6)

Proof. − ln(1− et) is strictly increasing and convex on (−∞, 0). �
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Proof of the equality case of the theorems

Proof of the Theorems. Use Majorization Theory.
Only show the equality cases. For (3), if Z has a singular (eigen-)
value 1, then both sides vanish. If UZ has eigenvalues
−r1,−r2, . . . ,−rn, then det(I − UZ ) =

∏n
k=1(1 + rk). Equality is

readily seen. Conversely, suppose equality occurs in (3). We further
assume that no rk (k = 1, 2, . . . , n) equals 1. Since
| det(I − Z 2)| =

∏n
k=1 |1− rk |(1 + rk), we have

| det(I − UZ )| =
n∏

k=1
(1 + rk). (7)

Moreover, by Weyl majorization inequality

|λ(UZ )| ≺log σ(UZ ) = σ(Z ) = λ(Z ),

where λ(X ) and σ(X ) denote the vectors of the eigenvalues and
singular values of matrix X , respectively.
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With λk(X ) denoting the eigenvalues of the n × n matrix X ,
k = 1, 2, . . . , n, by the lemma, we have

0 < | det(I−UZ )| =
n∏

k=1
|1−λk(UZ )| ≤

n∏
k=1

(1+|λk(UZ )|) ≤
n∏

k=1
(1+rk).

Thus, (7) yields |1− λk(UZ )| = 1 + |λk(UZ )| for all k, which implies
λk(UZ ) ≤ 0 for k = 1, 2, . . . , n, i.e., all eigenvalues of −UZ are
nonnegative. If |λ(UZ )| = λ(−UZ ) is not a permutation of λ(Z ),
then, by strict inequality (5), we have∏n

k=1(1 + |λk(UZ )|) <
∏n

k=1(1 + λk(Z )) =
∏n

k=1(1 + rk), a
contradiction to (7). It follows that UZ has the eigenvalues
−r1,−r2, . . . ,−rn.
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For the equality in (4), it occurs if and only if∏n
k=1(1− rk) = | det(I − UZ )|. Note that |λ(UZ )| ≺log σ(Z ) and

n∏
k=1

|1− λk(UZ)| ≥
n∏

k=1

(1− |λk(UZ)|) ≥
n∏

k=1

(1− σk(Z)) =
n∏

k=1

(1− rk). (8)

The first equality in (8) occurs if and only if all λk(UZ ) are in [0, 1);
the second equality occurs if and only if λ(UZ ) is a permutation of
σ(Z ), i.e., Spec(UZ ) = Spec(Z ).
Now assume that Z is nonsingular and suppose that equality holds in
(4). Then UZ has eigenvalues r1, r2, . . . , rn. Moreover, the singular
values of UZ are r1, r2, . . . , rn. Let P = UZ . Then the eigenvalues of
P are just the singular values of P. So P is positive definite. It
follows that U = PZ−1 has only positive eigenvalues. Since U is
unitary, U has to be the identity matrix. The case for (3) is similar. �
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Extension of Tung’s Theorem on Harnack inequality

Theorem (Lin and Z. 2017)

Let Zi , i = 1, 2, . . . ,m, be n × n positive semidefinite matrices.
Suppose that the eigenvalues of Zi are rik satisfying 0 ≤ rik < 1,
k = 1, 2, . . . , n. Then for any n × n unitary matrix U and positive
scalars wi , i = 1, 2, . . . ,m,

∑m
i=1 wi = 1, we have

n∏
k=1

m∏
i=1

(1− rik
1 + rik

)wi

≤ det(I − (
∑m

i=1 wiZi)2)
| det(I − U

∑m
i=1 wiZi)|2

≤
n∏

k=1

m∏
i=1

(1 + rik
1− rik

)wi

. (9)

Equality on the left-hand side occurs if and only if all Zi are equal to
Z, say, and Z has an eigenvalue 1 or Spec(UZ)=Spec(−Z) (in which
U = −I if Z is nonsingular); Equality on the right-hand side occurs if
and only if all Zi are equal to Z, say, and Spec(UZ)=Spec(Z) (in
which U = I if Z is nonsingular).
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Outline of the Proof

Fact: for n × n Hermitian A and B, if λk(A + B) = λk(A) + λk(B)
for all k, then A and B are simultaneously unitarily diagonalizable
with their eigenvalues on the main diagonal in the same order.
Fan’s majorization λ(H + S) ≺ λ(H) + λ(S) for n × n Hermitian
matrices H and S and Lewent’s inequality for xi ∈ [0, 1),

1 +
∑n

i=1 αixi

1−
∑n

i=1 αixi
≤

n∏
i=1

(1 + xi

1− xi

)αi

,

where
∑n

i=1 αi = 1, αi > 0. Equality holds iff x1 = x2 = · · · = xn.

Let r↓ik be the kth largest eigenvalue of Zi , i = 1, 2, . . . ,m, and sk be
the kth largest eigenvalue of W :=

∑m
i=1 wiZi , k = 1, 2, . . . , n.

λ(W ) ≺
m∑

i=1
wiλ(Zi), i.e.,

∑̀
k=1

sk ≤
∑̀
k=1

m∑
i=1

wi r↓ik , ` = 1, 2, . . . , n.

(Note that the components of λ(·) are in nonincreasing order.)
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Now the convexity and the monotonicity of the function
f (t) = ln 1+t

1−t , 0 ≤ t < 1, imply

n∑
k=1

ln 1 + sk

1− sk
≤

n∑
k=1

ln 1 +
∑m

i=1 wi r↓ik
1−

∑m
i=1 wi r↓ik

,

where equality holds if and only if sk =
∑m

i=1 wi r↓ik for all k; that is,
λ(W ) =

∑m
i=1 wiλ(Zi). It follows that all Zi are simultaneously

unitarily diagonalizable with their eigenvalues on the main diagonals
in the same order (nonincreasing, say).

F. Zhang Harnack Inequalities



Applying the exponential function to both sides and using Lewent’s
inequality yield

n∏
k=1

1 + sk

1− sk
≤

n∏
k=1

1 +
∑m

i=1 wi r↓ik
1−

∑m
i=1 wi r↓ik

≤
n∏

k=1

m∏
i=1

(
1 + r↓ik
1− r↓ik

)wi

=
n∏

k=1

m∏
i=1

(1 + rik
1− rik

)wi

,

(10)

in which equality occurs in the second inequality if and only if
r1k = r2k = · · · = rmk for k = 1, 2, . . . , n. Thus both equalities in (10)
hold if and only if Z1 = Z2 = · · · = Zm.
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By (4), we have

det(I − (
∑m

i=1 wiZi)2)
| det(I − U

∑m
i=1 wiZi)|2

≤
n∏

k=1

(1 + sk

1− sk

)
. (11)

Combining (10) and (11) gives the second inequality of (9).
Note that the inequalities in (10) reverse by taking reciprocals, which
implies

n∏
k=1

1− sk

1 + sk
≥

n∏
k=1

m∏
i=1

(1− rik
1 + rik

)wi

. (12)

Then by (3), we have

det(I − (
∑m

i=1 wiZi)2)
| det(I − U

∑m
i=1 wiZi)|2

≥
n∏

k=1

(1− sk

1 + sk

)
. (13)

Combining (12) and (13) yields the first inequality of (9).
If either equality holds in (9), then all Zi are equal to Z , say. The
conclusions are immediate from Theorem 3. �
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Corollary

Corollary
Let Zi , i = 1, 2, . . . ,m, be n × n complex matrices with singular
values rik such that 0 ≤ rik < 1, k = 1, 2, . . . , n. Then for any n × n
unitary matrix U

det(I −
∑m

i=1 wiZ ∗i Zi)
| det(I − U

∑m
i=1 wi |Zi |)|2

≤
n∏

k=1

m∏
i=1

(1 + rik
1− rik

)wi

,

where wi > 0, i = 1, 2, . . . ,m, such that
∑m

i=1 wi = 1. Equality
occurs if and only if all Zi have the same absolute value, say Z, and
Spec(UZ)=Spec(Z) (in which U = I if Z is nonsingular).

Proof. With (
∑m

i=1 wi |Zi |)2 ≤
∑m

i=1 wi |Zi |2. �
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An example

In view of the inequality in the corollary, it is tempting to have the
lower bound inequality

n∏
k=1

m∏
i=1

(1− rik
1 + rik

)wi

≤ det(I −
∑m

i=1 wiZ ∗i Zi)
| det(I − U

∑m
i=1 wi |Zi |)|2

.

However, this is not true. Set m = n = 2, w1 = w2 = 1/2 and take

Z1 =
(

0.34 −0.15
−0.15 0.07

)
, Z2 =

(
0.02 −0.01
−0.01 0.01

)
,

U =
(
−0.60 0.80
0.80 0.60

)
.

One may check that the left hand side is 0.6281, while the right hand
side is 0.6250.
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A question

Replace Z with U∗Z and leave the singular values unchanged in the
Theorem. Giving an upper bound and lower bound, in terms of the
singular values of individual matrices, for the quantity
det(I −

∑m
i=1 wiZ ∗i Zi)

| det(I −
∑m

i=1 wiZi)|2
, where Zi , i = 1, 2, . . . ,m, are general

contractive matrices. We would guess
n∏

k=1

m∏
i=1

(1− rik

1 + rik

)wi
≤

det(I −
∑m

i=1 wiZ ∗
i Zi)

| det(I −
∑m

i=1 wiZi)|2
≤

n∏
k=1

m∏
i=1

(1 + rik

1− rik

)wi
. (14)

The first inequality in (14) is untrue in general as it is disproved by
substituting Z1 and Z2 in (14) with U|Z1| and U|Z2|, respectively, in
the previous example. However, simulation seems to support the
second inequality which is unconfirmed yet.

F. Zhang Harnack Inequalities



References

1 Hua L.-K. On an inequality of Harnack’s type (Chinese), Kexue Tongbao
10 (1965) 252.

2 Hua L.-K. Inequalities involving determinants (in Chinese), Acta Math.
Sinica 5 (1955), No. 4, pp. 463–470. [Translated into English: Transl.
Amer. Math. Soc. Ser. II 32 (1963), pp. 265–272.]

3 Kassmann M. Harnack Inequalities: An Introduction, in Boundary Value
Problems, 2007.

4 Lin M.-H. and Zhang F. An extension of Harnack type determinantal
inequality, LAMA online.

5 Marcus M. Harnack’s and Weyl’s Inequalities, Proc. Amer. Math. Soc.
16 (1965) 864–866.

6 Tung SH. Harnack’s inequality and theorems on matrix spaces, Proc.
Amer. Math. Soc. 15 (1964) 375–381.

F. Zhang Harnack Inequalities


