

Nova Southeastern University NSUWorks

Chemistry and Physics Faculty Articles

Department of Chemistry and Physics

10-25-2001

The Tetramethylpiperidinyl-1-Oxide Anion (TMPO-) as a Ligand in Lanthanide Chemistry: Synthesis of the Per(TMPO-) Complex [(ONC5H6Me4)2Sm(µ-ONC5H6Me4)]2

William J. Evans University of California, Irvine

Jeremy M. Perotti University of California, Irvine, perotti@nova.edu

Robert J. Doedens University of California, Irvine

Joseph W. Ziller University of California, Irvine

Follow this and additional works at: https://nsuworks.nova.edu/cnso_chemphys_facarticles Part of the <u>Chemistry Commons</u>

NSUWorks Citation

 $\label{eq:construction} Evans, W. J., Perotti, J. M., Doedens, R. J., & Ziller, J. W. (2001). The Tetramethylpiperidinyl-1-Oxide Anion (TMPO-) as a Ligand in Lanthanide Chemistry: Synthesis of the Per(TMPO-) Complex [(ONC5H6Me4)2Sm(\mu-ONC5H6Me4)]2. Chemical Communications, 2001, (22), 2326 - 2327. https://doi.org/10.1039/B106869P. Retrieved from https://nsuworks.nova.edu/cnso_chemphys_facarticles/136$

This Article is brought to you for free and open access by the Department of Chemistry and Physics at NSUWorks. It has been accepted for inclusion in Chemistry and Physics Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

The tetramethylpiperidinyl-1-oxide anion (TMPO⁻) as a ligand in lanthanide chemistry: synthesis of the per(TMPO⁻) complex $[(ONC_5H_6Me_4)_2Sm(\mu-ONC_5H_6Me_4)]_2$

William J. Evans,* Jeremy M. Perotti, Robert J. Doedens and Joseph W. Ziller

Department of Chemistry, University of California, Irvine, CA 92697-2025, USA. *E-mail: wevans@uci.edu*

Received (in Purdue, IN USA) 28th July 2001, Accepted 14th September 2001 First published as an Advance Article on the web 25th October 2001

Recent studies of the chemistry of $(C_5Me_5)_3M$ complexes¹ have shown that these sterically crowded molecules can function as reducing agents, even though the metal is not redox active. This sterically induced reduction² is likely to occur *via* a half reaction like that shown in equation (1). For example, $(C_5Me_5)_3Sm$ reduces C_8H_8 according to equation (2).³

$$(C_5Me_5)_3M \rightarrow e^- + 1/2 (C_5Me_5)_2 + [(C_5Me_5)_2M]^+ (1)$$

$$2(C_5Me_5)_3Sm + C_8H_8 \rightarrow (C_5Me_5)Sm(C_8H_8) + (C_5Me_5)_2 + (C_5Me_5)_3Sm \quad (2)$$

To probe the mechanism of the Sm(III) reduction reaction and to explore the possibility that radical intermediates are involved, the reaction of $(C_5Me_5)_3$ Sm with the commonly-used free radical trapping agent 2,2,6,6-tetramethylpiperidinyl-1-oxy (TMPO)^{4–10} was studied. We report here the unexpected result that TMPO can replace all of the C₅Me₅ groups in (C₅Me₅)₃Sm to form an unusual per(TMPO⁻) metal complex.

Reaction of $ONC_5H_6Me_4$ with $(C_5Me_5)_3Sm$ in toluene gave crystals of a yellow complex, 1.† Examination of the motherliquor by ¹H NMR spectroscopy revealed the formation of the reduction byproduct expected from equations (1) and (2), namely, $(C_5Me_5)_2$, but no signals were observed which could be attributed to products such as $(C_5Me_5)_2Sm(ONC_5H_6Me_4)$ or $(C_5Me_5)ONC_5H_6Me_4$. Instead, X-ray crystallography† revealed that $ONC_5H_6Me_4$ had been reduced with formation of a bimetallic homoleptic samarium complex, $[(\eta^1-ONC_5H_6-Me_4)_2Sm(\mu-\eta^1:\eta^2-ONC_5H_6Me_4)]_2$ 1, Fig. 1, in which TMPO– anions were the sole ligands, equation (3). Although several metal complexes of TMPO and TMPO– have been reported in

Fig. 1 Thermal ellipsoid plot for $[(\eta^1-ONC_5H_6Me_4)_2Sm(\mu-\eta^1:\eta^2-ONC_5H_6Me_4)]_2$, 1, with ellipsoids drawn at the 50% probability level (all hydrogen atoms have been omitted for clarity).

Chem. Commun., 2001, 2326-2327

2326

the literature,⁵⁻¹¹ to our knowledge this is the first example 2(C₅Me₅)₃Sm + 6 ONC₅H₆Me₄ \rightarrow

$$Sm_2(ONC_5H_6Me_4)_6 + 3(C_5Me_5)_2$$
 (3)

vww.rsc.org/chemcomm

munication

of a per(TMPO⁻) metal complex and the first example in which TMPO is a ligand for the large electropositive lanthanide elements. The only homoleptic TMPO system we could find in the literature is the boron system, $B(ONC_5H_6Me_4)_3$.⁹

Complex 1, which has a center of inversion, has four terminal TMPO- ligands bound only through oxygen. Two bridging TMPO- units connect the two samarium centers via bridging oxygen atoms and each also coordinates to one samarium with its nitrogen atom. This gives each samarium a formal coordination number of 5. Both of these coordination modes are precedented in ONC5H6Me4 metal chemistry.5-10 The overall structure of 1 is reminiscent of bimetallic alkoxide-bridged lanthanide and yttrium structures such as [(Ph₃CO)₂Ln(µ-OCPh₃)]₂, and [(Ph₃SiO)₂Ln(µ-OSiPh₃)]₂.¹¹ This comparison indicates that the TMPO- anion is comparable in steric bulk to large alkoxide ligands. The 2.110(5) and 2.124(5) Å terminal Sm–O (ONC₅H₆Me₄) bond lengths are shorter than the 2.295(4)and 2.354(4) Å bridging Sm-O distances as expected. The 2.537(6) Å Sm–N bond length is significantly longer than the Sm–O bonds in 1 as expected for a Sm \leftarrow NR₃ donor bond. The Sm-N bond is shorter than typical bonds of this type in samarium metallocenes,12 which is consistent with the fact that formal coordination number of samarium in the Sm₂(ONC₅H₆Me₄)₆ is much less than in the metallocenes. The difference in length between the Sm-N bond and the bridging Sm-O distances is similar to that observed in several high valent transition metal complexes in which TMPO- is bound sideon.^{7,8,10} The three N–O bond lengths in **1** (1.434(7), 1.433(8), and 1.427(8) Å) are similar and are nearly 0.15 Å longer than the corresponding 1.283(9) Å bond length in the structure of the isolated free radical,4 which is consistent with the formation of TMPO- anions.7,8

The isolation of 1 shows that $ONC_5H_6Me_4$ readily replaces C_5Me_5 in organolanthanide complexes and the reduced nitroxyl can function as the sole ligand in lanthanide compounds.

We thank the National Science Foundation for funding.

Notes and references

† Synthesis of 1: under a N₂ atmosphere, an H-shaped reaction vessel was charged in one side-arm with $(C_5Me_5)_3Sm$ (42 mg, 0.075 mmol), dissolved in 12 mL of toluene and with neat $ONC_5H_6Me_4$ (71 mg, 0.45 mmol) in the other. The H-tube was evacuated to the vapor pressure of the solvent and the $ONC_5H_6Me_4$ containing side-arm was placed in an 80 °C bath. (C_5Me_5)₃Sm reacted with the $ONC_5H_6Me_4$ vapor over several days to form yellow crystals (32 mg, 68% yield) and (C_5Me_5)₂(21 mg, 99%). Anal. Calcd. for $C_{27}H_5AN_3O_3Sm$: Sm, 24.29. Found: Sm, 25.10%. IR (thin film from toluene, cm⁻¹): 2964m, 2930w, 2876w, 1544s, 1455m, 1413s, 1297w, 1262s, 1089s br, 1019s br, 803s, 741w, 699s.

Crystallographic data for 1: $C_{27}H_{54}N_{3}O_{3}Sm$, M = 619.08, triclinic, a = 10.3838(11), b = 11.9579(13), c = 12.8023(14) Å, $\alpha = 85.934(2)$, $\beta = 83.450(2)$, $\gamma = 66.8500(10)^{\circ}$, V = 1451.5(3) Å³, T = 163(2) K, space group $P\bar{1}$, Z = 2, μ (Mo-K α) = 2.053 mm⁻¹, 15 802 reflections measured on a

Siemens CCD diffractometer, 6872 unique ($R_{int} = 0.0366$) which were used in all calculations. The final R1 was $0.0591 (I > 2.0\sigma(I))$ and wR2 (all data) was 0.1655. The SMART program package was used to determine the unitcell parameters and for data collection (30 s per frame counting time for a sphere of diffraction data). The raw frame data were processed using SAINT and SADABS to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL program. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. CCDC reference numbers 170799 and 170800. See http://www.rsc.org/ suppdata/cc/b1/b106869p/ for crystallographic data in CIF or other electronic format.

- 1 W. J. Evans, G. W. Nyce and J. W. Ziller, Angew. Chem., Int. Ed., 2000, 39, 240.
- W. J. Evans, *Coord. Chem. Rev.*, 2000, **206–207**, 263.
 W. J. Evans, K. J. Forrestal and J. W. Ziller, *J. Am. Chem. Soc.*, 1998, 120, 9273.

- 4 P. A. Capiomont and J. Lajzerowicz-Bonneteau, Acta Crystallogr., Sect. B, 1974, 30, 2160.
- 5 G. C. Forbes, A. R. Kennedy, R. E. Mulvey and P. J. A. Rodger, Chem. Commun., 2001, 1400.
- 6 L. B. Volodarsky, V. A. Reznikov and V. I. Ovcharenko, *Synthetic Chemistry of Stable Nitroxides*, CRC Press, Boca Raton, FL, 1994.
- 7 M. H. Dickman and R. J. Doedens, Inorg. Chem., 1982, 21, 682 and references therein.
- 8 P. Jaitner, W. Huber, G. Huttner and O. Scheidesteger, J. Organomet. Chem., 1983, 259, C1.
- 9 M. Armbrecht, W. Maringgele, A. Meller, N. Noltemeyer and G. M. Sheldrick, Z. Naturforsch., Teil B, 1985, 40, 1113.
 10 P. Jaitner, W. Huber, A. Gieren and H. Betz, J. Organomet. Chem.,
- 1986, 311, 379.
- 11 W. J. Evans, R. E. Golden and J. W. Ziller, Inorg. Chem., 1991, 30, 4963.
- 12 H. Schumann, E. C. E. Rosenthal, J. Demtschuk and G. A. Molander, Organometallics, 1998, 17, 5324 and references therein.