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ABSTRACT

Trophic changes in populations of Steller sea lions (.Eumetopias jubatus), 

northern fur seals (Callorhinus ursinus) and harbor seals (Phoca vitulina) in the 

eastern Bering Sea and Gulf of Alaska were studied using stable isotope analysis. 

Declining populations of all three species of pinnipeds prompted this study to 

determine if changes in -diet, likely resulting from food limitation, contributed to the 

declines. Stable carbon and nitrogen isotope ratios were analyzed in the vibrissae 

(whiskers) and body tissues of pinnipeds from 1993-1998 and compared with muscle 

tissue from prey species during the same time period to determine pinniped trophic 

dynamics. Vibrissae growth rate studies revealed harbor seal vibrissae are only 

retained for one year then replaced, while Steller sea lions maintain their vibrissae for 

several years. Isotopic data from all three species are consistent with diets composed 

of walleye pollock (Theragra chalcogramma) at various times and locations 

throughout the year. Steller sea lion and northern fur seal vibrissae revealed regular 

oscillations along their lengths in both carbon and nitrogen isotope ratios that likely 

corresponded to regional isotopic differences. As these animals moved or migrated 

from one region to another during the year, they metabolically incorporated the 

different regional isotope ratios through their prey. Because these animals return to 

their rookery to pup, breed and molt each year, the isotope ratios in the vibrissae 

showed a regular pattern of enrichment and depletion. Harbor seals, which tend to 

stay in one geographic location, have relatively static isotope ratios in their vibrissae,

iii



while seals that moved into offshore waters had fluctuating isotope ratios that 

corresponded to regional differences. No trophic shifts, as evidenced by major changes 

in nitrogen isotope ratios, were present in any tissues from the three species over the 

period 1975-1998. Stable isotope ratios of bone collagen for all three species from 

1950-1997 indicated no change in trophic level but did reveal a decline in the carbon 

isotope ratios. These data are supportive of evidence that the seasonal primary 

production in the North Pacific Ocean has declined and may have contributed to a 

decreased carrying capacity impacting these top trophic level organisms.
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CHAPTER 1 

INTRODUCTION

The Alaska populations of Steller sea lions (Eumetopias jubatus), northern fur 

seals (Callorhinus ursinus) and harbor seals (Phocci vitulina) have undergone various 

degrees of decline during the past three decades, particularly in the western Gulf of 

Alaska and Bering Sea {Pitcher 1990; Loughlin 1993; Lewis 1996; Strick et al. 1997). 

These pinnipeds are generally found in coastal waters and along the continental shelf 

throughout the North Pacific Ocean, including the Bering Sea and the Gulf of Alaska 

(NRC 1996). The Steller sea lion decline was first noted in the Aleutian Islands during 

the 1960s while northern fur seals have experienced population reductions since the 

1950s on the Pribilof Islands (York 1990, Loughlin et al. 1992). Harbor seal 

populations in the western Gulf of Alaska were observed to be decreasing in numbers 

as early as 1976 (Pitcher 1990).

Food limitation has been hypothesized as a likely cause behind the declines in 

the pinniped populations, resulting from decreases in prey populations and emigration 

of certain species (Merrick et al. 1987; Alverson 1992; Loughlin et al. 1992; Trites 

1992; Alaska Sea Grant 1993; Merrick 1995; Anderson et al. 1997; Merrick et al. 

1997). During the same time period and in similar regions, piscivorous seabirds have 

also declined (Piatt and Anderson 1996). These declines have raised questions and 

concerns regarding not only the health of these pinniped populations but also what 

indication they may be of the condition of the marine environment. Shifts in
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commercial fishery stocks, e.g. pandalid shrimp and clupeids (Anderson et al. 1997), 

as well as these pinniped declines may be large-scale indicators of substantial changes 

in productivity of the ecosystem.

Scope of study

The goal of this study was to examine the present trophic levels of harbor 

seals, Steller sea lions, northern fur seals and their probable prey species to determine 

if any trophic changes had occurred over time that may have contributed to the 

population declines. I hypothesized that seals and sea lions made dietary changes as a 

result of changing prey abundances and the 5b C and 515N values before and after the 

mid-1970s, when the latest major climatic shift occurred, would reflect the changes in 

trophic level.

Vibrissae (whiskers) are growing tissue found in all pinniped species and were 

chosen as the primary tissue for stable isotope analysis as they would represent feeding 

both spatially and temporally by these animals. By comparing the isotope ratios found 

along the lengths of vibrissae with the isotope ratios of muscle from suspected prey 

items, changes in food sources and habitat could be surmised for the temporal span 

represented by the vibrissae.

Chapter 2 presents the results of growth rate experiments on harbor seal and 

Steller sea lion vibrissae. To adequately compare the isotope ratios of prey items to 

those in the vibrissae, growth rates needed to be established for the vibrissae. Growth



measurements were gathered on captive animals and growth data were also acquired 

for vibrissae from wild, recaptured seals and sea lions.

The trophic dynamics and spatial distribution of Steller sea lions and northern 

fur seals in the Bering Sea and western Gulf of Alaska are addressed in Chapter 3. 

Fractionation differences in stable isotope values between pinniped muscle and 

vibrissae were calculated and the vibrissae isotope values were adjusted for the 

enrichment so that muscle values (pinniped vs. prey) could be directly compared.

These values were compared with probable prey items in ten locations from the central 

Bering Sea through the Gulf of Alaska and along the North Pacific coast of Canada 

and the United States.

Chapter 4 addresses the variability of isotope ratios in harbor seals residing in 

Prince William Sound, Alaska. A food web was constructed of likely prey items within 

and outside the sound and compared to the vibrissae values. Fractionation differences 

in stable isotope values between harbor seal muscle and vibrissae were calculated and 

the vibrissae isotope values were adjusted for the enrichment so that muscle values 

(seal vs. prey) could be directly compared.

Long-term changes in trophic level and environment are discussed in Chapter 

5. Five decades of carbon and nitrogen isotope ratios from Steller sea lions, northern 

fur seals and harbor seals were analyzed in an effort to determine if a change in trophic 

level occurred and if it contributed to the population declines.

3



Chapter 6 summarizes the results of the previous chapters and how they can be 

utilized in trophic studies of pinnipeds. A general conclusion and discussion of future 

research are also included.

Pinniped declines

The possible anthropogenic effects that might contribute to the pinniped 

population decline are numerous and include: commercial over fishing of food sources, 

increased energy expenditure, entrapment by fishing debris, direct and indirect fishery 

takes and harvesting, (Alverson 1992; Trites 1992; Trites and Larkin 1996; Alaska Sea 

Grant 1993, Merrick 1995). Any one or combination of these variables may have 

contributed to the declines.

Commercial fishing may be reducing the pinniped food resources, which in turn 

would reduce growth rates, lower productivity and even cause starvation (Alaska Sea 

Grant 1993). There has been a general decline in forage fish abundance during the 

similar time period (Alverson 1992; Anderson et al. 1997) that could impact the health 

of these animals by increasing energy expenditures in search of prey and by changing 

the nutritional quality of their diets.

Historically, most pinnipeds have been viewed as problematic to the Alaskan 

fishing industry. Seals and sea lions have become entangled in fishing nets, as well as 

cast-off monofilament and polypropylene, which then results in repair costs and time 

to the fishermen and often-times death to the mammals (Mathisen 1959). Steller sea 

lions, harbor seals and northern fur seals have been competing with fishermen for



commercially important fish since the late 1800’s. A bounty system was established on 

harbor seals and sea lions in 1927 in Alaska and not eliminated until the 1960's when 

the system was shown to be ineffective (Matkin and Fay 1980). Commercial harvests 

of sea lion pups and bulls, as well as male northern fur seals, were practiced until 

terminated by the Marine Mammal Protection Act in 1972 (Interagency Task Force 

1978, Scheffer et al. 1984). Beyond the harvesting of these animals, it is unknown to 

what extent these population declines are related to one another or coincidental.

Steller sea lions

Steller sea lions are a wide-ranging species but spend up to 6 months of each 

year at a rookery to pup and breed. The rest of the year is spent feeding between 

various haul-out sites (Kenyon and Rice 1961). Steller sea lions are found around the 

Pacific Rim from the Kuril Islands through the Sea of Okhotsk and southern Bering 

seas along the Alaska coast and south to California. Most of the world populations 

breed at rookeries in the Gulf of Alaska during June and July (Loughlin et al. 1984).

In spite of reduced hunting, surveys conducted from 1973 to 1989 of different 

Alaskan rookeries and haulouts indicated a decrease in population sizes from 196,000 

to 81,000 for Steller sea lions (Loughlin et al. 1984, 1992). Steller sea lion populations 

initially began to decline in the eastern Aleutians in the early 1960s. Declines in the 

central Gulf of Alaska were noticed by the late 1970s, and by the early 1980s, declines 

in the western Gulf of Alaska and central Aleutians were noted. The population in



southeast Alaska has remained relatively stable (Loughlin et al. 1984; Merrick et al. 

1997).

Northern fur seals

Northern fur seals travel from the Bering Sea southward in winter into the 

North Pacific as far south as the California/Mexico border in the eastern Pacific Ocean 

before returning to the home island for pupping and breeding each year (Kajimura 

1984; Kajimura 1985; Goebel et al. 1991; Loughlin 1993; Merrick 1995; NRC 1996). 

Three-fourths of the world’s population of northern lur seals uses the Pribilof Islands 

as breeding grounds during the summer. These seals often spend half the year at sea 

(November-May) and the remainder of the year at their home island for breeding and 

pupping (Sinclair et al. 1994). Northern fur seals feed opportunistically on schools of 

small fish as they migrate between the Bering Sea and the Gulf of Alaska. Seals in the 

spring (April to June) have diets consisting primarily of gonatid squid (Perez and Bigg

1996). Little is known about the juvenile seals' diets after weaning (one year) (Trites 

1992).

Commercial harvesting has impacted the northern fur seal populations 

throughout this century. In an effort to increase productivity, females, comprising one- 

fifth of the population, were commercially culled between 1956 and 1968. The hoped- 

for increase in production never occurred and the Pribilof Islands population has 

declined over 50% since its peak in 1950 and has not recovered in spite of a cessation
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of commercial hunting in 1985. The decline appears to have leveled off on St. Paul 

Island in 1995 while it continues on St. George Island (York 1990, NRC 1996).

Harbor seals

Harbor seals are found in the Bristol Bay in the southeastern portion of the 

Bering Sea and coastally throughout the Gulf of Alaska and as far south as California. 

The individual seals tend to show strong site affinity and were thought to have home 

ranges of only a few kilometers. Recent studies by Frost et al. (1999) have shown a 

number of tagged seals in Prince William Sound, Alaska leaving to feed in nearby 

coastal locations in the Gulf of Alaska (Pitcher 1980).

Areas in the Gulf of Alaska and Prince William Sound have seen dramatic 

declines in their harbor seal populations. Limited data indicate population declines of 

harbor seals have been occurring in the southeastern Bering Sea, western Gulf of 

Alaska and Prince William Sound since the mid-1970s. Between 1976 and 1988, the 

population on Tugidak Island in the western Gulf of Alaska declined 85% but appears 

to now be remaining stable (Pitcher 1990, NRC 1996; Small et al. 1998). The harbor 

seal population in the eastern and central portion of Prince William Sound declined by 

40% between 1984 and 1988. The 1989 oil spill from the T/VExxon Valdez resulted in 

the death of approximately 300 seals and a 26% reduction in pups that year. A 63% 

overall population reduction has occurred from 1984-1997 (Frost et al. 1999). 

Southeast Alaska, however, has maintained relatively stable populations of about
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12,000 harbor seals, and they are thought to be increasing slightly (Pitcher 1990; Small 

et al. 1998).

Prev species

There are four commercial fishing regions in the northeastern Pacific Ocean: 

the eastern Bering Sea, international waters of the Bering Sea, the Aleutian Island 

region and the Gulf of Alaska. Walleye pollock ( Theragra chalcogramma) constitutes 

three-quarters of the forage fish catch in the Bering Sea and a pollock fishery has 

developed in the Aleutian Islands and in Prince William Sound. Meanwhile, the Gulf of 

Alaska fishery has long targeted Pacific herring (Clupea harengus pallasi), although 

catches have diminished since 1971 (OCSEAP 1987; Anderson et al. 1997). Pollock is 

the most abundant commercial species in the Bering Sea and the Gulf of Alaska and is 

also important in the diets of other fish, seabirds, and marine mammals. Walleye 

pollock are the primary food source of fur seals in the Bering Sea and a dominant food 

source of Steller sea lions but may be less important in the Gulf of Alaska (Kajimura 

1984, Springer 1992). Humans have now become the largest consumer of adult 

pollock and are in direct competition with pinnipeds (Trites 1992).

Many forage fish stocks have dramatically increased while others have declined 

in the Gulf of Alaska since the mid-1970s. The species composition for the region has 

shifted from an environment dominated by clupeid fishes and shrimp to one currently 

dominated by gadids and pleuronectids (Anderson et al. 1997). Stomach samples of 

both seals and Steller sea lions indicate prey items include herring, capelin, sandlance,

8



pollock and squid (Lowry 1982). In 1951 and 1964, samples from Steller sea lion 

stomachs from the Bering Sea showed that walleye pollock was the fourth most 

prevalent prey species (Fiscus and Baines 1966), but by 1976, pollock was the 

dominant prey item (Lowry et al. 1989). Stomach content analyses of Pribilof Island 

fur seals in the early 1980s showed a predominance of juvenile walleye pollock and 

squid. Pacific herring and capelin, previously considered important prey, were absent 

(Sinclair et al. 1994). Kenyon (1965) noted harbor seals from Amchitka Island in the 

Aleutian Archipelago had remains of octopus and Atka mackerel in their stomachs 

while harbor seals sampled in 1979 from the Alaska Peninsula had primarily walleye 

pollock and octopus in their stomachs (Pitcher 1980).

The biological responses to environmental changes have manifested themselves 

in fluctuating phytoplankton abundance, zooplankton production and shifting 

migration patterns and recruitment of salmon (Oncorhynchus spp ), capelin (Mallotus 

villosus) and walleye pollock (Theragra chalcogramma) (Venrick et al. 1987; 

Ebbesmeyer et al. 1991; Brodeur and Ware 1992, Hollowed and Wooster 1992; 

Francis and Hare 1994; Polovina et al. 1994, 1995; Quinn and Niebauer 1995). 

Anderson et al. (1997) noted changes in demersal prey communities, consisting of 

both commercial and non-commercial species, in the western Gulf of Alaska in the late 

1970s. These changes are expected to be reflected in upper trophic level organisms 

that utilize those prey. For top consumers such as seals and sea lions, prey availability 

may fall below threshold densities necessary to sustain recruitment into the population.

9



Stable isotope ratios

Shifts in stable isotope ratios, and ^N /14N , are used as natural

tracers of food intake and are often used to reconstruct the diet of an organism, as the 

carbon and nitrogen isotope ratios reflect the food consumed and assimilated. The 

isotopic ratios of animal tissues, particularly in marine organisms, are slightly more 

enriched in 13C (0.5 to l%o) and 15N (3 to 5%o) than those found in the diet (DeNiro 

and Epstein 1978, 1981; McConnaughey and McRoy 1979; Rau et al. 1983; Fry and 

Sherr 1984; Minigawa and Wada 1984; Sholto-Douglas et al. 1991, Hobson and 

Welch 1992; France and Peters 1997). Carbon isotope ratios are incorporated into the 

proteins of a consumer following digestion in a conservative fashion and reflect 

differences in plant carbon at the base of food webs and metabolic pathways in the 

organisms. Nitrogen isotope ratios, in contrast, change with trophic level in a 

predictable manner and can be used to identify seasonal or geographic changes in 

trophic level during migrational movements (DeNiro and Epstein 1978, 1981; 

McConnaughey and McRoy 1979; Hobson and Welch 1992).

Isotopic variations are observed in organisms throughout the marine 

environment. Stepwise enrichment in carbon and nitrogen isotope ratios occurs with 

each increasing trophic level and in all tissues. Mostly-herbivorous zooplankton, 

consisting primarily of calanoid copepods and euphausiids in the North Pacific Ocean, 

are first- and second-order consumers of primary productivity. These zooplankton are 

integrators of the stable carbon and nitrogen isotope ratios of phytoplankton that are

10
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then passed through the food web to higher-order consumers. Any changes affecting 

the stable isotope ratios within the phytoplankton, such as inorganic carbon source and 

growth rate, would be carried through the food web and be reflected in foraging

pinnipeds. Likewise, zooplankton reflect the 5 1 -1C of the primary producers upon

which they had recently fed. The 1 4 ' and 1CN values in fish prey species reflect the 

ratios of their zooplankton and piscivorous prey. Pinniped tissues, in turn, reflect the 

integrated isotope ratios of assimilated food items. Each trophic level provides 

temporal and spatial isotopic data necessary to study food web dynamics of pinnipeds 

(Tieszen et al. 1983; Mizutani and Wada 1988; Michener and Schell 1994).

II

*



CHAPTER 2

VIBRISSAE GROW TH RATES OF HARBOR SEALS (PHOCA VITULINA) 

AND STELLER SEA LIONS (EUMETOPIAS JUBATUS)

ABSTRACT

Vibrissae, which act as a temporal record of feeding in harbor seals (Phoca 

vitulina) and Steller sea lions (Eumetopias ju  bait is), had growth rates estimated using 

13C- and 15N-labeled glycine followed by stable isotope analysis. The labeled glycine 

was incorporated into keratin and served as a temporal marker for growth rate 

calculation. One captive harbor seal received two doses 147 days apart while a second 

seal received one dose, vibrissae were analyzed after 86 and 154 days. The peak 

positions indicated growth began in the fall, continued into spring but ceased in June 

with active growth rates of 0.33 mm/d. Two adult captive Steller sea lions each 

received two labeled doses during a 308 day-period. After 427 days vibrissae in both 

sea lions showed two peaks corresponding to the markers; growth rates were 

calculated as 0.05 - 0.07 mm/d Growth rates in captive juvenile and wild adult Steller 

sea lions, 0.10 - 0.17 mm/d, supported the assumption that major isotopic oscillations 

in vibrissae of wild sea lions were annual. The multi-year records imply Steller sea

Hirons AC, Schell DM, St. Aubin DJ (in press) Vibrissae growth rates of harbor seals 
(Phoca vitulina) and Steller sea lions (Eumetopias jubatus). Can J Zool
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lions retain their vibrissae while harbor seal vibrissae, in contrast, have periods of rapid 

growth and appear to be shed, at least in part, annually.

INTRODUCTION

Vibrissae (whiskers) are keratinous, hair-like structures but differ considerably 

from pelage (hair). The structure of vibrissae follicles is similar to that of pelage 

follicles; however vibrissae are larger overall, highly innervated, with large blood 

sinuses, and controlled by voluntary muscles. The whiskers on pinnipeds occur in the 

musculature on the muzzle and above the eyes; most of these muscles control the 

positioning of the vibrissae (Ling 1977). Dehnhardt and Kaminski (1995) described 

how the vibrissae of harbor seals are capable of complex movement. The seals could 

discriminate diameter differences among disks by touching them with their mystacial 

(muzzle) vibrissae. The vibrissae from harbor seals and Steller sea lions have some 

anatomical differences from each other. In the otariids, or eared seals, including Steller 

sea lions, the vibrissae shafts are outwardly smooth and taper from the base to the tip, 

while those in harbor seals and other phocids have a waved surface and possess a more 

uniform diameter along their length. Otariids tend to have shorter anterior and longer 

posterior mystacial vibrissae and phocid vibrissae have a more uniform length. No 

known information exists regarding the significance of these characteristics in different 

species but differences in the vibrissae structure may be associated with slightly 

different functions.
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Ling (1966) determined that elephant seal vibrissae were not shed during their 

annual pelage molt but were shed periodically only after the seals were older than two 

years of age. However, the marsupial Tricosurus vulpecula, as noted by Lyne et al. 

(1974), had prolonged but variable vibrissae growth cycles compared to its pelage. 

Pelage in pinnipeds is molted annually and replaced during this time. No additional 

growth in their fur is observed throughout the year (Scheffer 1962; Ling 1970). 

Because vibrissae appear to function as sensory structures, periodic replacement or 

renewal due to physical damage could be selectively more advantageous than total 

seasonal replacement. Based on this information, we hypothesized that these two 

species of pinnipeds would maintain their vibrissae from year-to-year and they would 

grow continually, but the uncertainty of their seasonal growth prompted this study. 

Understanding the relationship between growth and isotope ratios in the vibrissae will 

facilitate interpretation of the isotopic data as a temporal record of food consumption 

by these animals. This paper describes the results of vibrissae growth measurements on 

captive animals and the interpretation of vibrissae data from wild harbor seals and 

Steller sea lions as related to a larger study on the impact that trophic changes have on 

these populations.

Severe declines in harbor seal and Steller sea lion populations have been 

recorded in the Bering Sea and Gulf of Alaska for more than two decades (Pitcher 

1990; Strick et al. 1997). No cause and effect relationships have yet been established, 

however, the concurrent increase in commercial fishing pressure may be causing a
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food competition that has pinnipeds competing for many of the same resources. Food 

limitation has been hypothesized as the likely cause behind the declines in the pinniped 

populations, resulting from decreases in prey populations and/or alteration of the prey 

base (Alaska Sea Grant 1993; Alverson 1991; Anderson et al. 1997; Merrick et al.

1997). Trophic changes resulting from diet switching would be recorded in the stable 

isotopes ratios in the animals’ vibrissae.

Vibrissae are growing tissue found in all pinniped species. Vibrissae from seals 

and sea lions contain a timeline of stable isotope ratios derived from prey items (this 

study). By comparing the isotope ratios found along the lengths of vibrissae with the 

isotope ratios of suspected prey items, changes in food sources and habitat can be 

surmised for the temporal span represented by the growth of the whisker. As part of 

this larger study, we attempted to determine how growth rate patterns changed in the 

vibrissae of harbor seals and Steller sea lions throughout a year in order to interpret 

the isotopic ratios.

MATERIALS AND METHODS 

Dosing Experiment

Two adult male harbor seals and two adult female Steller sea lions were 

maintained for 2-8 years in an outdoor exhibit at Mystic Aquarium in Connecticut. All 

were born in captivity; the sea lions were transferred from another facility. They were 

fed a daily ration of vitamin-supplemented fish (herring, capelin, mackerel, smelt) and



squid at a rate that sustained appropriate body weight. Glycine enriched with 15N or 

both I3C and 15N isotopes (98%) (Cambridge Isotope Laboratories, Andover, Mass,) 

was employed to mark vibrissae due to the high mole percentage (8 .6%) of glycine 

found in vibrissae keratin. It was administered intravenously as a solution of 100 

mg/ml in sterile physiological saline at a dosage of 5 mg glycine/kg of body weight. All 

procedures were approved by the Institutional Animal Care and Use Committees of 

both the Mystic Aquarium and the University of Alaska Fairbanks and were carried 

out in accordance with guidelines established by the Canadian Council on Animal 

Care.

Table 2.1 details the sequence of label additions and whisker clipping. The 

glycine was metabolically incorporated into the keratin during growth of the whiskers. 

Whole blood samples of 1-2 ml were collected prior to dosing and at twenty-four hour 

intervals for 48 to 72 hours after dosing to monitor the clearance of the label.

Whiskers were allowed to grow for a minimum of five months before a second dose of 

glycine was administered. The second peak was desired to establish two known dated 

markers in order to calculate growth rate. After a minimum of five more months, a 

whisker was cut as close to the skin as possible from each animal and analyzed for 

stable isotope ratios at close intervals along its length to locate the markers (Table 

2 . 1).

16
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Table 2.1. Chronology of vibrissae growth rate experiment in captive harbor seals and 
Steller sea lions, 9 January 1996 through 9 July 1998.

Glycine label

HS-N HS-P

2 - 13C&15N 1 - 13C&,5N

SSL-L

1 - 13c & 15n
1 - 15n

SSL-S

2 - 15N

Delivery date 9 Jan. 1996 
4 June 1996

4 June 1996 18 June 1996 
22 Apr. 1997

20 Aug. 1996 
22 Apr. 1997

Sample date 
(vibrissae)

29 Aug. 1996 5 Nov. 1996
5 Nov. 1996 9 July 1998
9 Julv 1998

23 June 1998 17 Nov. 1996 
23 June 1998

Day # (relative to Jan. 1, 1996)

1 100 200 300 400 500 600 700 800 900

HS-N CN CN V V

HS-P CN V

SSL-L CN N

SSL-S N N

(CN = carbon and nitrogen label, N = nitrogen only label, V = vibrissae collected)

V

V

V

V



Natural abundance

A second type of growth rate study using endogenous markers was conducted 

simultaneously at the Vancouver Aquarium in British Columbia, Canada, on one male 

and one female subadult Steller sea lion. Both the animals were born in the wild but 

were found abandoned as pups, two months or less in age, and taken to the Aquarium 

Vibrissae were clipped from the muzzle of each of the animals periodically during a 

three-year period. The vibrissae were analyzed for the inherent variability in stable 

isotope ratios in animals fed a weight-sustaining diet (herring and pollock) and all the 

whiskers from an animal were plotted together along a timeline. Overlap in growth 

from one vibrissa to the next was measured from an inflection point obvious on at least 

two separate segments. The date of each clipping was known and the growth rate 

calculated.

W hisker growth in wild harbor seals and Steller sea lions

An adult male harbor seal in southeastern Alaska was captured in September 

1994 by the Alaska Department of Fish and Game, and again 7 months later in April 

1995. A vibrissa was removed on each occasion and the patterns in the isotope ratios 

were compared in an effort to determine the average growth rate during the elapsed 

time period. In 1997 a second harbor seal was recaptured and a whisker removed for 

isotope analysis two years after a whisker was initially collected and sampled. A third 

harbor seal, a yearling, was also recaptured one year after it had been initially sampled 

as a pup.

18



One to two vibrissae were sampled from thirty subadult and adult sea lions. 

These animals were sampled on the Pribilof Islands in the Bering Sea and Chirikof 

Island in the western Gulf of Alaska by researchers from the National Marine Fisheries 

Service and the University of Alaska. Their vibrissae were analyzed for carbon and 

nitrogen isotope ratios and used for comparison to the captive animals. All ten of the 

sea lions sampled in the Gulf of Alaska were adult females, while the sea lions from the 

Pribilof Islands in the Bering Sea were almost exclusively male and 65% were less than 

five years of age.

All the mystacial vibrissae were from an adult female harbor seal harvested at 

Sitka, Alaska and an adult female Steller sea lion harvested at St. Paul, Pribilof Island, 

Alaska by Alaska native subsistence hunters. The vibrissae were pulled and analyzed 

for carbon and nitrogen isotope ratios. The patterns of isotope ratios were compared 

among each animal’s vibrissae, particularly the anterior versus posterior whiskers, to 

determine if growth rates varied among the seal vibrissae and the sea lion vibrissae. 

Laboratory procedures

Vibrissae were scrubbed with steel wool to remove any debris and segmented 

at 1.5 mm intervals from the base to the tip. Blood samples were dried for several days 

at 60°C and then ground for homogeneity. Stable isotope ratios were determined using 

a Europa 20/20 continuous flow isotope ratio mass spectrometer (CF-IRMS). Results 

are reported in the standard 513C and 5ISN notation:

5 X (%o) = (RSample I ^-standard ■ 1) x 1000
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where X is 13C or 15N and Rsam ple's b C/12C or 15N/14N ratio respectively, 

^■standard f°r ' ^  ls ^ ee Dee Belemnite; for l5N it is atmospheric N2 (air). Peptone 

was utilized as a reference check for machine drift for every ten samples. Analytical 

error for samples was approximately ± 0. \%o for both carbon and nitrogen

RESULTS

Following injection of the labeled glycine, isotopic analyses of blood samples in 

both captive seals and sea lions showed a rapid increase in both 513C and 515N. The 

nitrogen isotope ratio changes were the most pronounced, reflecting the higher ratio of 

label to 15N in the body composition. Decreases in the blood 513C and 51SN over time 

indicated loss of the isotope through respiration (carbon) or excretion and 

incorporation into body proteins (DeNiro and Epstein 1978, 1981).

Harbor seals

The vibrissae of the first harbor seal sampled in August 1996, HS-N, showed 

only one peak despite receiving two doses of labeled glycine 84 and 233 days earlier. 

An identical peak was in approximately the same location in a vibrissa collected after 

an additional 68 days (November 1996) (Figure 2.1). The second harbor seal (HS-P) 

had the label administered in June 1996 and had a whisker cut in November after 155 

days. No marker was evident in HS-P’s whisker (Figure 2.2) in spite of high 

concentrations o f the label in the blood samples confirming the availability of the 

labeled amino acid (Figure 2.3). No marker was evident in either seal from the time

20
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Length - base to tip (cm)

Figure 2.1. Stable isotope plots of vibrissae from a captive adult harbor seal, HS-N
The doubly labeled (S13C and 513N) glycine peak is visible in the vibrissa cut in 
August 1996 (top). The vibrissa cut in November 1996 reveals the same peak 
in approximately the same location (middle). No peak is evident from a vibrissa 
cut in July 1998 (bottom). Plots show the most recent growth at the base of 
the vibrissae (0 cm).
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2 4 6 8
Length - base to tip (cm)

Figure 2.2. Stable isotope plots of vibrissae from a captive adult harbor seal, HS-P. No 
15N peak was visible in the vibrissa cut in November 1996 (top) or in the 
vibrissa cut in July 1998 (bottom). Plots show the most recent growth at the 
base of the vibrissae (0 cm).
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between the last administered label (June 1996) and the last cutting of the whiskers, 

765 days later (July 1998). HS-N showed a significant increase in keratin 515N and 

513C, by 3%o and l.l%o, respectively, once the isotopic peak diminished and isotopic 

values returned to constant levels.

The decrease in blood serum isotope ratios in Figure 2.3 (SSL-L) showed 

evidence of the carbon -isotope ratios returning to pre-injection levels sixty-four days 

later while the nitrogen isotope ratios in the serum showed a large enrichment 

equivalent to approximately 100% of the initial increase. This sixty-four day period 

was determined as the overall elapsed time between the initial increase and subsequent 

decrease in blood serum isotope ratios exhibited in SSL-L after the addition of the 

labeled glycine (refer to Figure 2.3). In the absence of harbor seal data, blood serum 

clearance information from the Steller sea lion was used. Due to the availability of the 

label, the time from the starting point of the increasing isotope ratios in HS-N’s 

vibrissae until the point when the isotope ratios returned to constant levels was 

presumed to be sixty-four days. The enriched portion of the whisker measured 

approximately 2.1 cm and if the label were available for as long as 64 days, the period 

from mid-January to mid-March, the growth rate would be 0.33 mm/d. From the 

distance before and after the marker, HS-N’s whiskers represented growth from late 

September 1995 to potentially mid-June 1996, assuming a constant growth rate. 

Growth had not resumed as of early November when the second whisker was analyzed 

as indicated by the same relative position of the marker in the vibrissae. If the isotopic
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peak represented the label administered in January 1996, then the growth rate from the 

beginning of the peak until the time it was cut in August 1996 would be 0.37 mm/d. 

However, if the peak represented the label administered in June 1996, then the growth 

rate through August would have been 0.60 mm/d. The vibrissae growth rate based on 

the January injection date is nearly identical to the rate calculated from the rise and fall 

of the 5-values from the marker in the blood. These data would indicate that the peak 

resulted from the January injection of the label but that growth had ceased some time 

in June before the second label could be administered and incorporated. A third 

whisker removed from HS-N 20 months later showed no evidence of any carbon and 

nitrogen enrichment.

An adult harbor seal from southeastern Alaska that was originally tagged by 

the Alaska Department of Fish and Game and sampled in September 1994 was 

recaptured in April 1995. Whiskers that had been collected at both times were 

analyzed for their stable isotope ratios. During the seven months, the whiskers had an 

average growth rate of 0.08 mm/d (Figure 2.4). Neither the second nor the third 

recaptured harbor seals showed any similarity or overlap between their two vibrissae.

The subsistence-harvested adult seal showed no distinct difference in isotope 

ratios between anterior and posterior vibrissae and between vibrissae along the left and 

right sides of the muzzle (Figure 2.5). All the vibrissae ranged in length from 3 to 4 cm 

and eight vibrissae on each side of the muzzle were large enough to conduct isotopic 

analysis.
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Length - base to tip (cm)

Figure 2.4 Stable isotope plots of vibrissae from a recaptured adult male harbor seal in 
southeastern Alaska. A vibrissa sampled in September 1994 (upper plot) is 
contrasted with a vibrissa taken from the same seals seven months later (lower 
plot). Plots show the most recent growth at the base of the vibrissae (0 cm).
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Steller sea lions

The two captive adult sea lions each received two doses of labeled glycine as 

shown in Table 2.1. Whiskers were allowed to grow over a 672- and 735-day period, 

respectively. The first sea lion, SSL-L, received one dose of doubly labeled and one 

dose o f ' ’’N-labeled amino acid 308 days apart. The stable isotope ratios in the 

vibrissae first showed the presence of both enriched 515N and 6I3C as peaks, 

corresponding to the doubly labeled amino acid, and later only a peak of enriched 515N 

corresponding to the l5N-labeled amino (Figure 2.6). SSL-S’s vibrissae exhibited two 

l3N-enriched peaks that represented the two doses of 15N-labeled glycine administered 

183 days apart (Figure 2.7). Growth rates between the two markers ranged from 0.05 

- 0.07 mm/d for both sea lions. The vibrissae were retained by the sea lions for more 

than 735 days demonstrating retention rates in excess of two years.

SSL-L showed a significant increase in keratin 815N and 513C, by 2.4%o and 

0.6%o, respectively, after the enriched values began to diminish along the vibrissae and 

isotopic values returned to constant levels. No additional change in 515N was evident 

after the second 5I5N peak returned to a constant level. SSL-S showed an increase in 

keratin 8l3N by 0.8%o after the first 615N peak returned to a constant level and also 

exhibited an additional 0.9%o increase in 513N after the second isotopic peak 

diminished.

Two subadult Steller sea lions held at the Vancouver Aquarium in British 

Columbia, Canada, had their vibrissae clipped annually during a three-year period It
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Figure 2.6. Stable isotope plot of a vibrissae from a captive adult Steller sea lion, SSL- 
L. The peaks furthest to the right in the 5 С and 5 N represent the doubly 
labeled glycine administered in June 1996 while the left peak in the 5 N 
represents the 515N-labeled glycine administered in April 1997. The vibrissa 
was cut in June 1998. Plots show the most recent growth at the base of the 
vibrissae (0 cm).
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Figure 2.7. Stable isotope plot of a vibrissae from a captive adult Steller sea lion, SSL
S. The peak furthest to the right in the 515N represents the 815N-labeled glycine 
administered in August 1996 while the left peak represents the 515N-labeled 
glycine administered in April 1997. The vibrissa was cut in June 1998. Plots 
show the most recent growth at the base of the vibrissae (0 cm).



was possible to match features in the isotopic trends among one sea lion’s vibrissae 

and the overlap in vibrissae allowed for a growth rate estimate. The daily growth rate 

for this animal, averaged over fourteen months, was 0.14 mm/d (Figure 2.8). A second 

sea lion had a much shorter overlap of growth in two successively cut whiskers. The 

daily growth rate for the second animal, averaged over two winter months, was 0.17 

mm/d.

Subadult and adult sea lions (n = 30) sampled from the wild for another study 

had consistent isotopic oscillations along their vibrissae with growth rates ranging 

from 0.05 - 0.18 mm/d and averaging 0.10 - 0.14 mm/d, assuming that the major 

oscillations evident were annual (Figure 2.9). Oscillation length varied from animal to 

animal and year to year. Growth rates averaged over twelve months were 0.11 -0.12 

mm/d for all sea lions combined. The subsistence-harvested sea lion also showed no 

distinct variation in isotope ratios between anterior and posterior vibrissae and 

between vibrissae along the left and right sides of the muzzle (Figure 2.10).

DISCUSSION

These simple marker and observational studies indicate that the vibrissae 

growth characteristics between harbor seals and Steller sea lions are remarkably 

different. The growth rates in the seals indicated an irregular growth pattern 

throughout the year and annual vibrissae loss while the sea lions appeared to have a 

more consistent growth and year-to-year retention of their vibrissae (Table 2.2).
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Table 2.2. Vibrissae growth rates in harbor seals and Steller sea lions.

Species Location Age Mean growth (mm/d)

Harbor seals captive (Mystic, CT) adult 0.33 - 0.37

wild (Alaska) adult 0.08

Steller sea lions -captive (Mystic, CT) adult 0.05 - 0.09

captive (Vancouver) subadult 0 .14-0 .17

wild (Alaska) adult 0 .10-0 .14



Vibrissae collected from seal HS-N appeared to have grown from the end of 

September until mid-June. HS-N had one isotopic peak after being given one dose of 

the labeled glycine in January but growth rate calculations indicate that the second 

dose given in June was not incorporated. Because the peak remained in approximately 

the same location on whiskers sampled from HS-N in August and November, this lent 

further support that the isotopic peak was the result of the January injection and that 

growth was assumed to have decreased to some minimal level or ceased altogether in 

June. At some time during the next twenty months, however, most or all of the 

whiskers appeared to have been lost and the marker was no longer evident in the 

vibrissae.

Variations in seasonal metabolic rates may have some connection to the period 

of rapid growth in the harbor seal vibrissae. Rosen and Renouf (1995) observed an 

84% increase in the resting metabolic rates (RMR) of captive adult harbor seals from 

November through April and a higher than average RMR than the August estimates 

for the animals. The rapid growth in HS-N’s vibrissae was also observed during the 

same winter-to-spring period.

The first measure we had of vibrissae growth rate in wild seals came from a 

recaptured adult prior to the beginning of the labeled experiment. During that seven- 

month period from September to April, vibrissae growth was thought to be constant at 

a rate one-fourth of the growth rate of the captive seal’s vibrissae. One or both of 

these seals may have been impacted by differences in habitat, feeding and energetics



that could have affected their vibrissae growth rates. Further experimentation will be 

necessary to address these possibilities.

Both captive Steller sea lions that received two doses of singly and/or doubly 

labeled glycine showed evidence of the label in their vibrissae. The enriched isotope 

signals remained in the vibrissae more than two years after the initial doses of glycine 

were administered, which indicated that the vibrissae are retained from year-to-year. 

Vibrissae growth rates in captive adult sea lions had a range similar to the estimate rate 

for each oscillation in wild adult animals. Vibrissae from the Steller sea lions at the 

Vancouver Aquarium had been collected when the animals ranged in age from two to 

four years old. Periodic changes in the animals’ diets are evident in the shifts in the 

stable isotopes along their vibrissae as represented by one sea lion in Figure 2.8. These 

changes were confirmed by isotopic analysis of the animals’ food. The growth rate in 

the juvenile sea lions was twice the rate exhibited by the captive adults. Metabolic 

observations made by D. Rosen on the captive juvenile sea lions showed a maximum 

RMR during late fall and a minimum during April and May (per. comm.) but no 

comparable adult levels are available at this time. The oscillations observed in both the 

carbon and nitrogen isotope ratios of the wild sea lion in Figure 2.9 are not the result 

of endogenous rhythms but, rather, from dietary and geographic changes (this study). 

This point can be further illustrated by the lack of isotopic oscillations, except those 

resulting from the labeled glycine, in the sea lion vibrissae in Figures 2.6 and 2.7, 

which reflect the absence of any dietary changes during the experiment.

37



Stable isotope analysis of blood serum revealed that the carbon was cleared 

faster than the nitrogen. The carbon isotopes showed evidence of respiratory loss 

whereas the 815N values were additive over the duration of the experiment as a result 

of transamination and reincorporation into the body tissues. The pronounced changes 

in the nitrogen isotope ratios reflected the relative quantities of the element in the body 

composition of these animals. The nitrogen and carbon isotopes in the vibrissae keratin 

continued to show enrichment over the pre-injection values for a long time following 

the sharp, initial decline of the isotope peaks. The enrichment in HS-N’s isotopes was 

most pronounced and led to a long-term increase of about 2%o over the duration of the 

experiment. There were no changes in the animals’ diets during or after the labeling 

experiment for the captive harbor seals and Steller sea lions. The total detectable 

retention time of the label remains unknown, as long-term monitoring of the animals’ 

vibrissae could not be maintained. The residence time of this residual label, particularly 

in Steller sea lions that retain their vibrissae, should provide valuable information on 

turnover rates of proteins and could conceivably be used in wild animals where 

recapture is a possibility.

The carbon and nitrogen isotopes in the vibrissae of wild harbor seals did not 

show any type of repetitious pattern that might be indicative of an annual cycle. Two 

wild harbor seals recaptured one and two years apart, respectively, also displayed no 

similarity or overlap in the vibrissae stable isotope patterns between years. These data 

are consistent with the natural histories of the seals. The isotopic oscillations in the
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vibrissae from wild adult Steller sea lions throughout the Bering Sea and Gulf of 

Alaska likely resulted from the movement and feeding of the animals in various 

geographic regions (Merrick et al. 1997; this study). The similar vibrissae growth rates 

in both wild and captive Steller sea lions, combined with the repetitive isotopic 

patterns in wild sea lions, provide evidence that sea lions retain their vibrissae for 

several years and likely replace them only when broken or worn.

Observations of northern elephant seal vibrissae made by Ling (1966) revealed 

that the vibrissae were not shed at the same time as the annual molt but replaced 

irregularly. Since vibrissae appear to function as individual sensory organs, any 

replacement because of loss or damage could be of greater selective advantage than 

regular seasonal changes (Ling 1977). Bowen (per. comm.) observed grey seals in 

captivity sporadically losing their vibrissae and rapidly re-growing them during the 

molting period. He has also observed the rapid re-growth of broken vibrissae on grey 

seals throughout the year. The captive Steller sea lions used in this growth experiment 

were observed rapidly re-growing the cut vibrissae while the remaining vibrissae 

showed no apparent change. Morphological differences exist between harbor seal and 

Steller sea lion vibrissae but it is unknown if those differences have any impact on the 

growth rate patterns in the vibrissae or vice versa. The wavy, or “beaded” surface of 

the harbor seal vibrissae differs from the smooth veneer of the Steller sea lion 

vibrissae. The lengths of a harbor seal’s vibrissae (~ 10 cm) tend to be similar, while a



Steller sea lion’s anterior mystacial vibrissae are short (~ 6 cm) compared to the much 

longer posterior vibrissae (>20 cm) (Hirons unpubl. data).

Both the empirical data and literature seem to support the idea that vibrissae 

growth rates and retention times vary among pinniped species but the cues, whether 

environmental and/or internal, remain unknown. Further experimentation on captive 

pinnipeds, supplemented by information from wild seals and sea lions, will be needed 

to better define these patterns. Stable isotope-labeled amino acids provide a safe and 

effective means of applying internal markers for vibrissae growth rate experiments.

Further studies should expand our understanding of how vibrissae growth may 

change throughout the animals’ life span. Vibrissae from seals and sea lions contain a 

timeline of stable isotope ratios derived from prey items. By comparing the isotope 

ratios found along the lengths of vibrissae with the isotope ratios of suspected prey 

items, changes in food sources and habitat can be surmised for the temporal span 

represented by the growth of the whisker. The trophic information these tissues 

provide will enhance our knowledge of the animals’ food resources while perhaps 

providing clues to their population declines.
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CHAPTER 3 

STABLE ISOTOPE RATIOS IN PINNIPED VIBRISSAE  

AS FOOD WEB TRACERS 

ABSTRACT

Stable isotope ratios in vibrissae (whiskers) of Steller sea lions (Eumetopias 

jubatus) and northern for seals (Callorhinus ursinus) revealed a regular oscillating 

pattern in both carbon and nitrogen isotope ratios (513C and 515N) that repeated along 

the length of the vibrissae. These isotope ratios were compared with prey species in 

several regional food webs in the Bering Sea, Gulf of Alaska and northeastern Pacific 

Ocean. By combining recorded observations of these species’ movements with food 

web data, a picture of the foraging patterns by the animals can be estimated from 

isotope ratios recorded in their vibrissae. Stable isotope ratios from northern fur seal 

vibrissae were consistent with a diet of predominantly squid and juvenile walleye 

pollock. The vibrissae from Bering Sea and western Gulf of Alaska Steller sea lions 

had isotope ratios consistent with a diet of gadids (both Pacific cod and walleye 

pollock) and some Atka mackeral from the Bering Sea, Alaska Peninsula and Kodiak. 

The isotope ratios in vibrissae from some sea lions had no corresponding prey from 

the list of sampled organisms.

Hirons AC, Schell DM, Springer AM (in prep) Stable isotope ratios in pinniped 
vibrissae as food web tracers. Can J Fish Aquat Sci



INTRODUCTION

Steller sea lions (Eumetopias jubatus) and northern fur seals (Callorhinus 

ursinus) inhabit waters of the southern Bering Sea and the Gulf of Alaska, where their 

populations have declined during the past three decades (Loughlin et al. 1992; Trites 

and Larkin 1996; Sinclair 1997; Strick et al. 1997), beginning in the eastern Aleutian 

Islands and spreading into the western Aleutians, the eastern Bering Sea and the Gulf 

of Alaska (Alaska Sea Grant 1993). Steller sea lions travel hundreds of kilometers 

each year as they move between rookeries for breeding and pupping, haul-out sites 

and feeding locations. The majority of the northern fur seal population migrates 

annually from rookeries in the Bering Sea to forage locations ranging from the Gulf 

of Alaska, into open waters of the Pacific Ocean and as far south as California. The 

greatest abundance o f sea lions is found in the Gulf of Alaska, although high numbers 

have been spotted in the central Bering Sea during the winter (Loughlin 1993).

Feeding appears to occur predominantly onshelf and along the edge of the continental 

shelf.

The feeding grounds within 200-300 km of the Pribilof Islands are important 

for the fur seals during the duration of their breeding and molting (Loughlin et al.

1987) and the passes around the Aleutian Islands are important foraging grounds 

when the seals are migrating to and from the Pribilof Islands (Bigg 1990). The 

greatest numbers of fur seals have been reported along the continental shelf and slope 

in the Bering Sea and Gulf of Alaska, presumably due to abundant food (Kajimura 

1985).
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Decreased availability of preferred prey species and size classes is believed to 

be a factor in the pinniped declines (Alverson 1991, Springer 1992, Trites 1992, 

Merrick 1995, Merrick et al. 1997). Wild pinnipeds generally have a varied diet but 

will emphasize a few abundant prey species. Abundances tend to vary with different 

geographic locations (Fiscus and Baines 1966, Pitcher 1981; Perez and Bigg 1986). 

Walleye pollock, Atka mackeral, Pacific cod, capelin, herring, sandlance and squid 

have been identified as important in seal and sea lion diets through the identification 

of prey remains (otoliths, bony parts) in the stomachs of these animals. The absence 

of soft-bodied prey or presence of bony parts from prey may or may not represent 

prey assimilated by the seal or sea lion. (Pitcher 1980, 1981; Lowry 1982, Kajimura 

1985; Lowry et al. 1989; Merrick 1995; Merrick et al. 1997). Dietary information has 

often been dependent upon feeding observations or scat and stomach content analyses

that may have been biased by very short observation times.

1 ̂  11The stable isotope ratios of carbon ( ‘ С/' C) and, perhaps more importantly, 

nitrogen (15N /I4N) show a stepwise enrichment with each increasing trophic level in 

the marine environment (DeNiro and Epstein 1978, 1981). Carbon and nitrogen 

isotope ratios increase by l%o and 3%o, respectively, with each trophic step in food 

webs of the North Pacific and Arctic oceans (McConnaughey and McRoy 1979; Fry 

1988; Hobson and Welch 1992; Hobson et al. 1997).

Muscle tissue tends to reflect the average isotopic composition of the entire 

animal (DeNiro and Epstein 1978, 1981) while other body tissues are generally 

isotopically enriched or depleted in comparison (Tieszen et al. 1983). Assuming the



isotope ratios for muscle tissue were typical of whole animal values, ratios from 

vibrissae are normalized to muscle from the same species and compared directly with 

the isotope ratios of prey species muscle. The turnover rates o f carbon and nitrogen 

vary according to the metabolic rate of each tissue so it is possible to have different 

tissues reflect isotope ratios for different temporal periods (weeks vs. years) (Hobson 

and Clark 1992; Hobson et al. 1996; Ben-David 1996). Schell et al. (1989) have 

shown that for whale baleen, a continuously growing tissue, the stable isotope ratios 

along the lengths of the baleen plates provided dietary information for many years. 

This technique has also been applied in the present study, using vibrissae to reveal 

information on pinniped diets over time.

Stable carbon isotope ratios can be used to distinguish different marine food 

webs by identifying different sources of organic matter at the base of each web 

(reviewed by Fry and Sherr 1984; Minagawa and Wada 1984, Saupe et al. 1989; 

Simenstad et al. 1993). Herbivorous zooplankton are the first-order consumers of 

primary productivity and integrators of seasonal carbon isotope values of the 

phytoplankton. These values are then passed through the food web to higher order 

consumers.

Isotope ratio gradients of zooplankton along the coast of the Beaufort Sea 

have been described by Dunton et al. (1985, 1989) and Saupe et al. (1989). Schell et 

al. (1998) compiled those data and identified regions of distinct isotopic signatures. 

Schell (pers.comm.) also defined isotope gradients along the coastline in the Gulf of 

Alaska that are enriched inshore and become more depleted offshore. Similar



differences in 513C were found off the coast of British Columbia between the shelf 

and the adjacent slope (Perry et al. 1999). These regions appear to be defined by 

physical characteristics that either enhance or reduce the primary productivity 

(Springer et al. 1996; Schell et al. 1998). This isotopic information is necessary to 

interpret the spatial sequencing of stable isotope values for pinniped species that have 

wide ranges or migration patterns that include foraging in several food webs.

Regional differences affecting prey isotope ratios were used to help locate areas of 

foraging for seals and sea lions traveling great distances.

MATERIAL AND METHODS 

Sampling protocol

From 1993 to 1998 pinniped and prey samples were collected from the 

southeastern Bering Sea, the Gulf of Alaska and the northeastern Pacific Ocean with 

assistance from Native hunters and state and federal agencies (Figure 3.1). Stable 

carbon (5,3C) and nitrogen (515N) isotope ratios in vibrissae (whiskers) and muscle 

were measured in 14 northern fur seals and 22 Steller sea lions from the Pribilof 

Islands in the Bering Sea and 14 Steller sea lions from Chirikof Island in the western 

Gulf of Alaska. One to two vibrissae were cut or pulled from live animals while dead 

animals had all available vibrissae removed. One cubic centimeter of unexposed 

muscle tissue was collected from dead animals and frozen.
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Figure 3.1. Locations of sample sites for pinnipeds and prey species in the 
southeastern Bering Sea and Gulf of Alaska, 1993-1998.



Samples of suspected prey species were obtained during cruises in the Gulf of 

Alaska and southern Bering Sea in the summers of 1993-1998. The samples from the 

Bering Sea were collected during the National Marine Fisheries Service (NMFS) 

annual ground fish surveys; those from the Gulf of Alaska were collected during 

Alaska Department of Fish and Game (ADFG) and NMFS surveys. Three hundred 

individual fish and cephalopods were sampled for stable isotope ratios. Muscle tissue 

was taken from the lateral sides of fish and from the mantles of cephalopods. Isotopic 

values of zooplankton from the Bering Sea and Gulf of Alaska and of prey items from 

the coastal waters of Washington and Oregon were obtained from literature sources 

(Hobson et al. 1997, Schell et al. 1998; this study).

Mass spectrometry

Muscle tissue was kept frozen between collection of the tissue and preparation 

for isotope analysis. Muscle samples were dried in a laboratory oven at 60°C for a 

minimum of forty-eight hours and ground for homogeneity. Vibrissae were scrubbed 

with steel wool to remove any debris and segmented from base to tip in 2.5 mm 

segments. Every other segment beyond the base was analyzed for carbon and nitrogen 

isotope ratios and the reserved pieces were kept for additional detail as needed.

Subsamples of muscle and vibrissae (1-2 mg) were combusted at high 

temperature using a Europa Roboprep CHN analyzer and the nitrogen and carbon 

gases were separated and purified by gas chromatography. All samples were then 

analyzed for stable isotope ratios in a Europa 20/20 continuous flow isotope ratio
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mass spectrometer (CF-IRMS). All samples, except the vibrissae, had duplicates 

analyzed. Stable isotope ratios were expressed in the following standard notation:

5 X (%o) = (RSample I ^-standard '  1) x Ю00

where X is l3C or 15N and R g a m p l e 13C/12C or 15N /14N respectively. Rgtandard 

for 13C is Pee Dee Belemnite and for 15N is atmospheric N2 (air). Analytical error for 

samples was approximately ± 0.2%o for both carbon and nitrogen.

Statistical analysis

Analysis o f variance (ANOVA) was used to distinguish isotopic differences 

among prey species in spatially distinct food webs. Food web regions were 

designated based upon the availability of samples from several prey species within 

one geographic area. Significant differences among regions were determined at the P 

= 0.05 level. The isotopic differences between muscle and vibrissae from each 

pinniped species were analyzed using least squares means and those values were used 

to normalize the vibrissae isotope ratios to muscle (SYSTAT 1997). Due to the 

limited samples of female or male fur seals and sea lions from an area and limited age 

distribution, sex and age differences could not be tested.
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RESULTS

Isotope ratios of prey species

Herring, capelin, pollock and Pacific cod collected along the Bering Sea shelf 

break were not isotopically different from the same species on the inner shelf, with 

differences ranging less than 0.8%o in the average 513C and not more than 1,8%0 in the 

average 5 I5N. In contrast, the copepod 813C values were more than 2%o depleted on 

the inner shelf versus the shelf break. Since pelagic species range throughout many of 

the isotopically defined regions, food may be derived from each region. Pacific cod, 

walleye pollock and herring found along the Bering Sea shelf break had lower 

average 5 I3C values (l-2%o), while average 515N values were almost the same as 

those for the same species found along the Aleutian Shelf. The one difference in the 

average 5 I5N was that adult herring from the Bering Sea were almost 2%o lower than 

the same species found along the Aleutian Shelf. Excluding shrimp and squid, less

.  .  13
than l%o difference in 5 С was found between prey from the Aleutian Shelf and prey

. 15
from Kodiak waters. The 5 N values also ranged less than \%o for all species except 

arrowtooth flounder, shrimp and squid.

In comparing the ratios of both isotopes for prey from the inner shelf and shelf 

break of the Bering Sea, we found no significant differences in isotope ratios between

13
the two food webs except in the 5 С of the calanoid copepods (P < 0.001). The prey 

species from the shelf break were then compared with the same species from along 

the Aleutian Shelf and significant differences were found between adult herring for
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13 15
5 С and 5 N (Р = 0.008, Р = 0.002). Arrowtooth flounder from waters surrounding

15
the Aleutian Islands were significantly different in 5 N (P < 0.001) from arrowtooth 

flounder in the waters around Kodiak Island. The mean 513C and 515N values were 

also different in squid (P = 0.038, P  = 0.017) and in shrimp (P = 0.018, P  ^  0.001) 

between these two areas. Sole sampled along the Bering Sea shelf break had higher 

5 С values than anticipated based on their 513N, an indicator of trophic level. Sole 

and shrimp along the southern side of the Alaska Peninsula and around Kodiak Island 

had higher 8 С values than expected based on their 615N values (Table 3.1).

Isotope ratios of pinniped species

The isotopic ratios of vibrissae and muscle from sixteen Steller sea lions and 

three northern fur seals were compared to determine fractionation differences 

between these tissues. Using least square means, northern fur seal vibrissae were 

enriched by 1.6%o in the 513C relative to muscle while Steller sea lion vibrissae were 

enriched by 1.8%o. Steller sea lion and northern for seal vibrissae were depleted by 

0.6%o in 8 15N  relative to muscle (Table 3.2).

13 15The most enriched 5 С and 5 N values along the vibrissae were labeled 

“MAX” and the most depleted values were labeled “MIN”. There had to be a 

difference of > l%o in 513C and > 3%o in 515N between the maximum and minimum 

values for these points to be identified (Figures 3 .2-3 .4).

The regular, oscillating isotope patterns found along the vibrissae of northern 

for seals and Steller sea lions imply seasonal movement and feeding in isotopically
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Table 3 .1. Mean (± SE) 513C and 515N values measured in muscle of fishes and 
invertebrates from the southeastern Bering Sea and Gulf of Alaska.

Species Location n 513C 515N

copepods Bering Sea - inner shelf 6 -23.2 ± 0 .2 8.0 ± 0 .2
copepods Bering Sea - shelf break 5 -21.1 ± 0 .3 8.1 ± 0 .2
copepods Alaska Peninsula 6 -20.9 ± 0.2 9.0 ± 0 .3
copepods Kodiak 6 -21.0 ± 0 .3 9.1 ± 0 .2

Pacific cod, adult Bering Sea - inner shelf 5 -17.4 ± 0 .2 16.7 ± 0 .5
Pacific cod, adult Bering Sea - shelf break 4 -16.9 ± 0 .5 16.1 ± 0 .7
Pacific cod, adult Alaska Peninsula 28 -16.4 ± 0 .1 16.0 ± 0 .2
Pacific cod, adult Kodiak 33 -16.8 ±  0.1 15.7 ± 0.2

walleye pollock, ad. Bering Sea - inner shelf 7 -19.0 ± 0 .2 14.8 ± 0 .5
walleye pollock, ad. Bering Sea - shelf break 5 -18.8 ± 0.1 13.0 ± 0.7
walleye pollock, ad. Alaska Peninsula 18 -17.9 ± 0 .2 14.2 ± 0.3
walleye pollock, ad. Kodiak 36 -18.1 ± 0 .1 13.2 ± 0.2
walleye pollock, juv. Bering Sea - inner shelf 4 -19.2 ± 0 .3 13.2 ± 0.5
walleye pollock, juv. Bering Sea - shelf break 3 -18.8 ± 0 .7 13.1 ± 0 .9
walleye pollock, juv. Alaska Peninsula 35 -18.3 ± 1.3 13.4 ± 1.4
walleye pollock, juv. Kodiak 0 - -

herring, adult Bering Sea - inner shelf 2 -20.8 ± 0 .9 13.0 ± 1.9
herring, adult Bering Sea - shelf break 3 -20.7 ± 0 .7 12.2 ± 0 .6
herring, adult Alaska Peninsula 6 -18.6 ± 0.2 14.3 ± 0 .1
herring, adult Kodiak 20 -19.2 ± 0 .2 14.7 ± 0.1
herring, juvenile Bering Sea - inner shelf 0 - -

herring, juvenile Bering Sea - shelf break 0 - -

herring, juvenile Alaska Peninsula 7 -20.4 ± 0 .3 12.3 ± 0 .6
herring, juvenile Kodiak 0 - -

capelin, adult Bering Sea - inner shelf 17 -20.2 ± 0 .2 13.8 ± 0.1
capelin, adult Bering Sea - shelf break 8 -19.3 ± 0 .3 14 1 ± 0.3
capelin, adult Alaska Peninsula 0 - —
capelin, adult Kodiak 5 -20.7 ± 0 .4 15.5 ± 0 .2
capelin, juvenile Bering Sea - inner shelf 0 - -

capelin, juvenile Bering Sea - shelf break 0 - -

capelin, juvenile Alaska Peninsula 6 -21.0 ±  0.1 12.6 ± 0 .2
capelin, juvenile Kodiak 6 -21.0 ±  0.1 12.6 ± 0.2



53

Table 3.1 -  cont.

Species Location n 513C 61SN

sole (spp.) Bering Sea - inner shelf 0 _ _

sole (spp.) Bering Sea - shelf break 12 -16.6 ± 0.2 14.7 ±0.2
sole (spp.) Alaska Peninsula 5 -16.5 ±0.1 14.1 ±0.3
sole (spp.) Kodiak 6 -15.6 ± 0.1 14.4 ±0.3

Atka mackeral, ad Bering Sea - shelf break 2 -22.3 ±0.1 11.8 ± 0.1
Atka mackeral, ad. Alaska Peninsula 2 -21.5 ± 0.1 12.5 ± 0.1

arrowtooth flounder Alaska Peninsula 5 -19.0 ±0.3 12.2 ± 0.1
arrowtooth flounder Kodiak 5 -18.6 ± 0.1 16.3 ±0.2

shrimp (spp.) Alaska Peninsula 5 -17.6 ± 0.1 12.1 ± 0.1
shrimp (spp.) Kodiak 4 -18.6 ± 0.4 17.4 ± 0.1

squid (spp.) Alaska Peninsula 4 -20.1 ±0.4 11.9 ± 0.2
squid (spp.) Kodiak 3 -18.9 ± 0.1 13.8 ±0.6

octopus (spp.) Bering Sea - shelf break 8 -17.7 ± 0.1 13.1 ±0.2



Table 3.2. 513C and 615N fractionation differences between pinniped vibrissae and 
muscle using least square means (± SE). BS is Bering Sea and GOA is Gulf of 
Alaska.

Species Location n 513C 51SN

Northern fur seals Pribilof Islands, BS 3 1.6 ± 0.3 -0.6 :

Steller sea lions Pribilof Islands, BS & 16 1.8 ± 0.2 -0 .6 :
Chirikof Island, GOA
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Figure 3.2. 513C and 615N in a northern fur seal vibrissa from the Pribilof Islands,
Bering Sea, July 1994 The base of the vibrissa begins at 0 cm. Examples of 
maximum and minimum isotope values are labeled.
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Figure 3 .3. 513C and 615N in a Steller sea lion vibrissa from the Pribilof Islands, Bering 
Sea, May 1994. The base of the vibrissa begins at 0 cm. Examples of maximum 
and minimum isotope values are labeled.
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distinct regions (Schell et al. 1998; Perry et al 1999). Northern fur seals are seasonally 

migratory and sea lions have large ranges that cover several hundred kilometers 

(Kenyon and Rice 1961; Kajimura 1985; Loughlin et al. 1984). Northern fur seals 

were sampled in the Pribilof Islands of the Bering Sea and all had consistent

13 15
oscillating patterns in both 5 С and 5 N  (Figure 3 .2). The periodicity of these 

patterns ranged from 1-3 cm along the vibrissae. Bering Sea fur seals had average 

maximum ratios ranging from 14.0 to 17.4%o for 5 15N  and -17.3 to -16.1%o for 5 13C 

and average minimum ratios ranging from 12.0 to 14.5%o for 5 15N  and -18.2 to 

-17.3%o for 5 13C (Table 3.3).

The sea lion isotope patterns were characterized either by periodic oscillations 

of amplitude ranging from less than 2%o to over 5%o or by patterns that were 

characterized by low amplitude oscillations having larger trends toward isotope 

enrichment or depletion (Figure 3.3 and 3.4). The stable isotope ratios of Chirikof

. 13
Island Steller sea lions demonstrated the most regular oscillating patterns in 5 С and

15 . . .
5 N with periods ranging from 3 - 6 cm along the whisker. Bering Sea sea lions had

less regular oscillations than those from the Gulf of Alaska. The Bering Sea sea lions

had average maximum values ranging from 15.7 to 21.0%o for 515N and -16.8 to

-14.2%o for 813C and average minimums ranging from 14.4 to 18.2%o for 615N and

-17.3 to -14.9%o for 513C (Table 3.3).

The maximum isotope values of the male fur seal vibrissae were consistent

with a diet of predominantly squid and juvenile walleye pollock from waters around



Table 3 3 6 l3C and 6 I?N values for pinniped vibrissae from the Pribilof Islands, Bering Sea and from Chirikof Island, 
Gulf of Alaska Age of the animals are denoted by A (adults), SA (subadults), P (pups) and U (unknown)

Pinniped Sample Date Sex

Northern fur seals - Pribilof Island

Age Range 5

s, Bering Sea

1JC x 6 I3C Range 5lSN x 5:s

NFSA1 29 June 1993 M A -17 7 to - 61 -169 13 5 to 16 0 14 9
NFSA2 12 Aug. 1993 F A -1 7 6 to - 5 8 -1 6  9 13 1 to 16.7 15 1
NFS A3 15 Aug 1993 

June 1993
M A -18 2 to - 7 1 -17 6 12 6 to 15 1 13.8

NFSA4
NFSA5

M U -18 1 to - 6 9 -1 7  5 11 3 to 16 7 12 8
June 1993 M U -18 1 to - 7.1 -17 5 11 5 to 17 6 13.3

NFSA6
NFSA7

June 1993 M u -18 7 to - 6 8 -1 7  5 10.7 to 17 4 13 6
June 1993 M и -18.6 to - 6 5 -17 4 10 9 to 17 6 13 6

NFSB1 26 July 1994 M SA
SA

-18.1 to - 6 8 -17 4 11 1 to 15 1 13 3
NFSB2 5 Aug 1994 M -18.1 to - 5.9 -17 0 119 to 18 8 15 4
NFSB3 1 1 Juiy 1994 M SA

SA
-19 4 to - 6.6 -17.6 11.6 to 18 6 14 3

NFSB4 16 Juiy 1994 M -18 1 to - 6 1 -16.7 11 8 to 17 9 15 0
NFSB5 15 Juiy 1994 M SA

SA
-19 5 to - 6 2 -17 7 10.9 to 19 0 14 4

NFSB6 5 Aug 1994 M -18 2 to - 6.1 -172 12 8 to 18 1 15 5
NFSB7 

Steller sea

5 Aug 1994 M 

ions - Pribilof Islands,

SA 

Bering Sea

-16 5 to - 7 8 -1 7  2 12 8 to 19 7 15 6

SSLAIBS
SSLA2BS
SSLA6BS
SSLBIBS
SSLB2BS
SSLB3BS
SSLB4BS

30 May 1993 M
M

SA -18 5 to - 3 5 -16 4 14.1 to 20 2 16 1
30 May 1993 SA -16.0 to - 5.4 -15 7 16 7 to 10 0 18 8
9 June 1993 M SA -1 5 6 to - 4.1 -14 8 17 6 to 19 7 18 7
21 May 1994
22 May 1994 
20 Mu f 1994

M SA -17 4 to - 5 0 -1 5  9 17 7 to 22 3 19 8
M A -15 9 to - 3.7 -15 0 16 5 to 20 5 18 3
M SA -16.8 to - 5 8 -16.3 15 1 to 17 0 16 0

23 May 1994 M SA -17.6 to - 6.5 -17 1 15 I to 16.8 15 7

N



Table 3.3 -  cont.

Pinniped Sample Date Sex Age Range 5 13C x 8 13C Range 5 15N x 6 lsN

Steller sea lions - Pribilof Islands, Bering Sea -  cont.
SSLB5BS 23 May 1994 M SA -17.2 t o -14.1 -16.0 15.3 to 20.5 17.3
SSLB6BS 24 May 1994 F A -15.3 t o -14.2 -14.6 16.7 to 20.5 19.1
SSLB7BS 24 May 1994 M SA -17.2 to -14.0 -15.1 16.0 to 21.4 19.2
SSLB8BS 23 May 1994 F SA -16.8 to -15.5 -16.1 16.8 to 18.3 17.6
SSLB9BS 24 May 1994 M A -16.8 to -13.8 -15.4 14.8 to 19.8 16.8
SSLB10BS 24 May 1994 M SA -16.2 to -14.7 -15.5 17.1 to 21.4 19.1
SSLB1IBS 25 May 1994 M SA -17.8 to -16.4 -17.0 14.7 to 17.1 15.5
SSLB12BS 30 Oct. 1994 M P -17.2 to -15 .3 -16.4 15.9 to 18.1 17.3
SSLB13BS 2 Oct. 1994 F SA -18.1 to -15.8 -17.1 12.5 to 17.2 14.9
SSLB14BS 2 Oct. 1994 M SA -17.8 to -14.9 -16.7 14.5 to 18.4 16.2
SSLB15BS 28 May 1994 M A -16.9 to -14.0 -15.5 14.9 to 19.8 17.1
SSLB16BS 5 May 1994 M U -16.4 t o -13.6 -15.0 15 .6 to 20.1 18.5
SSLC1BS 26 Feb. 1995 M A -16.5 t o -14.3 -15.2 17.3 to 18.5 18.0
SSLC2BS 10 May 1995 M A -15.8 to -14.4 -15.1 18.5 to 20.7 19.6
SSLD1BS 21 Jan. 1996 F A -16.1 to -14.6 -15.1 16.0 to 18.5 17.1

Steller sea lions - Chirikof Island, Gulf of Alaska
SSLA0CH 12 June 1993 F A -16.8 t o -14.1 -15.8 13.3 to 17.9 15.1
SSLA463WCH 14 June 1993 F A -17.5 t o -15.0 -16.4 13.1 to 15.7 14.1
SSLA464WCH 14 June 1993 F A -15.3 to -13.5 -14.1 16.2 to 18.8 17.7
SSLA465WCH 15 June 1993 F A -16.9 to -14.9 -16.2 14.4 to 18.0 15.4
SSLA466WCH 15 June 1993 F A -17.4 to 15.8 -17.1 14.0 to 15.6 14.8
SSLA521WCH 17 June 1993 F A -16.2 to -13.2 -14.5 14.6 to 19 1 17.1
SSLA526WCH 11 June 1993 F A -17 4 to -15.2 -16.4 14.0 to 16.7 15.2



Table 3 3 cont

Pinniped Sample Date Sex Age Range 5 13C x 8 13C

Steller sea lions - Chirikof Island, Guif of Alaska -  cont 
SSLA527WCH 11 June 1993 F A -17 5 t o -15.5 -16.6
SSLA528WCH 12 June 1993 F A -15 6 t o -12 4 -13 8
SSLA530WCH 13 June 1993 F A -16 9 t o -14 3 -15 9

Range 5 !5N x  8 i5N

14 3 to 15 9 15.1
1 5 8 to 19 6 17 9
13 5 to 17 2 15.0



the Alaska Peninsula and Kodiak Island that would likely only be obtained during 

migration away from the Pribilof Islands. Small squid from waters around the Alaska

. . 15
Peninsula were at a trophic level consistent with the minimum 5 N values found in 

the fur seal vibrissae.

Maximum isotope values along vibrissae from Chirikof Island Steller sea lions 

were consistent with a diet consisting of walleye pollock from the Alaska Peninsula 

and possibly the southern Bering Sea. The minimum isotope values in vibrissae from 

the GOA sea lions had no corresponding prey from the list of sampled organisms.

The vibrissae from Bering Sea Steller sea lions had maximum isotope values 

consistent with a diet of gadids (both Pacific cod and large walleye pollock) from the 

Bering Sea, Alaska Peninsula and Kodiak. The minimum isotope values from the 

Bering Sea sea lions may indicate a diet of walleye pollock derived from waters along 

the Alaska Peninsula and near Kodiak Island.

DISCUSSION  

Isotopic variability

A previous study by Hirons et al. (Chapter 2) revealed that Steller sea lions 

appear to grow and retain their vibrissae for several years. Sea lions in captivity that 

have had vibrissae removed or broken were observed rapidly replacing those 

vibrissae with new ones. Therefore, vibrissae from Steller sea lions in the northeast 

Pacific Ocean appeared to represent multiple years of growth and the oscillating



fluctuations in the stable isotope data in the vibrissae represent interannual cycles 

likely caused by trophic variability and/or geographic movement made by the species 

from year-to-year. Northern fur seal vibrissae also exhibited a regular oscillation in 

the carbon and nitrogen isotope ratios. Though no vibrissae growth data are currently 

available for this species, it can be argued that fur seals also retain their vibrissae for 

several years and the oscillations resulted from the annual migrations this species 

made from the Bering Sea into the North Pacific Ocean and back each year. The 

movements made by both species would result in foraging in various regions with 

different isotope ratios. Prey being consumed may also differ by region, further 

complicating the isotopic picture.

Isotope ratios in prey species

The overlapping data shown for prey isotope ratios from different geographic 

regions illustrates the difficulty of isotopically assessing diet in areas where 

heterogeneity exists in the surrounding isotopic environments. Depending upon the 

size and source area of the prey, the isotope ratios may vary by several parts per 

thousand. As the contour maps of Schell et al. (1998) illustrate, it is possible for a 

consumer to acquire a markedly different pattern of 515N and 513C by feeding in 

locations only a few hundred kilometers apart. Similarly, travel of prey species 

onshelf or offshelf will result in the prey having isotope ratios different from the 

source geographic region. Time for sufficient feeding to occur in the new region will 

result in a turnover of body carbon and nitrogen. For example, the stable isotope
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values in the Bering Sea are more enriched onshelf and more depleted in the pelagic 

waters beyond the shelf. The comparison of the Bering Sea inner shelf and shelf 

break food web components showed a significant difference in the 5 I3C of calanoid 

copepods, but that difference was not detectable in the upper trophic level organisms, 

which move across the isotopic boundaries seasonally or while feeding.

Components from the shelf break food web were compared with the Aleutian 

Shelf food web due to the proximity of the prey to pinniped haulouts in the Bering 

Sea, primarily the Pribilof Islands and rookeries in the Aleutian Islands. The isotopic 

differences between the adult herring of the Bering Sea and Aleutian Shelf may arise 

from the herring having feeding restricted to the region in which they resided. The 

adult herring were two trophic levels greater than copepods for their respective areas 

and that may indicate a significant fraction of ichthyoplankton in their diet. Juvenile 

herring from the Bering Sea were not available for comparison, but juveniles from 

along the Aleutian Shelf fit the trophic level between the Aleutian copepods and adult 

herring.

Benthic organisms, such as sole and octopus from the Bering Sea shelf break 

and sole and shrimp from the southern side of the Alaska Peninsula and around

13
Kodiak Island, have enriched 8 С values relative to 615N. Arrowtooth flounder along 

the Aleutian Islands were almost 4%o lower in 8I5N than those found around Kodiak 

Island but both had enriched carbon values. Fauna from benthic environments are 

characteristically more enriched than those from overlying waters as the lighter



isotope of detrital material is lost preferentially during decompositional respiration 

(Fry and Parker 1979). Detrital food webs, based on bacterial productivity, are 

typically enriched in 513C by l%o over the water column food web (France 1995). 

Northern fur seals

The maximum isotope ratios in the vibrissae are consistent with a diet derived 

from walleye pollock from the western portion of the Gulf of Alaska and through the 

Bering Sea shelf break. Fur seals have been observed foraging in the summer in the 

passes between the islands for pollock, capelin and Atka mackeral. The few samples 

of Atka mackeral that Hobson et al. (1997) reported for the Gulf of Alaska are 

consistent with the maximum isotope values in the fur seal vibrissae, however, the 

depleted carbon values found in mackeral from the Bering Sea do not correspond to 

the fur seal vibrissae. The depleted 515N values exhibited in the vibrissae do not 

match any of the prey species sampled in the three study areas, but the northern 

region in the Gulf of Alaska was found to have low 5I5N values in the zooplankton 

(this study). Because of the large migration distances of this species, it is likely the 

minimum values exhibited by the fur seals correspond to prey from food webs farther 

south in the offshore pelagic waters of the Gulf of Alaska or in the North Pacific 

Ocean. Walleye pollock and flounder isotope values given by Hobson et al. (1997) 

for North Pacific species off the coast of Washington and Oregon, as well as pollock 

and squid values from other regions of the Gulf of Alaska, have the 615N values to 

produce the minimum isotope values observed in the vibrissae. Squid have also been



recorded as a prominent prey type in fur seal diets (Kajimura 1985; Perez and Bigg 

1986; Sinclair et al. 1994). The isotope values for squid throughout the Bering Sea 

and Gulf of Alaska corresponded to those found in their vibrissae.

Steller sea lions

The stable isotope data appear to corroborate the natural history information 

gathered for the Bering Sea and Gulf of Alaska sea lions. Sea lion vibrissae sampled 

from Chirikof Island had the most enriched values and were likely the result of 

predominantly foraging on flatfish in the waters around Chirikof and Kodiak islands. 

The more depleted values may derive from pollock foraged in the waters around the 

Aleutian Islands and south of the Alaska Peninsula.

The isotope ratios for Bering Sea sea lions were similar to those expected 

from a diet of pollock from along the Alaska Peninsula. During late fall and winter, 

more sea lions are seen in the coastal waters and along the edge of the Bering Sea 

shelf. They may be feeding on large (>650mm) pollock, Pacific cod and sole in the 

deeper waters off the shelf break at this time and then move back to the rookeries in 

late spring.

Almost all of the animals showed variations in both 613C and 515N along the 

vibrissae and the magnitude of the changes appeared to be related, i.e. large 

oscillations in 513C were usually coincident with large oscillations in 615N (Figure 

3.3). Such oscillations are also in phase but a shift in 615N alone could arise from a 

trophic change due to prey switching within a given environment. There is also a
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possibility that movements across isotopic gradients may be accompanied by changes 

in dietary selection leading to increased or decreased trophic status with consequent 

shifts in 815N. Steller sea lions in the Gulf of Alaska, however, showed these periodic 

oscillations most strongly and they are likely related to movement through geographic 

gradients on a seasonal basis (Figure 3.4). If the oscillating patterns show annual 

seasonal migrations between regions of isotopic difference, then some of the Bering 

Sea sea lions may be moving into specific regions and staying for time periods longer

13 .
than a season. The о С enrichment in Bering Sea sea lions may be an indication 

these animals were feeding more heavily on benthic animals, e.g. shrimp or flatfishes, 

in enriched coastal waters. That was evidenced by maximum isotope values in these 

sea lions most closely matching the isotope ratios of rock and yellowfin sole found in 

the Bering Sea, along the Alaska Peninsula and around Kodiak Island.

Stable isotope ratios are consistent with the presence of squid and juvenile 

walleye pollock in northern fur seals. Only some Steller sea lions isotope ratios 

corresponded to Pacific cod and pollock from the Bering Sea and western GOA and 

some Atka mackeral from along the peninsula. Seasonal prey types, such the salmon 

species, have not been addressed in our limited food webs. These species are 

expected to affect the isotope ratios in the pinniped tissues if eaten, but the isotope 

ratios of the salmon may be masked by similar trophic level prey.

Specific feeding locations and strategies remain largely unknown for these 

seals and sea lions. Satellite telemetry is now able to provide information on the
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physical features of the water in which the animals are foraging as well as dive depth 

and duration. These physical characteristics, such as water temperature, assist in 

determining which prey choices may be residing at a particular depth and temperature 

(Merrick et al. 1997). In studies of trophic dynamics, stable isotope ratios can provide 

information on the trophic level of organisms and composition within a food web. As 

we have seen in this study, the combination of stable isotope analysis with pinniped 

ecology has provided further information on the animals’ food web dynamics. With 

all this data, we could still only identify at what trophic level the animal was feeding 

and perhaps a generalized location. Stable isotope analysis, used in combination with 

satellite-linked time-depth recorders, biology and natural history, has the ability to 

provide greater information on foraging locations and be more species-specific when 

analyzing the diets of seals and sea lions.
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CHAPTER 4 

TROPHIC VARIABILITY OF HARBOR SEALS (PHOCA VITULINA) 

IN PRINCE W ILLIAM SOUND, ALASKA  

ABSTRACT

The number of harbor seals (Phoca vitulina) in Prince William Sound, Alaska 

has declined to approximately one-fourth of the 1975 population and food web 

dynamics have been investigated as a possible factor in the decline. Archived and 

recent harbor seal tissues were used to determine food web structure and trophic 

dynamics of seals within Prince William Sound and the adjacent Gulf of Alaska. Within 

the sound, carbon and nitrogen isotope ratios confirm that most harbor seals are near 

the top of food chains that are based on local, in situ primary and secondary 

productivity and not on production from outside the sound. Carbon isotope ratios also 

indicated that benthic prey are a large component of harbor seal diets. Isotope ratios 

along wild seal whiskers show that some individuals migrate into areas (presumably in 

the Gulf) wherein food web structures are different and isotope ratios of prey are 

considerably lower than within the sound. Data on isotope ratios of potential prey 

species from Prince William Sound and from other sites in the Gulf of Alaska indicate 

a geographic isotopic gradient exists between onshelf and deep pelagic waters.

Hirons AC, Schell DM, Kline TC (in prep) Trophic variability of harbor seals {Phoca 
vitulina) in Prince William Sound, Alaska. Mar Mamm Sci



INTRODUCTION

Severe declines in harbor seal (Phoca vitulina) populations in Prince William 

Sound and the Gulf of Alaska have been observed for more than two decades. The 

population of harbor seals in Prince William Sound (PWS) was further impacted by the 

Exxon Valdez oil spill in 1989 and the population has continued to decline by 6% per 

year (Frost et al. 1999)..Speculation regarding the role that prey availability has had on 

these declines has led to the use of stable isotope ratios in assessing food web and 

trophic linkages. Stable carbon and nitrogen isotope ratios (513C and 515N) are 

established in the primary producers of the food chain and act as natural tracers of 

carbon and nitrogen transfers through the food webs. This in turn may provide 

evidence of prey consumed at different locations and trophic levels within PWS and 

the adjacent Gulf of Alaska (GOA).

Carbon isotope ratios (b C/12C) serve as relatively conservative, within l%o, 

tracers of energy supply among trophic levels (phytoplankton to zooplankton to fishes 

to top consumers). Seals, cetaceans, birds, etc. acquire the isotope ratios in proportion 

to the amount of food derived from each differing source (DeNiro and Epstein 1978, 

Fry and Sherr 1984). This, in turn, is reflected in the composition of body tissues and 

in keratinous tissues, e.g. baleen and whiskers, as a temporal record when differing 

sources of food are consumed over time and space (Schell and Saupe 1993). This 

allows us to discern important habitats and food resources in animals that seasonally 

migrate or shift diets.
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Nitrogen isotope ratios ( ^ N /^ N )  reflect both the food sources and the 

trophic status of the consumer. As nitrogen in food is consumed and assimilated by an 

animal, the heavy isotope is retained and the animal is enriched by approximately 3%o 

with accompanying loss of the lighter isotope through excretion (DeNiro and Epstein 

1981, Minigawa and Wada 1984). The isotopic composition of muscle tissue in an 

organism tends to reflect the isotopic makeup of the entire organism and, therefore, 

fractionation differences among tissues can be determined by comparing the isotope 

ratios of various tissues against those of muscle (DeNiro and Epstein 1978, 1981). 

Enrichment occurs with each trophic step and allows the construction of conceptual 

models and food webs and the assignment of trophic status to species for which 

dietary data are sparse. The data obtained from these measurements are unique in that 

they trace materials actually assimilated and can thus be used for ecosystem modeling.

The objectives of this isotope study were to collect and analyze tissues from 

harbor seals and prey species in the vicinity of PWS and the GOA for purposes of 

assessing if dietary changes had occurred and might have contributed to their 

population declines. It can be hypothesized that the natural stable isotope abundances 

of PWS biota will shift in response to changes in trophic level, food web structure, and 

primary productivity in the environment, thus providing an independent tool to verify, 

quantify, and model ecosystem processes. The isotopic tracer approach enables the 

integration of ecosystem components.
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METHODS

Through the use of carbon isotope data on taxa collected over geographical 

regions, the presence/absence of isotopic gradients useful in sorting out habitat 

dependencies were determined. Nitrogen isotope ratios were used to assign trophic 

status to species in each region. Temporal changes in harbor seal trophic status and 

food dependencies were determined by comparing isotope ratios along the lengths of 

vibrissae with isotope ratios from available prey.

Prey species

Stable isotope values of zooplankton from Prince William Sound and the Gulf 

of Alaska were obtained from literature sources and databases ranging from 1994 to 

1997 (Schell et al. 1998; Kline 1999). These data were used to test for geographic 

variations that would help identify food webs and potential movement in harbor seals. 

In addition, lower trophic level organisms, consisting of both pelagic and benthic 

species residing within and outside PWS, were obtained and analyzed between 1993 

and 1997. Personnel from the Alaska Department of Fish and Game, the National 

Marine Fisheries Service and the Prince William Sound Science Center assisted in the 

collection of these organisms. A few grams of muscle tissue were extracted from 

several samples of each species from a location. The tissues were frozen in a standard 

-10°C freezer and transported to the stable isotope facility at the University of Alaska 

Fairbanks for analysis.
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Pinnipeds

Harbor seal tissues were collected with the assistance of the Alaska 

Department of Fish and Game (ADFG) and native subsistence hunters. From 1993

1998 vibrissae and muscle tissue from 128 harbor seals were analyzed for stable 

isotope ratios. Additional vibrissae from live harbor seals were collected within PWS 

and from the surrounding GOA (Figure 4.1). One to two long vibrissae were pulled 

from live animals being monitored by ADFG or from harvested animals for stable 

isotope analysis. Vibrissae were scrubbed with steel wool to remove any debris and 

segmented from base to tip in 2.5mm segments. Every other segment was analyzed for 

carbon and nitrogen isotope ratios and the reserved segments were archived for future 

reference. When possible, samples of muscle tissue were taken for analysis. 

Approximately one cubic centimeter of muscle tissue was collected from dead animals. 

The tissues were kept frozen between the time of collection and isotope analysis. The 

isotopic ratios of vibrissae and muscle tissue from 14 harbor seals were compared to 

determine fractionation differences between vibrissae and muscle tissues.

Analytical Techniques

All prey and harbor seal muscle tissue samples were dried in a laboratory oven 

at 60°C for a minimum of forty-eight hours and ground for homogeneity while 

vibrissae segments were analyzed without additional preparation. The isotope ratios of 

carbon and nitrogen were determined with a Europa 20/20 continuous flow isotope 

ratio mass spectrometer. The samples were combusted at high temperature and the
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Figure 4.1. Sample locations for harbor seals in Prince William Sound, 1993-1998.



nitrogen and carbon dioxide gases separated and purified by gas chromatography. The 

gases were subsequently led into the mass spectrometer by capillaries and the isotope 

ratios determined. All samples were analyzed in duplicate. Results are reported in the 

standard 5b C and 815N notation relative to Pee Dee Belemnite and air standards for 

carbon and nitrogen, respective of the standards. Standard replicates were analyzed for 

every twelve samples. If the difference between replicates was greater than 0.5%o, 

samples were reanalyzed. A difference of 0.2%o was considered acceptable. Analytical 

error for samples was approximately ±0. l%o for both carbon and nitrogen.

Statistical Analysis

Hotelling's T-test was used to distinguish if regional differences existed among 

harbor seals based on their stable isotope ratios. Multiple analyses of variance 

(MANOVA) and Wilk's Lambda were used to investigate isotopic differences based 

on the sex and age of the seals and the region of PWS and the years that samples were 

gathered. Fractionation differences in the harbor seal tissues were calculated using 

least square means and standard error equations. (SYSTAT 1997).

RESULTS

Isotope Ratios in Prey Species

The isotope ratios of prey species important to harbor seals were defined 

within and outside PWS. The prey plots (Figures. 4.2 and 4.3) were created using 51 C 

and 515N values for nine potential prey species for harbor seals. Neocalanus spp. were
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Figure 4.2. Maximum (max) and minimum (min) mean (± SE) 513N from Prince 
William Sound harbor seals (PWS HS) and mean (± SE) 515N from Prince 
William Sound and Gulf of Alaska fishes and invertebrates. Vibrissae values 
have been normalized to muscle. Sample sizes are > 5 Species with similar 
isotope ratios were grouped for clarity.
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included in the food web as a first-order consumer within the sound. For the sake of 

clarity, only a random sampling of harbor seals was added to the plot These plots are 

not meant to represent the absolute prey variety in the diet, but more as likely sources 

of prey for seals foraging within the sound.

Isotope Ratio Variations in Wild Harbor Seals

Using least square means, harbor seal vibrissae were enriched by 1.9%o in 5b C 

relative to muscle while the vibrissae were only slightly enriched by 0. l%o in 515N 

relative to muscle. These results allowed the vibrissae values to be normalized to 

muscle values so a direct comparison of isotope values could be made to muscle from 

prey organisms.

Seals from 11 sites were sampled in PWS (Figure 4.1). The 513C and 515N 

values at the base of the vibrissae were used for statistical analysis. The isotope values 

at the base of the vibrissae reflect the prey most recently incorporated by the animals 

and the likelihood is greater that the prey were found in the area where the seals were 

sampled. Nine of the 11 subregions within PWS were in close proximity to one 

another and were grouped for analysis. The two remaining locations in northeastern 

Prince William Sound were grouped together for analysis. Adult and subadult harbor 

seals from the 9 areas in southern PWS were significantly different from the two 

northeastern sites in PWS by area, F ]G 189g = 19.1, p = <0.001. The seals were also

significantly different by sex F2 055 = 11.1, p = <0.001 and age F4 j 908 = 45,953, p =

<0.001. The two areas in northeastern PWS were significantly different from each
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other F2 86 = И 8, p = <0.001. There is a significant difference in age F4 170 = 9.4, p 

= <0.001 but not between sexes.

Stable isotope ratios within harbor seal vibrissae do not appear to fluctuate 

greatly or with any periodicity, although some seals do show large changes between 

enriched and depleted values. Harbor seals sampled in 1993 had relatively constant 

5b C values and some fluctuations (<2%o) in 515N values that likely corresponded to 

seasonal changes in primary prey type. The periodicity of the fluctuations in the 9 seals 

does not appear regular. Six of 10 seals sampled from southern PWS in the spring of

1994 had large, synchronous fluctuations in 513C and 515N, as large as 5.5%o (Figure

4 4). Two-thirds of the seals sampled in September 1994 had synchronous fluctuations 

larger than l°/oo in Sb C and 5 l3N in at least one location along the length of the 

whisker. Six of the 12 whiskers analyzed in spring of 1995 and 6 out of 7 in fall of

1995 also had synchronous fluctuations larger than Woo in 6b C and 515N in at least 

one location along the length of the whisker. A random sampling of seals in the spring 

and fall 1996 as well as summer 1997 and 1998 revealed that a majority of the animals 

had fluctuations greater than l%o in 513C and 815N. The isotope fluctuations in the seal 

vibrissae were separated into maximum and minimum values based on differences 

greater than l°/oo in 5 ‘T  and 3%o in 515N, respectively. Vibrissae with fluctuations in 

5b C and 515N less than l°/oo and 3%o had their isotope values averaged for the entire 

whisker.
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DISCUSSION

The isotope ratio gradients in selected zooplankton species were first identified 

in the waters of the Beaufort and Chukchi seas and were further defined for the Bering 

Sea and published by Saupe et al. (1989) and Schell et al. (1998). The pronounced 

isotope ratio gradients observed in Bering Sea zooplankton led to the belief that 

similar gradients might be present in the Gulf of Alaska and extending into Prince 

William Sound. Knowledge of the magnitude and position of these gradients was 

essential for the interpretation of observed shifts in isotope ratios in seal vibrissae. The 

presence of a geographic gradient in carbon and nitrogen isotope ratios declining with 

distance offshore has been shown to exist along the Gulf of Alaska coast Kline (1999) 

found an isotopic gradient between Neocalanus cristatus from the northern Gulf of 

Alaska just south of Prince William Sound and N. cristatus within the Sound. An 

approximate 4%o depletion exists in 513C of the calanoid copepods outside the sound 

relative to those within the sound (Kline 1997). Similar isotopic gradients of 2%o have 

been identified by Schell et al. (1998) for zooplankton in the Bering Sea and Aleutian 

Islands. They found on-shelf and shelf-break waters more enriched and deep-water 

regions more depleted in 51 С and 51SN. Zooplankton data (this study) (Fig. 4.5 and 

4.6) and Kline (1999) both show that the Gulf of Alaska has markedly lower isotope 

ratios for both carbon and nitrogen in offshore waters versus those found within the 

sound. Hobson et al. (1994) found onshore-offshore differences in their study of 

seabirds in the GOA. Perry et al (1999) also reported cross-shelf depletion in carbon
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Figure 4.5. 5 l’C isotope contours for calanoid copepods in the Gulf of Alaska and 
Prince William Sound.



Figure 4.6. 5 15N isotope contours for calanoid copepods in the Gulf of Alaska and 
Prince William Sound.



isotopes from shelf to slope water off the coast of British Columbia, Canada. Although 

data are not available for the central GOA, indications are that both nitrogen and 

carbon isotope ratios reach a minima within some distance offshore.

A previous study by Hirons et al. (Chapter 2) revealed that harbor seals appear 

to grow their vibrissae for several months during a year and then replace them every 

year. The start of the replacement appeared to be during the summer months when 

breeding and molting occurred. New vibrissae growth continued into winter and 

ceased by late spring. Additionally, combative male harbor seals that had broken 

vibrissae were observed rapidly replacing those vibrissae with new ones (Bowen per 

comm.) Therefore, harbor seal vibrissae from the northeast Pacific Ocean appear to 

represent one year’s growth or less. There is no interannual variability in the stable 

isotope data in the vibrissae so whatever trophic or geographic changes which resulted 

in the isotopic fluctuations occurred during the span of a year.

The stable isotope differences observed in the vibrissae of seals from different 

locations appeared to agree with some of the location differences defined by the fatty- 

acid analysis for harbor seals in the sound (Iverson et al. 1997). For example, Iverson 

et al. suggested flatfish were eaten by seals west of Montague Island in PWS. These 

differences may have resulted from juveniles of a prey species being eaten in one 

region of the sound while adults of the same species were eaten in another region.

Frost et al. (1998) reported observing different foraging patterns in adult and subadult 

seals as well as differences between males and females at various locations within and
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outside the sound throughout the year. These differences may explain the isotopic 

variations observed in the seal vibrissae.

Based on the natural history of harbor seals, including information from 

stomach content analyses, pollock, herring, squid, octopus, salmon, and capelin were 

evident most often in seal stomachs from Prince William Sound (Pitcher 1980). The 

pleuronectid, yellowfin sole, had been observed being taken by seals in an area west of 

Montague Island during this study so a few samples of these, as well as high-lipid 

eulachon, were collected and added to the plot. Prey data, e.g. from herring and 

pollock, have shown very little isotopic variation among locations within the sound. 

However, prey data collected south of PWS during the 1996 National Marine 

Fisheries Service Gulf of Alaska survey revealed some evidence of an isotopic gradient 

in higher trophic organisms. The 5b C data for adult pollock revealed an average 

enrichment of 2%o compared to those sampled from PWS than those found along the 

shelf south of the sound (Figure 4.3). A similar enrichment was also found in the 515N 

of pollock from sound versus those found in the offshore waters (Figure 4 .2).

Based on historical information, harbor seals appear to forage on one to two 

preferred prey but will also feed on seasonally available species such as salmon 

(Pitcher 1980; Iverson et al. 1997). The 515N values in harbor seals having the more 

enriched stable isotopes ("max") (mean 51SN = 17.2) were isotopically similar to those 

from pollock, yellowfin sole, octopus, and silver salmon from PWS, based on a 3%o 

trophic level enrichment in marine food webs (DeNiro and Epstein 1981, Schoeninger
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and DeNiro 1984, Hobson et al. 1994) (Figure 4.2). However, the “max” 513C in the 

seals (mean 513C = -15.4) was even more enriched than the expected l%o trophic 

increase above any of the prey species sampled either in PWS or in the GOA (DeNiro 

and Epstein 1978; France and Peters 1997) (Figure 4.3). The 515N values in harbor 

seals having the more depleted stable isotopes ("min") (mean 515N = 14.7) were 

isotopically similar to those from capelin and pollock from the Gulf of Alaska south of 

the sound, and capelin, herring, and squid found within the sound (Figure 4.2). The 

5b C values in these seals (“min”) (mean 5b C = -17.6) were most similar to those in 

pollock from the GOA and in herring, sandlance and squid from PWS (Figure 4.3).

Hobson et al. (1997) reported harbor seals from the Copper River Delta 

(CRD) in the Gulf of Alaska having mean 615N = 18.6 and mean 513C = -17.6 These 

nitrogen values were more enriched than any found in seals residing in PWS. As 

Hobson et al. pointed out, the seals from the CRD were likely sampled at a time when 

they were foraging on returning coho (silver) salmon, which could have accounted for 

the high nitrogen values. The carbon values for the CRD seals were very similar to the 

"min" values for PWS seals and provided additional evidence supporting the 

hypothesis that the depleted 513C values in some PWS seals resulted from foraging on 

prey outside the sound. Because depleted isotope values were expected in pelagic food 

webs, the enriched values along the vibrissae were assumed to correspond to prey 

from the sound while the depleted values corresponded to prey from the Gulf of 

Alaska. Because harbor seals tend to have strong site fidelity, it is thought that seals
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with constant isotope ratios foraged near their haul-out sites in Prince William Sound 

(Pitcher and McAllister 1981). The decrease in isotope ratios with distance offshore 

appeared evident in the vibrissae in a number of individual harbor seals, indicating 

movements into offshore feeding areas during a part of the annual cycle represented in 

a vibrissa. These low values provided a distinctive geographic indicator visible in 

vibrissae of seals that fed in pelagic regions or on prey that emigrated from offshore 

areas.

These isotope data are also consistent with satellite tag data that showed 

relatively limited movements by most harbor seals but occasional extensive movements 

into the Gulf o f Alaska by some individuals. Data from satellite tagged harbor seals 

have provided evidence that some seals of all ages traveled outside PWS; in some 

cases, seals have been tracked traveling more than 100 km into the Gulf of Alaska.

The number of seals and amount of movement by seals tagged during 1992-1996 

varied considerably and that variability seemed to be represented in the vibrissae. A 

greater number of seals with isotopic fluctuations were observed from 1995-1998 than 

in the previous two years and that corresponded to the increased number of tagged 

seals observed leaving the sound by Frost et al. (1998). Vibrissae were collected from 

harbor seals for this study at the same time satellite tags were being deployed on seals. 

Unfortunately, data from the vibrissae would only represent the feeding during prior 

year while the satellite data provided information on seal movement for the following
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year. Therefore, there were no overlapping isotope and satellite data for the seals in 

this study to confirm if a seal that traveled one year also traveled the next.

A conceptual model of harbor seal feeding has been constructed based on the 

known isotope ratios in lower trophic levels and fishes, primarily capelin, herring and 

pollock. Predicted isotope ratios in seals using these food sources matched observed 

515N values closely, but the measured 513C values were generally higher than 

predicted. We suggest that benthos, which are usually enriched relative to pelagic 

species at a given site, are important in the food supply of these seals. Consumption of 

demersal or benthic organisms would be reflected in increased 5b C values. Benthic 

environments tend to have more enriched values due to recycling of nutrients and the 

presence of bacterial food webs (Coffin et al. 1994, France 1995). Both yellowfin sole 

and octopus are benthic feeders, which would result in these organisms having more 

enriched 5b C. Seals feeding on these animals would exhibit those enriched values 

(Wells 1978).

The fluctuations indicate that the seals are relying upon more than one food 

web, shifting between pelagic vs. benthic or Prince William Sound vs. Gulf of Alaska. 

The cause of these isotopic fluctuations is not currently known, but we hypothesized 

that prey outside Prince William Sound were more depleted in stable isotopes and that

■ 1 л • some seals may have been foraging on the 1 J C-depleted prey. With the data available,

we are uncertain as to the definitive causes for these fluctuations.
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The harbor seal population in Prince William Sound continues to be monitored 

by the Alaska Department of Fish and Game as part of a long-term research study. As 

part of that program, satellite tag data continues to be collected which could be useful 

in tracking the seals’ movements as well as feeding habits. As more seals are tagged 

with satellite tracking units, the likelihood of recapturing seals and collecting vibrissae 

from them is greater. The stable isotope data gathered from these vibrissae could be 

combined with the movement information on the seals to provide a clearer picture of 

where and on what the seals have been feeding. This picture can be further enhanced 

with the use of fatty-acid analysis in more accurately identifying which prey the seals 

have been consuming.

ACKNOW LEDGM ENTS

The authors gratefully acknowledge the assistance of personnel from the 

Alaska Department of Fish and Game, the National Marine Fisheries Service, the 

Harbor Seal Commission and the Prince William Sound Science Center for collection 

of samples. We appreciate the analytical assistance of Norma Haubenstock and Bruce 

Barnett at the University of Alaska Fairbanks stable isotope facility. This research was 

authorized under U.S. Marine Mammal Protection Act Permit 802 issued by the 

National Marine Fisheries Service. Funding for this research was provided by the 

Exxon Valdez Oil Spill Trustees Council, Coastal Marine Institute of Minerals 

Management Service, and the Rasmuson Fisheries Research Center.



CHAPTER 5

TEM PORAL RECORDS OF 6 13C AND 5 1SN IN NORTH PACIFIC  

PINNIPEDS: INFERENCES REGARDING ENVIRONMENTAL CHANGE

AND DIET 

ABSTRACT

Sea lion and seal populations in Alaskan waters have undergone various 

degrees of decline during the latter half of the twentieth century and often the cause(s) 

for the declines remain uncertain. The stable carbon (13C/12C) and nitrogen (15N /14N) 

isotope ratios in bone collagen from wild Steller sea lions (Eumetopias jubatus), 

northern fur seals (Callorhinus ursinus) and harbor seals (Phoca vitulina) from the 

Bering Sea and Gulf of Alaska were measured for the period 1951-1997 to test the 

hypothesis that a change in trophic level may have occurred during this interval and 

contributed to the population declines. A significant change in 515N in pinniped tissues 

over time would imply a marked change in trophic level. No significant change in bone 

collagen 8 i5N was found for any of the three species during the past forty-seven years 

in either the Bering Sea or the Gulf of Alaska. However, the 15N in the Steller sea lion 

collagen was significantly higher than both northern fur seals and harbor seals. A

Hirons AC, Schell DM, Finney BP (in press) Temporal records o f 813C and 515N in 
North Pacific pinnipeds: inferences regarding environmental change and diet. 
Oecologia
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significant decline in 513C (almost 2 %o over the 47 years) was evident in Steller sea 

lions, while a declining trend, though not significant, was evident in harbor seals and 

northern fur seals. Changes in foraging location, in combination with a trophic shift, 

may offer one possible explanation. Nevertheless, a decrease in 513C over time with no 

accompanying change in 815N suggests an environmental change affecting the base of 

the foodweb rather than a trophic level change due to prey switching. A decline in the 

seasonal primary production in the region, possibly resulting from decreased 

phytoplankton growth rates, would exhibit itself as a decline in 8bC. Declining 

production could be an indication of a reduced carrying capacity in the North Pacific 

Ocean. Sufficient quantities of optimal prey species may have fallen below threshold 

sustaining densities for these pinnipeds, particularly for yearlings and subadults who 

have not yet developed adequate foraging skills.

INTRODUCTION

Populations of Steller sea lions, northern fur seals and harbor seals have 

drastically declined for more than two decades, particularly in the western Gulf of 

Alaska and Bering Sea (Pitcher 1990; Loughlin 1993; ADFG 1996; Strick et al. 1997). 

These pinnipeds are generally found in coastal waters and along the continental shelf 

throughout the North Pacific Ocean, including the Bering Sea and the Gulf of Alaska 

(NRC 1996). Food limitation has been hypothesized as a likely cause behind the 

declines in the pinniped populations, potentially resulting from decreases in clupeid
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fishes and increases in gadid fishes (Merrick et al. 1987; Alverson 1991; Trites 1992; 

Alaska Sea Grant 1993; Merrick 1995; Anderson et al. 1997; Merrick et al. 1997). In 

this paper we explore how the changes in physical and biological characteristics of this 

region may have impacted these animals.

Physical and biological changes in the northeast Pacific Ocean and Bering Sea

An abrupt climatic change occurred in the Pacific Ocean in the mid-1970s and 

a new “regime” continued through the 1980s (Hare and Mantua 2000). This change in 

atmospheric circulation altered wind patterns and intensity, mixed layer depth, sea 

surface temperatures, ice extent and depth of ocean current patterns (Royer 1989; 

Trenberth and Hurrell 1994; Freeland et al. 1997). However, little is known about how 

the effects of the changing environmental conditions influenced pinnipeds in the North 

Pacific Ocean.

The biological responses to these physical changes have manifested themselves 

in fluctuating phytoplankton abundance, changing zooplankton production and shifting 

migration patterns and biomass of commercial and non-commercial organisms 

(Venrick et al. 1987; Ebbesmeyer et al. 1991; Brodeur and Ware 1992; Hollowed and 

Wooster 1992; Francis and Hare 1994; Polovina et al. 1994, Hollowed and Wooster 

1995; Polovina et al. 1995; Quinn and Niebauer 1995; Anderson et al. 1997; Anderson 

and Piatt 1999). Sugimoto and Tadokoro (1997) reported declining chlorophyll 

concentrations and zooplankton biomass during the mid-1970s and late 1980s in the 

eastern Pacific and Bering Sea, while peaks in both chlorophyll and zooplankton
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occurred in the late 1960s and continued to decline after that point in the central 

Pacific.

Many forage fish stocks have dramatically increased while others have declined 

in the Gulf of Alaska and Bering Sea since the mid-1970s. The forage species 

composition for the region has shifted from an environment dominated by clupeid 

fishes and panaeid shrimp to one currently dominated by gadids and pleuronectids 

(Anderson et al. 1997; Anderson and Piatt 1998). In 1951 and 1964, samples from 

Steller sea lion stomachs from the Bering Sea showed that walleye pollock was the 

fourth most prevalent prey species (Fiscus and Baines 1966), but by 1976 pollock was 

the dominant prey (Lowry 1982, Lowry et al. 1989). Stomach content analyses of 

Pribilof Island fur seals in the early 1980s showed a predominance of juvenile walleye 

pollock and squid. Pacific herring and capelin, previously considered important prey, 

were absent (Sinclair et al. 1994). Kenyon (1965) noted that harbor seals from 

Amchitka Island in the Aleutian Archipelago had remains of octopus and Atka 

mackerel in their stomachs, whereas harbor seals sampled in 1979 from the Alaska 

Peninsula had primarily walleye pollock and octopus in their stomachs (Pitcher 1980). 

Isotope ratios in food webs

The isotopic ratios of animal tissues, particularly in marine organisms, are 

slightly more enriched in 13C (0.5 to l%o) and 15N (3 to 5%o) than those found in their 

diet (Hobson and Welch 1992; France and Peters 1997). Isotopic variations observed 

in organisms throughout the marine environment are believed to result from
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differences that can originate at the base of food webs and metabolic pathways in the 

organisms (DeNiro and Epstein 1978, 1981; McConnaughey and McRoy 1979; Rau et 

al. 1983; Fry and Sherr 1984, Minigawa and Wada 1984; Sholto-Douglas et al. 1991; 

Hobson and Welch 1992; France and Peters 1997). Herbivorous zooplankton, 

consisting primarily of calanoid copepods and euphausiids in the North Pacific Ocean, 

are first-order consumers. Any changes affecting the stable isotope ratios within the 

phytoplankton, such as carbon and nutrient sources and their growth rate, would be 

carried through the food web and be reflected in foraging pinnipeds. Recent studies 

have shown a close correlation between cellular growth rates and carbon isotope ratios 

(513C) in phytoplankton. Rapid growth rates in phytoplankton result in reduced 

fractionation of the carbon being utilized and result in higher 5ь С values if other 

factors (C 02, nutrients) remain constant. Laws et al. (1995) have shown a strong 

relationship between diatom growth rates and isotopic fractionation in the laboratory. 

Bidigare et al. (1997) confirmed these findings in laboratory studies of cultures of 

haptophyte algae and in phytoplankton sampled from various world ocean 

environments; increased growth rate and productivity in both the diatoms and 

haptophytes were correlated with increased 5b C values.

Bone collagen is a tissue that has a relatively slow turnover rate, as much as 

ten years in large adult mammals. Depending on the age of the animal (<10 years), the 

stable isotope ratios in the collagen is likely integrated over much of its life (Hobson 

and Clark 1992; Ambrose and Norr 1993). This tissue acts as a long-term integrator of



isotope ratios and moderator of sporadic isotopic fluctuations, a factor that is useful 

when comparing isotope ratios of many individuals over long periods of time 

(Schoeninger and DeNiro 1984, Lee-Thorp et al. 1989). Episodic or short-term 

changes in dietary isotope ratios are dampened in the collagen record, leaving only 

changes in the long-term trends as an indicator of the organism’s trophic status in its 

environment.

Stable isotope analysis of archived samples of bone collagen is a potential tool 

that may reveal processes associated with the recent declines in pinniped populations. 

Herring and capelin, once dominant in the diets of these pinnipeds, are generally of a 

lower trophic level than the walleye pollock currently being eaten by these seals and 

sea lions (this study). Thus, we hypothesize that this dietary change should be reflected 

as changes in bone 5I3C and 513N values. In addition, if changes in physical parameters 

altered primary production, this may be reflected in bone 8bC values. As primary 

production regulates the carrying capacity for the entire food web, such changes could 

have important implications for top consumers such as seals and sea lions. If prey 

availability falls below threshold densities, recruitment would be greatly reduced.

METHODS

Pinniped samples

Seal and sea lion bone samples were obtained from native-harvested animals 

and museum skeletal collections at the University of Alaska Museum and the Kodiak
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Historical Society. A total of 31 Steller sea lions, 13 northern fur seals and 63 harbor 

seals from regions throughout the Gulf of Alaska and the Bering Sea were analyzed. 

The specimens span the period of 1951-1997 and range from coastal areas of 

southeast Alaska westward through the Gulf of Alaska and into the central Bering Sea 

(Figure 5.1). The Gulf of Alaska was separated into three regions, based on distinct 

pinniped populations, for statistical analyses. The western Gulf of Alaska is defined as 

the area between 152°W and 175°W, the central Gulf of Alaska is the area between 

144°W and 152°W and the southeastern Gulf of Alaska is the area between 130°W 

and 144°W.

Sex and age of the animal were not recorded for most of the specimens, 

though one sea lion skeleton was suspected as being from a pup on the basis of its size 

and dentition. The remaining skeletons were either labeled as adults or subadults; age 

unknown, or in some cases age group as estimated by dentition development. The data 

were not sufficient to test for age-related trophic differences. More than half of the 

sampled sea lions (61%) and northern fur seals (62%) came from the Bering Sea, and 

the remaining skeletal samples came from the western and central portions of the Gulf 

of Alaska. Harbor seal samples were evenly distributed among the Bering Sea, 

western, central and southeastern Gulf of Alaska. Samples for both the sea lions and 

the harbor seals were generally evenly distributed throughout the forty-seven year 

study period, but there were years when, at a minimum, no samples were available,





and at a maximum, six samples were available. Overall, an average of two specimens 

was available per year for all species.

Collagen extraction

Bone samples were well preserved and free of humus and tissues. Collagen was 

extracted following the procedure described in detail in Matheus (1997).

Approximately 1 gm of to n e  was either cut as a solid piece or shaved from the 

mandible or the shaft of a long bone. Only cancellous bone was used for extraction due 

to the larger quantity of collagen it contains. The bone samples had lipids removed by 

a methanol/chloroform procedure described in Bligh and Dyer (1959) prior to 

demineralization. The bone was allowed to demineralize in IN HC1 for approximately 

seven days at 5°C; fresh acid was added to the samples every day. The remaining 

material was rinsed and then boiled in deionized water for approximately eight hours 

to dissolve the collagen and precipitate peptides. The solution was passed through a 

0.45ц filter, and the filtrate was dried in an aluminum dish at 60°C for a minimum of 

48 hours.

Mass spectrometry

Subsamples of each tissue (1-1.5 mg) were combusted and analyzed for stable 

isotope ratios with a Europa 20/20 continuous flow isotope ratio mass spectrometer.

All samples were analyzed in duplicate. Stable isotope ratios were expressed in the 

following standard notation:

5 X (%o) = (R-sample I ^-standard '  1 )x Ю00

в ш ш в  tmwurr
RASM USO N LIB^A'ftY
UNIVERSITY OF ALASKA-fAIKIiANKS
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where X is 13C or 15N and Rsam ple’s b C/12C or 15N/14N respectively. Rstandard 

for 13C is Pee Dee Belemnite; for 15N it is atmospheric N2 (air). If the difference 

between replicates was greater than 0.5%o, samples were re-analyzed. Analytical error 

for samples was approximately ± 0.2%o for both carbon and nitrogen.

RESULTS

Nitrogen isotope values for harbor seals ranged from 14.0 to 20.5%o with a 

mean of 17.2 ± 1.6%o. The 515N for northern fur seals ranged from 15.2 to 20.1 %o 

with a mean of 17.2 + 1.5%o and the 61:>N for Steller sea lions ranged from 16.2 to 

21.9%o with a mean of 18.5 ± 1.4%o. Harbor seal collagen 513C values ranged from 

-12.0 to -16.4%o with a mean o f -14.2 ± 1.0%o. The 513C of collagen from northern fur 

seals ranged from -13.0 to -16.7%o with a mean of-14.4 ± 1.1 %o and the Steller sea 

lion collagen 513C ranged from -12.5 to -15.8%o with a mean o f -14.3 + 1.0%o (Table 

5.1). The between-animal and interannual variability in the 513C of all three species 

ranged from less than l%o to as much as 5%o.

Analysis of joint distribution in the 5b C and 5l5N revealed differences among 

the three pinniped species (MANOVA: Wilks Lambda F4, 130 = 3.30, P = 0.013). Two 

separate analysis of variance tests (ANOVA) were then conducted to determine if 

nitrogen or carbon isotopes differed amongst the species. Univariate tests revealed that 

the three species segregated isotopically for only 515N (P = 0.002). Bonferroni
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Table 5.1. Mean stable isotope ratios of bone collagen from harbor seals, northern fur 
seals and Steller sea lions. SEGOA = southeastern Gulf of Alaska, CGOA = central 
Gulf of Alaska, WGOA = western Gulf of Alaska, BS = Bering Sea.

Species_____________ n Year Location Mean 5 13C Mean 5 1SN

Harbor seal 2 1951 CGOA -13.9 ± 0.5 20.2 ± 0.0
1 1952 CGOA -13.6 17.7
1 1952 WGOA -14.6 14.7
1 1953 BS -14.4 18.9
1 1954 WGOA -14.6 18.4
2 1955 CGOA -14.8 ± 0 .2 17.9 ± 1.4
2 1956 CGOA -14.8 ±0.8 17.3 ±0.2
1 1962 CGOA -14.9 17.2
2 1964 WGOA -13.9 ± 0.9 16.1 ± 0.2
5 1965 SEGOA -13.2 ± 0.7 16.4 ±0.7
1 1965 WGOA -13.1 16.1
1 1966 CGOA -13.4 16.9
1 1966 WGOA -14.8 17.7
1 1966 BS -14.2 19.4
2 1968 BS -14.3 ±2.1 14.8 ±0.8
1 1969 BS -15.4 14.4
1 1970 WGOA -12.0 16.9
1 1970 BS -13.6 19.5
1 1971 WGOA -13.2 17.4
1 1971 BS -14.4 16.9
1 1972 CGOA -13.6 20.1
2 1972 BS -13.7 ±0.2 16.5 ±0.2
1 1973 CGOA -14.3 16.4
1 1973 BS -15.6 20.5
1 1974 BS -14.4 16.5
3 1975 CGOA -14.7 ± 1.2 16.4 ± 1.2
1 1976 WGOA -13.7 17.0
2 1977 WGOA -14.7 ±0.3 16.4 ±0.5
2 1978 CGOA -13.5 ± 0.8 16.9 ±0.3
1 1978 WGOA -14.4 18.4
2 1979 BS -14.1 ±0.5 18.4 ± 0.6
2 1980 WGOA -15.6 ± 0.5 16.3 ±0 .2
1 1981 CGOA - 12.2 15.6
1 1981 BS -13.5 20.0
2 1985 WGOA -14.8 ± 0 .6 18.9 ± 1.5
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Table 1. - cont 
Harbor seals

Northern fur 
seals

Steller sea 
lions

1989 CGOA -14.0 18.7
1993 CGOA -15.8 17.2
1995 SEGOA -15.0 ± 0.6 19.0 ± 1.4
1995 BS -13.4 15.6
1996 SEGOA -14.4 15.8
1996 CGOA -15.0 ± 0.9 16.2 ± 0.6
1952 BS -13.2 ± 0.2 16.1 ± 0.8
1954 WGOA -13.7 16.9
1955 BS -15.2 16.3
1957 CGOA -13.1 20.1
1957 WGOA -13.7 19.9
1960 BS -15.2 16.5
1961 CGOA -16.7 16.7
1961 BS -15.2 16.8
1965 BS -15.2 15.5
1976 WGOA -13.8 18.4
1976 BS -13.8 16.8
1995 BS -15.3 17.2
1953 BS -14.1 ± 0.6 20.3 ±0 .9
1956 CGOA -13.0±0.3 18.0 ± 0.6
1957 CGOA -14.5 18.5
1958 BS -12.5 17.0
1960 WGOA - 12.8 ± 0.1 18.5 ±0.4
1960 BS -14.2 16.4
1961 BS -13.2 21.9
1965 BS -14.6 18.8
1966 CGOA -13.1 20.4
1969 CGOA -14.3 18.7
1971 BS -14.9 ± 0.3 18.9 ± 1.6
1974 BS -12.9 20.0
1977 BS -14.9 18.5
1978 WGOA -15.2 17.5
1979 BS -15.0 17.0
1988 CGOA -14.6 18.5
1989 WGOA -15.6 17.0

2 1993 BS -15.7 ± 0.1 18.1 ± 1.9
2 1994 BS -14.9 ± 0.1 18.0 ± 0.1
3 1995 BS -14.2 ±0 .2 18.7 ±0.8
1 1996 BS -15.4 17.0
1 1997 WGOA -15.8 17.8



correction tests for 5 l3N showed that Steller sea lions had higher mean nitrogen 

isotope ratios than harbor seals and northern fur seals (P = 0.015 and P = 0.014, 

respectively). No differences in either isotope were detected among the defined 

regions for any of the three species (MANOVA: Wilks Lambda F6, 130 = 0.58, P = 

0.750).

Analysis of joint distribution in the 513C and 5 1:iN for all years revealed that 

only 5b C differed significantly during the forty-seven year period (MANOVA: Wilks 

Lambda F 70,ізо = 1.558, P = 0.015). When two separate analysis of variance tests 

(ANOVA) were conducted for each isotope, Steller sea lions had a significant decline 

in 513C (Kruskal-Wallis P  = 0.004). The declining trends in harbor seal and northern 

fur seal 513C was not statistically significant by this method (P = 0.298 and P = 0.072, 

respectively). Separate regressions of nitrogen and carbon isotope ratios were 

conducted against year for the combined and individual species. Regression analysis of 

51SN against year showed no significant relationship during the forty-seven year period 

either in combined or individual species (Figure 5.2). Regression analysis of 513C 

showed a significant decline in the Steller sea lions (P < 0.001) (Figure 5.3) and a 

decrease, although not statistically significant at the P = 0.05 level, in both the harbor 

seals and northern fur seals (P = 0.108 and P  = 0.375, respectively) (Figure 5.4 and 

5.5). The sea lion 513C declined an average of 1.9%o from 1953 through 1997. The 

lack of fur seal samples in recent years hinders the detection of any trends.
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DISCUSSION

The major features of the data suggest there have been no long-term changes 

in 515N over the approximately 47-year period for all three species. A significant 

decline in 513C of Steller sea lions occurred during this period. This decline is also 

weakly suggested in data from the two species of seals. The trends, or lack thereof, 

appear to be uniform across regions. Three processes that may account for the 

changes in stable isotope ratios include temporal changes in diet/trophic position, 

foraging habits/location and isotopic composition of the base of the food web. 

Diet/trophic variability

The present day diets of Steller sea lions, northern fur seals and harbor seals 

consist of a number of similar prey species but the composition may differ according to 

preferential prey and locally available species. Harbor seal diets appear to consist of 

mostly pelagic and semi-demersal fishes and benthic invertebrates, including herring, 

juvenile pollock and octopus (Pitcher 1980). The diet of northern fur seals appears to 

be largely composed of squid and juvenile pollock while Steller sea lions forage heavily 

on larger adult pollock, Pacific cod and flatfishes (Kajimura 1985; Sinclair et al. 1997; 

this study).

The 5 15N values obtained from the pinniped collagen suggest that Steller sea 

lions may feed at a slightly higher trophic level than the harbor seals and northern fur 

seals. Hobson et al. (1997) found similar results for Steller sea lions and northern fur 

seals from the Gulf of Alaska and concluded that the sea lions were consuming more
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large-size pollock, which were enriched in 815N relative to the juvenile pollock and 

squid that the fur seals were predominantly relying on. Perez and Bigg (1986) noted 

that northern fur seals in the eastern Aleutians and Gulf of Alaska between 1958 and 

1974 fed largely on sandlance, capelin and herring. The diets of both the forage fish 

and juvenile pollock consist primarily of zooplankton and thus are at a similar trophic 

position consistent with similar 515N values. Pitcher (1980) noted that walleye pollock 

was the predominant prey in both the Steller sea lion and harbor seal diets in the Gulf 

of Alaska during the mid-1970s, but that each species foraged on different sizes of 

pollock. Steller sea lions were eating pollock significantly larger than those eaten by 

harbor seals. These larger pollock are mainly piscivorous, often feeding on smaller 

pollock and forage fish, whereas the smaller pollock feed largely on zooplankton and 

juvenile forage fish. These trophic differences result in more enriched nitrogen isotope 

values in the large pollock by -2.5 %o (DeNiro and Epstein 1981; this study) and 

would result in higher 51SN in the sea lions.

Changes in prey composition during the 1970s, as previously described, may 

have altered the isotope ratios in the pinnipeds. Adult and some juvenile pollock, 

which are currently predominant in the diets of many of these animals, generally have 

more enriched 5b C and 515N values than the once prevalent clupeid fishes (herring, 

capelin) because they largely forage at a higher trophic level than the clupeids (Hobson 

et al. 1997; Merrick et al. 1997; this study). If these pinnipeds shifted to forage at a 

higher trophic level, we would expect increases in both the nitrogen and carbon
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isotope ratios (DeNiro and Epstein 1978, 1981; Rau et al. 1983). However, fish 

having high lipid content, i.e., clupeids, generally have more depleted b C than a fish 

naturally low in lipids, i.e., pollock and cod as well as being depleted due to the 

trophic level difference. Only ~3%o, representing a trophic level change, was evident in 

15N with no corresponding change due to lipids (Tieszen et al. 1983; Hirons unpubl 

data). Therefore, the lack of co-variance between carbon and nitrogen isotopes does 

not support a prey-switching scenario for these pinnipeds.

Foraging habits/location

Harbor seals have strong site affinity and feed in nearby coastal locations in 

Bristol Bay in the Bering Sea and throughout the northeastern Pacific Ocean (Pitcher 

1980; Frost et al. 1999; this study). Northern fur seals forage in the shelf break and 

offshore waters of the Bering Sea, the Gulf of Alaska and as far south as California 

during their annual migration to and from the Pribilof Islands in the Bering Sea 

(Kajimura 1984; Kajimura 1985; Goebel et al. 1991; Loughlin 1993; Sinclair et al. 

1994; Merrick 1995; NRC 1996). Steller sea lions spend their year foraging 

predominantly over the continental shelf and in offshore waters in the southern Bering 

Sea and Gulf of Alaska while traveling among rookeries and haul-out sites (Kenyon 

and Rice 1961; Merrick et al. 1997). Although the movements and life histories of our 

individual pinnipeds are unknown, and only generally known for each species, we 

assume the 5BC values in the bone collagen represent prey from the northeastern 

Pacific and Bering Sea.
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As discussed, these pinnipeds have heterogeneous diets that often include prey 

from different trophic levels and regions. Schell et al. (1998) noted the existence of 

isotopic gradients in the 8b C and 513N of zooplankton in eleven subregions from the 

Bering Sea and, recently, similar isotopic gradients were identified in the continental 

shelf waters of the Gulf of Alaska using the same taxa of zooplankton (this study). 

Regions of high primary productivity, including the shelf break in the Bering Sea and 

continental shelf in the Gulf of Alaska, contain zooplankton with higher 513C and 515N 

than areas further offshore. Thus variations in the year-to-year movement patterns of 

both pinnipeds and prey, as well as differences in prey availability, may cause 

fluctuations in the isotopic ratios among individual pinnipeds.

Pinnipeds may vary forage locations as they move to and from rookeries 

seasonally or as they follow potential prey and, all the while, the bone collagen is 

integrating these complex movements. The isotope ratios in harbor seals, which tend 

to have a strong site affinity, would represent the prey items in the seals’ coastal 

feeding locations (Pitcher 1980). Such observations may help explain the high 

between-animal isotopic variability. The nitrogen isotopes in the Steller sea lions likely 

reflect the prey often found in near- and offshore waters in the Bering Sea and in the 

Gulf of Alaska, whereas the isotopic ratios in northern fur seals could reflect prey 

consumed in the Bering Sea, the Gulf of Alaska and as far south as the offshore waters 

of California as they migrate (Goebel et al. 1991; Loughlin 1993; Merrick 1995). 

Isotope data could reveal long-term changes in feeding location if these locations were
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isotopically distinctive in terms of their prey. If the zooplankton data (Schell et al.

1998, this study) are indicative of regional patterns of changes in prey isotope 

composition, changes in foraging location should result in changes in both the carbon 

and nitrogen isotopes in the pinniped species examined. Thus, our data are not 

consistent with major changes in feeding location as the sole mechanism explaining 

these trends. The Steller sea lion data could be explained by a shift to offshore feeding 

(lowering 513C) accompanied by a shift to a higher trophic level prey, i.e., offshore 

adult pollock which may have the same 513N as lower trophic level, inshore capelin 

(this study). The isotope ratios of the higher trophic level pollock would be offset by 

the lighter isotope ratios at the base of food webs in pelagic waters.

A decrease in 5L’C in consumers can be due to a diet switch from isotopically 

enriched, benthic organisms to a more isotopically depleted, pelagic diet. Benthic 

organisms tend to be more enriched in 13C due to an increase in the length of the food 

web by microorganisms, although no subsequent enrichment in 15N was reported 

(Hobson and Welch 1992; France and Peters 1997). No historical or current data 

provides evidence of this happening with sea lions or fur seals but harbor seals 

currently eat a mix of pelagic and benthic prey (this study). In summary, our data do 

not support the hypothesis of significant changes in trophic level of prey organisms for 

these mammals, unless such effects were masked by simultaneous changes in factors 

such as feeding location or prey isotopic composition.
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Environmental influences

A third process that could account for the observed trends is one in which the 

stable isotope composition at the base of the food web changes over time. Based on 

the Steller sea lion data, such a mechanism would require coherent trends over a large 

region spanning the Gulf of Alaska and Bering Sea. Further, such changes should be 

registered in much of the food web in this region. The declining trends in the harbor 

seals and northern fur seals are consistent with this hypothesis, though are less 

significant than the sea lions. Steller sea lions were the only one of the three pinniped 

species to show significant long-term declines in their carbon isotope ratios. This may 

be due to the spatial variations in migration and habitat between the sea lions and the 

other two species. Harbor seals forage in productive coastal waters enriched in b C 

while fur seals and sea lions often forage in less productive, offshore waters where the 

5b C values are more depleted (Schell et al. 1998; this study). The heterogeneous diets 

and localized habitats of harbor seals may have contributed to large inter-animal 

variability hindering statistical detection. The available northern fur seal samples were 

too few to vigorously confirm this hypothesis. We conclude that our data at present 

cannot rule out isotopic variation due to forage location as a potential explanation.

The 513C values in top trophic level marine organisms can be changed without 

modifying the animals’ trophic position, as this value is set by the composition of 

phytoplankton in the food web. The isotopic composition of the phytoplankton is 

affected by the isotopic composition of dissolved inorganic carbon and the
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fractionation that occurs during the growth of plant cells. These isotopic differences 

are incorporated into all consumers in the food web.

Anthropogenic C 0 2 from the burning of fossil fuel, which is depleted in 13C, 

has resulted in a decrease in 5bC of oceanic dissolved inorganic carbon (DIC), 

commonly referred to as the “oceanic Suess effect” (Kroopnick 1985). The degree of 

513C change from the Suess effect varies spatially in the ocean due to processes such 

as ocean circulation and mixing. Smaller decreases have been observed in subpolar 

oceans (< -0 .15%o decade'1). The high latitude zone of the Pacific Ocean, where these 

seals and sea lions reside, is subject to upwelling and deep water mixing in the winter. 

These events tend to reduce the Suess effect due to dilution from “old”, deep water 

and the limited time for C 0 2 equilibration to take place (Quay et al. 1992; Gruber et al. 

1999, Sonnerup et al. 1999). Given the time period of this study, the Suess effect 

would account for a depletion of no more than 0.75%o in 513C over five decades. The 

5b C decrease observed in the Steller sea lion bone collagen is too large of a different 

temporal pattern to be explained simply by the increase in anthropogenic carbon 

during the past five decades.

Rapid use of C 0 2 during photosynthesis can lead to an increase in the 813C of 

the plant cells if the rate of C 02 replenishment is slower than usage (Goericke et al.

1994). Laws et al. (1995) and Popp et al. (1998) have empirically demonstrated 

strong, positive relationships between the 5b C of a marine diatom and cell growth 

rates while Bidigare et al. (1997) showed a similar correlation among carbon isotope



values and empirical haptophyte algal cell (coccolithophore) growth rate in natural 

marine settings. According to this process, the declining trends in bone collagen 513C 

imply a long-term decline in phytoplankton cell growth rates, and hence primaiy 

productivity, over this period.

The productivity hypothesis assumes that other factors controlling 

phytoplankton 513C ratios, such as [C 02]aq and phytoplankton cell size (Rau et al. 

1989), are relatively constant over this period. The offshore subarctic Pacific is 

dominated by small-sized phytoplankton whose populations stay relatively constant 

throughout the year (Martin et al. 1989). Phytoplankton growth is limited by 

photosynthetically active radiation (PAR) and nutrient availability though the subarctic 

Pacific Ocean is not nitrogen-limited. Studies conducted by Miller et al. (1991) in the 

subarctic Pacific indicate the phytoplankton are dominated most of the year by small 

flagellates and that larger phytoplankton, particularly large diatoms, may be limited by 

iron availability. Iron input from land is proposed as being the reason large diatoms 

dominate over the continental shelf region during a portion of the year (Martin and 

Fitzwater 1988; Boyd et al. 1996; Martin et al. 1989). There is insufficient data to 

evaluate long-term changes in the phytoplankton community in this region and any 

subsequent effects on ecosystem 513C. A seemingly uncommon occurrence of 

coccolithophorid blooms has occurred in the Bering Sea since 1997. These blooms are 

known to occur when a highly stratified water column in warm, calm seas hampers



nutrient cycling (Sukhanova and Flint 1998). However, this change is too recent to be 

strongly represented by our bone samples.

Physical factors affecting changes in wind intensity and mixed depth layers in 

the northeast Pacific appear to have affected productivity in the region. Polovina et al.

(1995) observed a shallowing of the winter mixed layer depth in the subarctic North 

Pacific from 1977-1988 and attributed the change to an intensification of the Aleutian 

Low Pressure System. Recent data presented by Freeland et al. (1997) and Mackas et 

al. (1998) for Station Papa (50°N 145°W) indicate that summer nitrate concentrations 

and mixed layer depths have decreased. The model used by Polovina et al. (1995) to 

test effects of changing mixed layer depths predicted potentially large changes in 

phytoplankton production and zooplankton stock in the northeastern Pacific.

Since 1976, northeastern Pacific and southern Bering Sea water temperatures 

have increased and the extent of sea ice cover in the Bering Sea has diminished 

(Niebauer 1988; Royer 1989). The timing of this change in thermal structure 

corresponds to shifts in species composition of fish and invertebrates (Ebbesmeyer et 

al. 1991; Anderson et al. 1997; Anderson and Piatt 1999). In the Gulf of Alaska, there 

has been a long-term trend of decreasing salinity due to increased runoff. The warmer 

temperatures and lower salinity would increase stability of the water column and that 

could impede the supply of nutrients to the surface waters in some environments. Data 

from the Bering Sea PROBES study demonstrated decreased primary production 

during times of the year when wind mixing diminished (Walsh and McRoy 1986).
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However, increased water column stability has been suggested as being favorable for 

phytoplankton growth in some settings (Gargett 1997).

Data on chlorophyll and zooplankton biomass may provide some evidence of 

past productivity fluctuations. Sugimoto and Tadokoro (1997) compiled estimates of 

zooplankton biomass and chlorophyll concentrations for the eastern Bering Sea 

spanning the years 1954-1994. These authors compiled a more limited data set for 

both variables for the northeastern Pacific Ocean. Values for both regions showed 

increases in both phytoplankton and zooplankton standing stocks during the mid- 

1960s and a general decline after that point. Carbon isotope values for organic matter 

in a sediment core from Skan Bay, Unalaska, in the Aleutian Islands of Alaska, 

revealed a decline of almost 1.5%o between 1950 and 1998 (Finney unpubl. data).

The decline in the 6b C of Steller sea lion bone collagen is similar to the pattern 

that Schell (2000) observed in bowhead whale baleen from the Bering Sea over the 

same period of time, 1947 to 1998. These baleen whales feed heavily on zooplankton 

stocks that have integrated the previous season’s primary production and now serve as 

a proxy for the average annual productivity. The average carbon isotope ratios in 

bowhead whale baleen laid down in the Bering and Chukchi seas were used to 

estimate the relative interannual changes in primary production in the Bering Shelf 

ecosystem using relationships from Laws et al. (1995) and Bidigare et al. (1997). 

Assuming the correlation between the measured haptophyte algae growth rates and 

changes in 6L,C are similar to phytoplankton growth in the Bering Sea, the isotope
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ratios in baleen imply a decline of 30-40% in ecosystem productivity between 1966 

and 1997.

Abundant evidence exists for environmental changes in the North Pacific 

Ocean and the Bering Sea in recent decades. However, changes within subregions may 

not always coincide with one another. The hypothesis that changes in primary 

productivity were coherent over this large region, a bottom-up mechanism, has been 

proposed by numerous researchers to explain changes in abundances of many different 

organisms in this region (Beamish and Boullion 1993; Francis and Hare 1994; Hare 

and Mantua 2000). Oceanographic and biological differences can result in a lack of 

concordance that has been illustrated by differences in salmon abundances, for 

example. Large increases in salmon catch in the Gulf of Alaska and Bristol Bay 

(southeast Bering Sea) occurred during this period. However, the salmon data is often 

interpreted as increasing productivity (Francis and Hare 1994), in contrast to the 

carbon isotope data.

A variety of physical and biological indices have provided evidence of rapid 

changes known as regime shifts around 1976 and 1989 (e.g. Ebbesmeyer et al. 1991, 

Brodeur and Ware 1992; Francis and Hare 1994; Polovina et al. 1995; Anderson et al. 

1997; Beamish et al. 1997; Anderson and Piatt 1999; Hare and Mantua 2000). 

Evidence of declines in Steller sea lions, northern fur seals and harbor seals since the 

1970s (Merrick et al. 1987, Pitcher 1990, Alaska Sea Grant 1993; Merrick et al. 1997) 

has prompted some researchers to try and link the declines to the reported regime
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shifts. As bone collagen has a relatively slow turnover rate that may be greater than 10 

years, the isotope ratios present in the collagen would be an integrator of that period 

of their lifetime so that abrupt changes would be hard to detect 

Summary

An overwhelming amount of evidence suggests that the environment of the 

North Pacific Ocean and Bering Sea has changed during the past several decades. 

Furthermore, the changes in the physical environment may be associated with changes 

in the primary production in the region. The Committee on the Bering Sea Ecosystem 

assessed the likelihood of various potential causes on the declines of these three 

pinniped species and found that climate effects and environmental changes were likely 

factors affecting the fish community and food availability for these animals (NRC 

1996). Reduction in food, which subsequently leads to population declines if depletion 

is great enough, seems to be supported for Steller sea lions (Trites 1992; Merrick

1995). Our 515N data show no major shift in trophic status for any of the three 

pinniped species during the past five decades even though changes in prey composition 

and feeding locations have likely occurred.

Temporal changes in the diets of these pinnipeds may have contributed to 

changes in the animals’ isotope ratios but detection of these changes can be 

complicated by the ecology of each of these animals. Simultaneous changes in foraging 

locations, e.g. nearshore vs. offshore, as well as foraging habits, e.g. switching from a 

benthic to pelagic diet, could alter the isotopic composition of the sea lions.
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Heterogeneity in diet and forage locations for these pinnipeds would likely prevent 

either of these mechanisms from completely explaining the decline in the carbon 

isotope ratios. Extensive changes in the physical environment have occurred in the 

northeastern Pacific Ocean and Bering Sea for decades but their impact on primary 

productivity can only be surmised. Our understanding of how pinnipeds are impacted 

by these events is impeded by the absence of detailed or adequate long-term 

monitoring of primary productivity in these regions. However, carbon isotope ratios 

may provide a means to measure the impact of environmental change in upper trophic 

level organisms.

Marine mammal populations can be expected to change with time in response 

to environmental perturbations. The large-scale declines seen in the Bering Sea and 

Gulf of Alaska pinnipeds are unusual because they appear to have happened in a short 

time whereas some populations of the same species have remained stable or increased 

in other areas of the North Pacific. Short-term environmental changes, such as El Nino 

events, would have only a limited impact on these pinniped populations by reducing 

food availability (Trillmich and Ono 1991). Short-term changes that could alter the 

carbon isotope ratios in the marine food webs would likely be tempered in the bone 

collagen records due to the relatively slow turnover rate of isotopes in this tissue. The 

magnitude of changes observed in the North Pacific seem to warrant further 

investigation on their impact to marine mammal populations, and the use of isotope 

ratios should enhance our understanding of these changes.
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CHAPTER 6 

CONCLUSIONS

Pinniped populations have been decreasing in the Bering Sea and Gulf of 

Alaska for at least three decades. The goal of this dissertation has been to examine the 

trophic dynamics of Steller sea lions, northern fur seals and harbor seals in these 

regions to determine if dietary changes have contributed to these declines. Stable 

carbon and nitrogen isotope ratios were used as an indicator of trophic level in these 

animals and their potential prey species. A transfer of carbon and nitrogen isotope 

ratios from the diet to the pinniped tissues, with associated fractionation, allows food 

webs to be traced. The stable isotope data for each of these species resulted from a 

complicated mix of prey organisms, geographic isotope gradients and environmental 

conditions.

Vibrissae (whiskers) from the pinnipeds are keratin-based structures that grow 

and are replaced throughout their lifetime and provide a timeline of trophic 

information that other tissues cannot. Due to metabolic fractionation differences, 

isotope ratios from the vibrissae could not be directly compared with those from prey 

muscle tissue. A comparison of muscle and vibrissae from the same animals in all 

three species revealed that keratin was enriched in 513C over muscle by a consistent 

amount while 615N deviated only slightly. Stable isotope values in the vibrissae were



normalized to muscle to adjust for these fractionation differences and this allowed for 

a comparison of vibrissae isotope ratios to those from prey muscle samples.

Growth rates of the vibrissae were studied in harbor seals and Steller sea lions 

from Alaska to determine what time period the isotope ratios represented. Information 

from both captive and wild harbor seals indicated that their vibrissae were grown for 

several months a year and then replaced annually with new whiskers. In contrast, 

Steller sea lions in captivity and in the wild had a much different growth pattern.

Their vibrissae appeared to grow continuously and were maintained for several years. 

If either species were to break or damage a whisker, a new one was rapidly grown to 

replace it. The information gathered for the harbor seals was in sharp contrast to the 

hypothesis that vibrissae represented several years’ growth, while the sea lion 

vibrissae grew as predicted. The growth rate experiment could not be conducted for 

northern fur seals at that time; however, similarities in carbon and nitrogen isotope 

ratio fluctuations between the fur seals and the sea lions, believed to result from 

geographic isotope gradients, imply a similar growth rate pattern exists in northern 

fur seals as in Steller sea lions.

The Pribilof Islands in the Bering Sea and the western portion of the Gulf of 

Alaska were the regions where the declines of northern fur seals and Steller sea lions, 

respectively, were first noted. The fluctuations in the carbon and nitrogen isotope 

ratios were highly correlated with each other in the vibrissae of both species and 

clearly had a repetitive, cyclic pattern. The fluctuations in both 613C and 815N of the
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northern fur seals appeared greater than a trophic step alone, i.e., greater than 1%0 and 

3%o, respectively. When those values were compared with probable prey items 

throughout the northeastern Pacific Ocean, stable isotope ratios from northern fur seal 

vibrissae were consistent with a diet of predominantly squid and juvenile walleye 

pollock. Steller sea lions had somewhat modified oscillations in their 513C and 515N, 

but those shifts also corresponded to a diet of gadids (both Pacific cod and walleye 

pollock) and some Atka mackeral from the Bering Sea and Gulf of Alaska. The 

fluctuations in the stable isotope ratios in the vibrissae of both the sea lions and fur 

seals are consistent with the hypothesis that they provide information not only on 

trophic level but also on geographic movement.

Some adult and subadult harbor seals in Prince William Sound expressed 

isotopic fluctuations in their vibrissae that suggested the seals were feeding at times 

within the sound and at other times in the Gulf of Alaska. The isotope ratios of prey 

were considerably lower in the gulf than within the sound, and the more negative 13C 

values represented in the seal vibrissae indicate that these prey were likely consumed 

by the seals. The most positive l3C values indicated benthic prey were likely a large 

component of the seals’ diet. These data supported the hypothesis that prey outside 

Prince William Sound were isotopically depleted and were being foraged on by some 

seals. Whether the observed isotopic fluctuations in the seal vibrissae were entirely 

the result of geographic differences in food webs needs to be determined.
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Interannual variability in the seals’ movements (Frost et al. 1999) seems to 

provide some evidence of a changing pattern, in which seals forage within and 

outside the sound during some years and forage only within the sound in other years. 

Tagging data from 1992 showed seals remaining in the sound while subsequent years 

showed seals traveling, and presumably foraging, in Prince William Sound and the 

Gulf of Alaska. Vibrissae isotope data seem to be consistent with this hypothesis. In 

most cases vibrissae were collected before tracking data was obtained for the seals. 

There were no fluctuations in both isotope ratios in vibrissae from seals sampled in 

May 1993. These isotope ratios in the vibrissae would represent the prey isotope 

ratios for 1992-1993. Yet all subsequent years of the study showed large isotopic 

fluctuations in the vibrissae that appeared to correspond to prey found outside the 

sound. These data corresponded to those tagging data that also revealed seals 

traveling outside the sound.

Dietary changes in seals and sea lions, resulting from changing prey 

abundances since the mid 1970s, were expected to result in changes in trophic level 

and contribute to the declining pinniped populations. While pinniped tissues were 

being collected and analyzed throughout the 1990s, no obvious change in trophic 

level was observed. In an effort to look for changes during a continuous span of time, 

five decades of bone samples were analyzed for all three species. However, the 615N 

in the bone collagen also showed no evidence of trophic level change. A significant 

decline in the carbon isotope ratios of Steller sea lions during that time period
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suggested that a decline in the primary production at the base of the food webs had 

occurred. The decline in 513C was not detected in northern fur seals presumably due 

to a lack of samples available after 1976. Likewise, no significant change in the 

carbon values in harbor seals was observed, presumably due to their localized 

habitats. These isotopic data, as well as those from Schell (2000), Sugimoto and 

Tadokoro (1997) and Finney (per. comm.), were consistent with a decline in primary 

productivity, and potentially carrying capacity, in the northeastern Pacific Ocean that 

may have resulted in diminished prey for the seals and sea lions.

Evidence of declining primary productivity from the 513C of sea lions’ bone 

collagen indicates an impact on the populations has been occurring for at least fifty 

years, yet population declines have only been recorded for the past twenty-five to 

thirty years. Bone collagen used in this study is a decadal-long integrator of stable 

isotopes that would temper any rapid changes in the isotope record, which may have 

occurred closer in time to the noted pinniped declines. If decreased productivity is a 

factor in the pinniped declines, primary productivity may need to be suppressed for an 

unknown length of time before it impacts apex predators, like pinnipeds. It may also 

be possible that the productivity decline is not the sole cause of the declining pinniped 

populations but, rather, is acting in combination with other conditions. Primary 

productivity changes may have indirectly contributed to the declines by reducing or 

changing the animals’ forage base. The changes in prey availability may have then 

resulted in the declining pinniped populations.
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The isotopic data provide evidence that changes in the physical environment 

could be an underlying cause for the decline in these pinniped populations. An 

abundance of physical evidence already exists that indicates changes have occurred in 

our ocean climate. The linkage between ocean climate and biological production was 

supported by the associated increases and decreases in stocks of fish and shellfish at 

the time of the 1976-1977 regime shift (Anderson and Piatt 1999). Marine mammal 

and sea bird declines were noted at approximately the same time that clupeid and 

gadid biomasses were changing. Clearly, further research is needed in many areas 

besides pinniped biology to evaluate what impact environmental fluctuations have on 

organisms in the marine environment.

As with any research topic, particularly one dealing with marine mammals in 

the wild, pitfalls occurred during this study. Because many of the vibrissae were 

collected from live seals and sea lions and no one knew how many animals would be 

handled during a cruise, the number of vibrissae samples remained a virtually 

unknown quantity until sampling was completed. This study relied heavily on 

opportunistic sampling of not only pinniped tissues but also prey samples. Specific 

prey species were targeted for sampling and as many different geographic regions 

were sampled as possible, when ships of opportunity became available. The logistics 

of this study required multiple cruises and the assistance of many different people and 

agencies.

The growth rate experiment and vibrissae monitoring required adhering to set 

protocols that Mystic Aquarium and Vancouver Aquarium had with regards to their
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captive pinnipeds. The experimental designs often had to be modified to fit the 

institutional criteria for when animals could be handled and which tissues could be 

sampled. Lapses in data collection and unannounced removal of subject animals 

forced delays in data acquisition. Both institutions were at such distances that only an 

annual visit could be managed. Some of these difficulties may have been avoided if 

direct contact with the subject animals could have been maintained.

Future research

The combined results from each of these studies have contributed to the body 

of knowledge on pinniped trophic status. Vibrissae have proven to be useful in 

providing trophic information in various temporal scales (e.g. weeks to months to 

years). The studies described here indicate that understanding the complex 

interactions between these pinnipeds and their marine environment is only just 

beginning.

As mass spectroscopy becomes more refined, smaller and smaller samples 

will be necessary for stable isotope analysis. The role of vibrissae will not only be 

how fast the vibrissae grow but how vibrissae are grown. Initial views of vibrissa 

segments from all three species with an electron microscope revealed that the inner 

core of a vibrissa appears to grow first and the external layers are added as growth 

ensues. This creates a conical shape within the vibrissae that may reveal even more 

detailed growth information, and thus when isotopes were incorporated, as finer 

resolution of vibrissa segmenting evolves. This growth pattern was not an issue
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during this study as vibrissae segments used for analysis were much larger than the 

conical layers.

Additional growth rate studies on vibrissae need to be carried out on all of 

these species to further refine their growth period with respect to seasonality and age 

of the animals. It is also uncertain what effect fasting or other metabolic change has 

had on vibrissae growth. Similar, long-term growth rate studies on captive animals 

will be valuable in trying to answer these questions. Until effective recapture methods 

are available for wild pinnipeds, captive studies remain the best source for this type of 

information.

Geographic variability has been shown in this study, as well as Schell et al.

(1998), to affect the isotope ratios of not only primary producers at the base of the 

food web, but the entire food web. Stable isotope ratios in vibrissae have not only 

provided trophic data on these animals but have also shown the potential in 

identifying locations where the seals and sea lions have fed. To increase their 

usefulness in identifying where an animal has eaten, the isotopic maps will need to be 

enlarged. The development of more detailed isotopic maps will require sampling 

zooplankton for isotopic analysis in more diverse locations throughout the expected 

ranges of these pinnipeds. Satellite- and radio-tagging of wild pinnipeds is being used 

more widely by researchers in their efforts to learn the secret habits of pinniped 

diving and traveling. Satellite tagging of selected seals and sea lions in the Gulf of 

Alaska are providing more precise geographic information but it can be cost 

prohibitive as the units are designed to remain with the animals only until the next
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molting period, less than one year. Stable isotope ratios in vibrissae may prove to be a 

cost effective means of acquiring generalized feeding and location information for 

these elusive animals.

The greatest downfall most researchers have in their effort to identify the 

sources of the pinniped declines is the lack of any long-term data sets. Data on prey 

fish abundance in concert with pinniped population estimates cover little more than 

forty years at best. The types of declines being observed were not likely induced by 

short-term changes. Longer-term, retrospective studies will be needed to determine if 

the declining productivity, and subsequent carrying capacity, is a natural occurrence 

or anthropogenically produced. Bone and tooth collagen from pinnipeds continue to 

be the best source of tissue for stable isotope analysis. These types of tissues are 

available in museum collections for periods during the nineteenth and twentieth 

centuries. Samples prior to that time have been located in archaeological middens 

from sites around Alaska. Bones from potential prey species are also found in these 

sites and can be used to reconstruct pre-existing food webs. Long-term isotopic 

records regarding trophic and environmental changes are locked away in these 

tissues.

The field of stable isotope research is expanding with researchers employing 

lesser-known isotopes to help answer questions about biological and physical 

environments. Even with these advancements, stable isotopes alone will not provide 

the ultimate answer to the question of pinniped declines. Rarely does one technique 

answer an ecological question of this magnitude. The data stable isotopes provide, in
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combination with other scientific techniques, are expected to contribute to the body of 

knowledge on pinniped ecology and help point the way to the answer regarding their 

declines.
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